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Theoretical Results with Detailed Discussions

To investigate the asymptotic properties of β̂j(d0;hs), we need to characterize points

close to and far from the boundary set ∂D(j). For a given bandwidth hs, we first define

hs-boundary sets:

∂D(j)(hs) = {d ∈ D : B(d;hs) ∩ ∂D(j) 6= ∅} and ∂D(j)
0 (hs) = ∂D(j)(hs) ∩ D0. (1)

Thus, ∂D(j)(hs) can be regarded as a band with radius hs covering the boundary set

∂D(j), while ∂D(j)
0 (hs) contains all grid points within such band. It is easy to show that

for a sequence of bandwidths h0 = 0 < h1 < · · · < hS, we have

∂D(j)(h0) = ∂D(j) ⊂ · · · ⊂ ∂D(j)(hS) and ∂D(j)
0 (h0) ⊂ · · · ⊂ ∂D(j)

0 (hS). (2)

Therefore, for a fixed bandwidth hs, any point d ∈ D belongs to either D \ ∂D(j)(hs) or

∂D(j)(hs). For each d0 ∈ D \ ∂D(j)(hs), there exists one and only one Dj,l such that

B(d0;h0) ⊂ · · · ⊂ B(d0;hs) ⊂ Doj,l. (3)

For any d0 ∈ ∂D(j)(hs), it follows from the local patch assumption that B(d0, hs) =

Pj(d0, hs) ∪ Pj(d0, hs)
c and Pj(d0, hs)

c contains all possible jump points. The per-

formance of MASS strongly depends on Kst(Dβj(d0,d
′
0;hs−1)/Cn) and the degree of

jumps as βj∗(d
′
0) varies in Pj(d0, hs)

c relative to βj∗(d0). To have a better understand-

ing of MASS, we examine the behavior of Kst(Dβj(d0,d
′
0;hs−1)/Cn) as s = 1. Let

∆̂j(d0) = β̂j(d0)−βj∗(d0) and ∆j∗(d0,d
′
0) = βj∗(d0)−βj∗(d′0). It follows from Theorem

1 that Dβj(d0,d
′
0;h0)/Cn can be written as

Dβj(d0,d
′
0;h0)/Cn = C−1

n n{∆̂j(d0)− ∆̂j(d
′
0) + βj∗(d0)− βj∗(d′0)}2/Σn(

√
nβ̂j(d0))

= Op({
√

log(1 +ND)/Cn + ∆j∗(d0,d
′
0)
√
n/Cn}2). (4)

That is, Dβj(d0,d
′
0;h0)/Cn is determined by the size of ∆̂j(d0) − ∆̂j(d

′
0) relative to

∆j∗(d0,d
′
0). If log(1 + ND) = o(Cn), Cn = o(n), and limu→∞Kst(u) = 0, then

Kst(Dβj(d0,d
′
0;h0)/Cn) converges to 0, when ∆j∗(d0,d

′
0)
√
n/Cn diverges. Therefore,
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if the jump ∆j∗(d0,d
′
0) is an order larger than

√
Cn/n, the voxel d′0 ∈ Pj(d0, hs)

c has

a small impact on β̂j(d0;h1). We will show below that the above discussions are also

valid even for s > 1.

Due to the discontinuity of βj∗(d0) in ∂D(j)(hs), we need a better refinement (or

decomposition) of D according to the value of βj∗(d0). Specifically, for each d ∈ D and

δ2 > δ1 ≥ 0, we define a (δ1, δ2)-neighborhood set of βj∗(d) as follows:

Ij(d, δ1, δ2) = {d′ : d′ ∈ D, δ1 ≤ |βj∗(d)− βj∗(d′)| < δ2}. (5)

If δ1 = 0 and δ2 = ∞, then Ij(d0, δ1, δ2) = D. For d0 ∈ Doj,l, since βj∗(d0) is a smooth

function in Doj,l, there always exists a sufficiently small bandwidth h > 0 such that

B(d0, h) ⊂ Ij(d0, 0, δ) for a given δ > 0. Particularly, if βj∗(d0) is constant in Doj,l, then

Doj,l ⊂ Ij(d0, 0, δ) for any δ > 0.

To further delineate the structure of Pj(d0, hs)
c, we introduce a lower threshold and

an upper threshold, which are denoted by δL and δU , respectively. For any 0 ≤ δL < δU ,

Pj(d0, hs)
c is a union of three sets including Pj(d0, hs)

c ∩ Ij(d0, 0, δL), Pj(d0, hs)
c ∩

Ij(d0, δL, δU), and Pj(d0, hs)
c ∩ Ij(d0, δU ,∞). We consider δL = O(

√
log(1 +ND)/n) =

o(1) and δU =
√
Cn/nMn = o(1), in which limn→∞Mn =∞. For any d′0 ∈ Ij(d0, 0, δL)

and d′′0 ∈ Ij(d0, δU ,∞), it follows from (4) that

Kst(Dβj(d0,d
′
0;hs)/Cn) = Kst(Op(log(1 +ND)/Cn)) ≈ Kst(0) > 0,

Kst(Dβj(d0,d
′′
0;hs)/Cn) = Kst(Op(M

2
n)) ≈ Kst(∞) = 0.

For any d′′′0 ∈ Ij(d0, δL, δU), we have Kst(Dβj(d0,d
′′′
0 ;hs)/Cn) ∈ [0, Kst(0)]. Generally,

MASS discards almost all information contained in voxels in Pj(d0, hs)
c ∩ Ij(d0, δU ,∞),

whereas it incorporates almost all information contained in voxels in Pj(d0, hs)
c∩Ij(d0, 0, δL)

and partial information contained in voxels in Pj(d0, hs)
c ∩ Ij(d0, δL, δU). For voxels in

Pj(d0, hs)
c∩Ij(d0, 0, δU), MASS has difficulty in preventing biases in estimating βj∗(d0).

In practice, δU can be regarded as the sensitivity (or capability) of MASS to respond to

jumps in ∂D(j).
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We first investigate the asymptotic behavior of β̂j(d0;hs) when βj∗(d0) is piecewise

constant. Let ∆j∗(d0,d
′
0) = βj∗(d0)−βj∗(d′0) and β̃j∗(d0;hs) =

∑
dm∈B(d0,hs) ω̃j(d0,dm;hs)βj∗(dm)

be the pseudo-true value of βj(d0) at scale hs in voxel d0. For all d0 ∈ D\∂D(j)(hS), we

have β̃j∗(d0;hs) = · · · = β̃j∗(d0;h0) = βj∗(d0) due to (3). In contrast, for d0 ∈ ∂D(j)(hS),

let u(j)(hs) = min(d0,d′0):∆j∗(d0,d′0)6=0,d′0∈B(d0,hs) |∆j∗(d0,d
′
0)| be the smallest absolute value

of all possible jumps at scale hs. In this case, β̃j∗(d0;hs) may vary from h0 to hS. How-

ever, we can show below that ∆̃j∗(d0;hs) = β̃j∗(d0;hs)−βj∗(d0) = op(
√

log(1 +ND)/n)

under some mild conditions on hs and u(j)(hs), which will be detailed below. A remark-

able property of MASS is that hS is not required to converge to zero when u(j)(hs) is

relatively large and Kst(t) satisfies certain tail property.

For a fixed S > 0 and piecewise constant βj∗(d0), we can establish several important

theoretical results to characterize the asymptotic behavior of β̂(d0;hs). We need to

introduce some additional notation as follows:

ω
(0)
j (d0,d

′
0;hs) = Kloc(||d0 − d′0||2/hs)Kst(0)1(∆j∗(d0,d

′
0) = 0), (6)

ω
(1)
j (d0,d

′
0;hs) = Kloc(||d0 − d′0||2/hs)Kst(0)1(d′0 ∈ Pj(d0, hs) ∪ Ij(d0, 0, δL)),

ω̃
(k)
j (d0,d

′
0;hs) = ω

(k)
j (d0,d

′
0;hs)/

∑
dm∈B(d0,hs)∩D0

ω
(k)
j (d0,dm;hs),

Σ̂(k)(
√
nβ̂j(d0;hs)) = eTj,pΩ

−1
X,nej,p

∑
dm,d′m∈B(d0,hs)∩D0

ω̃
(k)
j (d0,dm;hs)ω̃

(k)
j (d0,d

′
m;hs)Σ̂y(dm,d

′
m),

Σ
(k)
j (d0;hs) = eTj,pΩ

−1
X ej,p

∑
dm,d′m∈B(d0,hs)∩D0

ω
(k)
j (d0,dm;hs)ω

(k)
j (d0,d

′
m;hs)Σy(dm,d

′
m).

Theorem 3. Under assumptions (C1)-(C10) in Section 6 for piecewise constant {βj∗(d) :

d ∈ D}, we have the following results for all 0 ≤ s ≤ S:

(i) supd∈D0
|∆̃j∗(d0;hs)| = op(

√
log(1 +ND)/n), where ∆̃j∗(d0;hs) = β̃j∗(d0;hs) −

βj∗(d0);

(ii) β̂j(d0;hs)− βj∗(d0) =
∑

dm∈B(d0,hs)∩D0
ω̃

(0)
j (d0,dm;hs)∆̂j(dm)[1 + op(1)];

(iii) supd0∈D0
|Σ̂(
√
nβ̃j∗(d0;hs))− Σ

(0)
j (d0;hs)| = op(1);

(iv)
√
n{β̂j(d0;hs)−βj∗(d0)} converges in distribution to a normal distribution with

mean zero and variance Σ
(0)
j (d0;hs) as n→∞.

We now consider a much complex scenario when βj∗(d0) is piecewise smooth. In
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this case, β̃j∗(d0;hs) may vary from h0 to hS for all voxels d0 ∈ D regardless whether

d0 belongs to ∂D(j)(hs) or not. In this case, if βj∗(d0) is Lipschitz continuous for each

piece, it will be shown below that the bias of β̃j∗(d0;hs) is always at the order of hs for

d0 ∈ D\∂D(j)(hs). However, for d0 ∈ ∂D(j)(hs), only when Pj(d0, hs)
c∩ Ij(d0, δL, δU) is

an empty set, we can control the bias of β̃j∗(d0;hs) to be at the order of hs. Therefore,

to control the bias of β̃j∗(d0;hs) across all voxels, hs must converge to zero. Moreover,

as shown below, we can only establish the asymptotic normality of β̂j(d0;hs) relative

to β̃j∗(d0;hs), not βj∗(d0). These results differ significantly from those for piecewise

smooth βj∗(d0). Generally, for a fixed S > 0, we can establish important theoretical

results to characterize the asymptotic behavior of β̂(d0;hs) as follows.

Theorem 4. Suppose assumptions (C1)-(C9) and (C11) in Section 6 hold for piecewise

continuous {βj∗(d) : d ∈ D}. For all 0 ≤ s ≤ S, we have the following results:

(i) supd0∈D0
|∆̃j∗(d0;hs)| = Op(hs);

(ii) β̂j(d0;hs)− β̃j∗(d0;hs) =
∑

dm∈B(d0,hs)∩D0
ω̃

(1)
j (d0,dm;hs)∆̂j(dm)[1 + op(1)];

(iii) supd0∈D0
|Σ̂(
√
nβ̃j∗(d0;hs))− Σ

(1)
j (d0;hs)| = op(1).

(iv)
√
n{β̂j(d0;hs) − β̃j∗(d0;hs)} converges in distribution to a normal distribution

with mean zero and variance Σ
(1)
j (d0;hs) as n→∞.

Theorem 4 characterizes several key features of MASS for a piecewise continuous

function βj∗(d0). Theorem 4 (i) quantifies the bias of the pseudo true value β̃j∗(d0;hs)

relative to the true value βj∗(d0) across all d0 ∈ D0 for a fixed s. Even for voxels inside

the smooth areas of βj∗(d0), the bias Op(hs) is still much higher than the standard bias at

the rate of h2
s due to the presence of Kst(Dβj(d0,d

′
0;hs−1)/Cn). If we set Kst(u) = 1(u ∈

[0, 1]) and βj∗(d0) is twice differentiable, then the bias of β̃j∗(d0;hs) relative to βj∗(d0)

may be reduced to be close to Op(h
2
s). Theorem 4 (ii) establishes the asymptotic equiva-

lence between β̂j(d0;hs)− β̃j∗(d0;hs) and
∑

dm∈B(d0,hs)∩D0
ω̃

(1)
j (d,dm;hs)∆̂j(dm). Theo-

rem 4 (iii) ensures that Σ̂(
√
nβ̃j∗(d0;hs)) is a uniform consistent estimator of Σ

(1)
j (d0;hs)

across d0 ∈ D0. Theorem 4 (iv) ensures that
√
n{β̂j(d0;hs)− β̃j∗(d0;hs)} is asymptoti-

cally normally distributed.

Finally, we delineate the asymptotic variance of β̂j(d0;hs). For simplicity, we focus on

d0 ∈ D \ ∂D(j)(hs) and do not distinguish the piecewise constant case and the piecewise
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continuous one. Let K̃loc(||d0−dm||2/h) = Kloc(||d0−dm||2/h)/[
∑

d′m∈B(d0;h)∩D0
Kloc(||d0−

d′m||2/h)]. It follows from (30) that for k = 0 and 1, Σ
(k)
j (d0;hs)/e

T
j,pΩ

−1
X ej,p equals the

sum of terms (T1) and (T2), which are, respectively, given by

(T1) =
∑

dm,d′m∈B(d0;hs)∩D0

K̃loc(||d0 − dm||2/hs)K̃loc(||d0 − d′m||2/hs)Ση(dm,d
′
m)

=
∞∑
l=1

λl[
∑

dm∈B(d0;hs)∩D0

K̃loc(||d0 − dm||2/hs)ψl(dm)]2, (7)

(T2) =
∑

dm∈B(d0;hs)∩D0

K̃loc(||d0 − dm||2/hs)2Σε(dm,dm).

If hs → 0 and NDh
3/2
s → ∞, it can be shown that (T1) and (T2), respectively,

converge to Ση(d0,d0) and 0. Thus, both Σ
(0)
j (d0;hs) and Σ

(1)
j (d0;hs) converge to

eTj,pΩ
−1
X ej,pΣη(d0,d0), which is smaller than the asymptotic variance of the raw estimate

β̂j(d0). In general, for relatively small hs, MASS leads to smaller standard deviations

for estimating βj(d0).

Proofs

Proof of Theorem 1. The proof of Theorem 1 (i) can be easily proved by using the

standard asymptotic arguments (van der Vaar and Wellner, 1996), so we omit repeating

them here. To prove Theorem 1(ii), we will show

sup
d0∈D0

||β̂(d0)− β∗(d0)||2 = Op(n
−1/2

√
log(1 +ND)). (8)

It is easy to show that

β̂(d0) = (
n∑
i=1

x⊗2
i )−1

n∑
i=1

xiyi(d0) = β∗(d0) + An,η(d0) + An,ε(d0)

= β∗(d0) + (
n∑
i=1

x⊗2
i )−1

n∑
i=1

xiηi(d0) + (
n∑
i=1

x⊗2
i )−1

n∑
i=1

xiεi(d0). (9)

It follows from the law of the large number and assumption (C3) that n−1
∑n

i=1 x⊗2
i

converges to ΩX almost surely. It follows from assumption (C4) that {xη(d) : d ∈ D} is
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a Donsker class and
∑n

i=1 xiηi(d)/
√
n converges to a Gaussian process with zero mean

and covariance function ΩXΣη(d,d
′) as n→∞ (van der Vaar and Wellner, 1996). Thus,

we have

sup
d∈D
|

n∑
i=1

xiηi(d)| = Op(
√
n). (10)

It follows from assumptions (C2) and (C3) that

P (|
n∑
i=1

xijεi(d0)| > t) ≤ C exp(− Ct2

n||x||2∞maxd0∈D0 ||εi(d0)||2ψ2

),

where C is a generic constant and || · ||ψl
denotes the Orlicz norm for ψl(x) = exp(xl)−1.

Then, we can apply Lemma 2.2.10 in van der Vaar and Wellner (1996) to get

|| max
d0∈D0

|
n∑
i=1

xijεi(d0)|||ψ1 ≤ C{
√
n(||x||∞C)

√
log(1 +ND)}.

Finally, we get

max
d0∈D0

|
n∑
i=1

xijεi(d0)| = Op(
√
n log(1 +ND)). (11)

By combining (9)-(11), we can finish the proof of (8).

We define some notation as follows:

∆j∗(d,d
′) = βj∗(d)− βj∗(d′),

Ij(d, δ1, δ2) = {d′ : d′ ∈ D, δ1 ≤ |∆j∗(d,d
′)| < δ2} for j = 1, . . . , p,

K̃0
h(dm,d) = (1, 0, 0, 0){

∑
dm

Kh(dm − d)zh(dm − d)⊗2}−1Kh(dm − d)zh(dm − d),

η̂i(d) = (1, 0, 0, 0)Ĉi(d) =
∑
dm

K̃0
h(dm; d){yi(dm)− xTi β̂(dm)},

εi(d) =
∑
dm

K̃0
h(dm,d)εi(dm), ∆ηi(d) =

∑
dm

K̃0
h(dm,d)[ηi(dm)− ηi(d)],

∆i(d) = εi(d) + ∆ηi(d) + xTi ∆β(d), ∆β(d) =
∑
dm

K̃0
h(dm,d)[β∗(dm)− β̂(dm)],

where δ2 > 0 and δ1 ≥ 0 are non-negative scalars. Moreover, ΠND
(·) is the sampling

distribution function based on D0, and Π(·) is the distribution function of d. We need

the following lemmas to prove Theorem 2.
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Lemma 1. Under Assumptions (C1)-(C7), we have the following results:

sup
d∈D

∣∣∣∣∣
∫
Kh(u− d)

∏3
k=1(uk − dk)r

h3r
d[ΠND

(u)− Π(u)]

∣∣∣∣∣
= Op((NDh

3)−1/2 max(3| log h|, log logND)1/2), (12)

sup
d∈D

n−1|
n∑
i=1

εi(d)xi| = op(n
−1/2), (13)

sup
(d,d′)∈D2

n−1|
n∑
i=1

εi(d)∆ηi(d
′)| = Op(n

−1/2(log n)1/2), (14)

sup
(d,d′)∈D2

n−1|
n∑
i=1

εi(d)εi(d
′)| = Op((NDh

3)−1 + (log n/n)1/2). (15)

Proof of Lemma 1. Equation (12) follows directly from Theorem 1 of Einmahl and

Mason (2000). It follows from (12) that for large enough ND, there exists a constant

C1 > 1 such that

sup
d∈D

n−1|
n∑
i=1

εi(d)xi| ≤ n−1/2C1 sup
d∈D
|N−1

D π(d)−1

ND∑
m=1

Kh(dm − d)Fn(dm)|,

where Fn(dm) = n−1/2
∑n

i=1 xiεi(dm). By following the arguments in Einmahl and

Mason (2000), we can show that

sup
d∈D

π(d)−1|N−1
D

ND∑
m=1

Kh(dm − d)Fn(dm)| = Op((NDh
3)−1/2| log h|1/2) = op(1),

which yields (13).

By following Lemmas 1-4 of Li and Hsing (2010), we can prove (14) and (15). Let’s

consider (15) as an illustration. We define ∆n,εε(d,d
′) =

∑n
i=1 εi(d)εi(d

′) and

∆(1)
n,εε(d,d

′) = ∆(1,1)
n,εε (d,d′) + ∆(1,2)

n,εε (d,d′)

= n−1

n∑
i=1

1

N2
Dπ(d)π(d′)

ND∑
m=1

Kh(dm − d)Kh(dm − d′)[εi(dm)2 − Σε(dm,dm)]

+ n−1

n∑
i=1

1

N2
Dπ(d)π(d′)

ND∑
m=1

Kh(dm − d)Kh(dm − d′)Σε(dm,dm),

∆(2)
n,εε(d,d

′) = n−1

n∑
i=1

1

N2
Dπ(d)π(d′)

∑
m6=m′

Kh(dm − d)Kh(dm′ − d′)εi(dm)εi(dm′).
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For large enough ND, there exists a constant C1 > 1 such that

sup
(d,d′)∈D2

n−1|∆n,εε(d,d
′)|

≤ C1 sup
(d,d′)∈D2

∣∣∣∣∣n−1

n∑
i=1

1

N2
Dπ(d)π(d′)

ND∑
m,m′=1

Kh(dm − d)Kh(dm′ − d)εi(dm)εi(dm′)

∣∣∣∣∣
≤ C1{ sup

(d,d′)∈D2

∣∣∆(1)
n,εε(d,d

′)
∣∣+ sup

(d,d′)∈D2

∣∣∆(2)
n,εε(d,d

′)
∣∣}.

Similar to the arguments in Lemmas 3 and 4 of Li and Hsing (2010), we have

sup
(d,d′)∈D2

∣∣∆(2)
n,εε(d,d

′)
∣∣ = O(

√
log n/n) a.s.

Thus, we only need to consider sup(d,d′)∈D2

∣∣∣∆(1)
n,εε(d,d′)

∣∣∣. Similar to the arguments in

Lemmas 1 and 2 of Li and Hsing (2010), we can obtain

sup
(d,d′)∈D2

∣∣∆(1,1)
n,εε (d,d′)

∣∣ = Op((NDh
3)−1(log n/n)1/2), sup

(d,d′)∈D2

∣∣∆(1,2)
n,εε (d,d′)

∣∣ = Op((NDh
3)−1),

which yield (15). This completes the proof of Lemma 1.

Lemma 2. Under Assumptions (C1)-(C7), we have the following results:

sup
d0∈D0

n−1|
n∑
i=1

xTi ∆β(d0)εi(d0)| = Op(n
−1 log(1 +ND)), (16)

sup
d0∈D0

n−1|
n∑
i=1

∆ηi(d0)εi(d0)| = Op(
√
h2 + n−1/2), (17)

sup
d0∈D0

n−1|
n∑
i=1

εi(d0)εi(d0)| = Op(
√

(NDh3)−1 + (log n/n)1/2). (18)

Proof of Lemma 2. It follows from Theorem 1 and the Cauchy-Schwarz inequality that

sup
d0∈D0

n−1|
n∑
i=1

xTi ∆β(d0)εi(d0)| ≤ sup
d0∈D0

n−1||
n∑
i=1

xiεi(d0)||2||∆β(d0)||2 = Op(n
−1 log(1+ND)).

It follows from the Cauchy-Schwarz inequality that

sup
d0∈D0

{n−1|
n∑
i=1

∆ηi(d0)εi(d0)|}2 ≤ sup
d0∈D0

{n−1

n∑
i=1

∆ηi(d0)2} sup
d0∈D0

{n−1

n∑
i=1

εi(d0)2},

sup
d0∈D0

{n−1|
n∑
i=1

εi(d0)εi(d0)|}2 ≤ sup
d0∈D0

{n−1

n∑
i=1

εi(d0)2} sup
d0∈D0

{n−1

n∑
i=1

εi(d0)2}.
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Let ∆
(2)
Σ,η(d0,dm,d

′
m) = Ση(d0,d

′
m) + Ση(dm,d0) − Ση(dm,d

′
m) − Ση(d0,d0). Based on

assumption (C4), we have

sup
d0∈D0

|n−1

n∑
i=1

∆ηi(d0)2| ≤ Op(h
2 + n−1/2) = (19)

sup
d0,d′0

{|
∑

dm,d′m

K̃0
h(dm,d0)K̃0

h(d′m,d0)∆
(2)
Σ,η(d0,dm,d

′
m)|+

∑
dm,d′m

|K̃0
h(dm,d0)K̃0

h(d′m,d
′
0)| ×

sup
dm,d′m

||n−1

n∑
i=1

[ηi(dm)− ηi(d0)][ηi(d
′
m)− ηi(d0)]−∆

(2)
Σ,η(d0,dm,d

′
m)||}.

Let Σ̂ε(d0) = n−1
∑n

i=1 εi(d0)2 and λ(Kε, n,ND) = Kε log(2ND)/n+
√

2 log(2ND)/n. It

follows assumption (C2) and Lemma 14.13 of Buhlmann and van de Geer (2011) that

P ( sup
d0∈D0

|Σ̂ε(d0)− Σε(d0,d0)| ≥ 2K2
ε t+ 2KεCε

√
2t+ 2KεCελ(Kε, n,ND)) ≤ exp(−nt),

(20)

which yields that supd∈D0
|Σ̂ε(d)− Σε(d0,d0)| = op(1). Combining (19) and (20) yields

(17). Similarly, we can prove (18).

Proof of Theorem 2. We have

η̂i(d)− ηi(d) = ∆i(d) = εi(d) + ∆ηi(d) + xTi ∆β(d). (21)

Therefore, we have

n−1

n∑
i=1

η̂i(d)η̂i(d
′) = n−1

n∑
i=1

∆i(d)∆i(d
′) + n−1

n∑
i=1

ηi(d)∆i(d
′) (22)

+n−1

n∑
i=1

∆i(d)ηi(d
′) + n−1

n∑
i=1

ηi(d)ηi(d
′).

This proof of Theorem 2 (i) consists of three steps as follows.

• Show the uniform convergence of n−1
∑n

i=1 ηi(d)ηi(d
′) to Ση(d,d

′) over (d,d′) ∈

D2 in probability.

• Show that n−1
∑n

i=1 ηi(d)∆i(d
′)+n−1

∑n
i=1 ∆i(d)ηi(d

′) converges to zero uniformly

for all (d,d′) ∈ D2 in probability.

9



• Show that n−1
∑n

i=1 ∆i(d)∆i(d
′) converges to zero uniformly for all (d,d′) ∈ D2

in probability.

In the first step, it follows from assumption (C4) that

sup
(d,d′)∈D2

|n−1

n∑
i=1

[ηi(d)ηi(d
′)− Ση(d,d

′)]| = Op(n
−1/2). (23)

In the second step, we can show that

sup
(d,d′)∈D2

n−1|
n∑
i=1

∆i(d)ηi(d
′)| = op(h

2 + (log n/n)1/2 + n−1
√

log(1 +ND)). (24)

With some simple calculations, we have

n∑
i=1

∆i(d)ηi(d
′) ≤ {|

n∑
i=1

εi(d)ηi(d
′)|+ |

n∑
i=1

xTi ∆β(d)ηi(d
′)|+ |

n∑
i=1

∆ηi(d)ηi(d
′)|}. (25)

Thus, it is sufficient to focus on the three terms on the right-hand side of (25). First, it

follows from Lemma 1 that sup(d,d′) n
−1{|

∑n
i=1 εi(d)ηi(d

′)| = O((log n/n)1/2). Secondly,

since {xη(d) : d ∈ D} is a Donsker class and supd ||∆β(d)||2 = Op(n
−1/2

√
log(1 +ND)),

we have

n−1|
n∑
i=1

xTi ∆β(d)ηi(d
′)| ≤ sup

d
||∆β(d)||2||n−1

n∑
i=1

xTi ηi(d
′)||2 = Op(n

−1
√

log(1 +ND)).

Thirdly, based on the definition of ∆ηi(d), we have

n−1

n∑
i=1

∆ηi(d)ηi(d
′) = {

∑
dm

K̃0
h(dm,d)Ση(dm,d

′)− Ση(d,d
′)} (26)

+
∑
dm

K̃0
h(dm, d)n−1{

n∑
i=1

[ηi(dm)ηi(d
′)− Ση(dm,d

′)− ηi(d)ηi(d
′) + Ση(d,d

′)]}.

It follows from assumption (C4) that the first term on the right hand side of (26) is

Op(h
2) and the second one is Op(n

−1/2).

The third step is to show that

sup
(d,d′)

n−1|
n∑
i=1

∆i(d)∆i(d
′)| = Op((NDh

3)−1 + (log n/n)1/2 +h2 +n−1 log(1 +ND)). (27)
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With some calculations, we have

|
n∑
i=1

∆i(d)∆i(d
′)| ≤ C1 sup

(d,d′)

[|
n∑
i=1

εi(d)εi(d
′)|+ |

n∑
i=1

εi(d)∆ηi(d
′)|

+ |
n∑
i=1

εi(d)xTi ∆β(d′)|+ |
n∑
i=1

∆ηi(d
′)xTi ∆β(d)| (28)

+ |
n∑
i=1

∆ηi(d)∆ηi(d
′)|+ |

n∑
i=1

xTi ∆β(d)∆β(d′)xi|],

for a positive constant C1. It follows from Lemma 1 that the first three terms on the

right hand side of (28) uniformly converge to zero. We only need to consider the last

three terms on the right hand side of (28) as follows:

n−1|
n∑
i=1

∆ηi(d
′)xTi ∆β(d)| ≤ ||∆β(d)||2n−1||

n∑
i=1

∆ηi(d
′)xTi ||2

≤ ||∆β(d)||2
∑
dm

|K̃0
h(dm − d′)|||n−1

n∑
i=1

xiηi(dm)− n−1

n∑
i=1

xiηi(d)||2

= Op(n
−1
√

log(1 +ND)),

n−1

n∑
i=1

∆ηi(d)∆ηi(d
′) =

∑
dm,d′m

K̃0
h(dm,d)K̃0

h(d′m,d
′)n−1

n∑
i=1

[ηi(dm)− ηi(d)][ηi(d
′
m)− ηi(d′)]

= Op(h
2 + n−1/2),

n−1

n∑
i=1

xTi ∆β(d)∆β(d′)Txi = tr{∆β(d)∆β(d′)Tn−1

n∑
i=1

x⊗2
i } = Op(n

−1 log(1 +ND)).

To prove Theorem 2 (ii), we note that ε̂i(dm) = εi(dm)−xTi [β̂(dm)−β(dm)]−∆i(dm)

holds for all dm ∈ D0. It yields that

sup
dm∈D0

|n−1

n∑
i=1

ε̂i(dm)2 − n−1

n∑
i=1

εi(dm)2| ≤

2 sup
dm∈D0

n−1|
n∑
i=1

∆i(dm)εi(dm)|+ 2 sup
dm∈D0

|n−1

n∑
i=1

εi(dm)xTi [β̂(dm)− β(dm)]| (29)

+n−1 sup
dm∈D0

n∑
i=1

∆i(dm)2 + sup
dm∈D0

[β̂(dm)− β(dm)]Tn−1

n∑
i=1

x⊗2
i [β̂(dm)− β(dm)].

It follows from Lemma 2 that the first two terms on the right hand side of (29) are at

the order of Op(n
−1 log(1 + ND) +

√
h2 + n−1/2 +

√
(NDh3)−1 + (log n/n)1/2), while it
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follows from (28) and Theorem 1 that the last two terms on the right hand side of above

inequality converge to zero uniformly for all dm ∈ D0 in probability. This completes the

proof of Theorem 2 (ii).

Theorem 2 (iii) directly follows from the same arguments in Lemma 6 of Li and Hsing

(2010). So, we omit the details.

Proof of Theorem 3. For s ≥ 1, we define

F1(d0, hs) =

∑
dm∈B(d0,hs)∩D0

[ω
(0)
j (d0,dm;hs)− ωj(d0,dm;hs)]∑

dm∈B(d0,hs)∩D0
ωj(d0,dm;hs)

, (30)

F2(d0, hs) =

∑
dm∈B(d0,hs)∩D0

[ωj(d0,dm;h1)− ω(0)
j (d0,dm;hs)]∆̂j(dm)∑

dm∈B(d0,hs)∩D0
ωj(d0,dm;hs)

.

For 0 ≤ s ≤ S, we have the following results:

(R.1) F1(d0, hs) = op(1), F2(d0, hs) = op(
√

log(1 +ND)/n),

(R.2) ∆̃j∗(d0;hs) = Op(1)NDh
3
sKst(0.5C

−1
n nu(j)(hs)

2/Σ̂n(
√
nβ̂j(d0;hs−1))) = op(

√
log(1 +ND)/n),

(R.3) β̂j(d0;hs)− βj∗(d0) = F0(d0, hs)[1 + op(1)] = Op(
√

log(1 +ND)/n),

(R.4) sup
d0∈D0

|Σ̂n(
√
nβ̂j(d0;hs))− Σ

(0)
j (d0;hs)| = op(1).

It follows from Theorem 1 that (R.1)-(R.4) hold for s = 0. For s = 1, we consider

two different cases including (i) d0 ∈ D \ ∂D(j)(hS) and (ii) d0 ∈ ∂D(j)(hS). Since

∆j∗(d0,d
′
0) = 0 for d0 ∈ Doj,l and d′0 ∈ B(d0;h1), Dβj(d0,d

′
0;h0)/Cn can be written as

Dβj(d0,d
′
0;h0)/Cn = C−1

n n{β̂j(d0)− β̂j(d′0)}2/Σ̂n(
√
nβ̂j(d0)) (31)

= C−1
n n{∆̂j(d0)− ∆̂j(d

′
0)}2/Σ̂n(

√
nβ̂j(d0)) = Op(log(1 +ND)/Cn).

Note that Op(1) in above inequality is independent of d0 and d′0. Therefore, we have

|Kst(Dβj(d0,d
′
0;h0)/Cn)−Kst(0)| ≤ Op(1) log(1 +ND)C−1

n , (32)

which yields

F1(d0, hs) = Op(1) log(1 +ND)C−1
n = op(1). (33)
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It follows from (32) and (33) that

F2(d0, h1) =

∑
dm∈B(d0,hs)∩D0

[ωj(d0,dm;h1)− ω(0)
j (d0,dm;hs)]∆̂j(dm)∑

dm∈B(d0,hs)∩D0
ω

(0)
j (d0,dm;hs)

[1 + F1(d0, h1)]−1

≤ {log(1 +ND)}3/2/(Cn
√
n)Op(1). (34)

Since ∆j∗(d0,d
′
0) = 0 for d0 ∈ Doj,l ∩D0 and d′0 ∈ B(d0;h1) ∩D0, we have β̃j∗(d0;hs) =

βj∗(d0) for all s = 1, . . . , S, which yields (R.2). It follows from (32)-(34) that

β̂j(d0;h1)− βj∗(d0) = F2(d0, h1) + F0(d0, h1)[1 + F1(d0, h1)]−1 = F0(d0, h1)[1 + op(1)],

(35)

which yields (R.3).

To prove (R.4), we only need some notation as follows:

T1(hs) = sup
d0∈D0

∣∣∣∣∣∣
∑

dm,d′m∈B(d0,hs)∩D0

ω̃j(d0,dm;hs)ω̃j(d0,d
′
m;hs){Σ̂y(dm,d

′
m)− Σy(dm,d

′
m)}

∣∣∣∣∣∣ ,
T2(hs) = sup

d0∈D0

∣∣∣∣∣∣
∑

dm,d′m∈B(d0,hs)∩D0

{ω̃j(d0,dm;hs)− ω̃(0)
j (d0,dm;hs)}ω̃j(d0,d

′
m;hs)Σy(dm,d

′
m)

∣∣∣∣∣∣ ,
T3(hs) = sup

d0∈D0

∣∣∣∣∣∣
∑

dm,d′m∈B(d0,hs)∩D0

{ω̃j(d0,dm;hs)− ω̃(0)
j (d0,dm;hs)}ω̃(0)

j (d0,d
′
m;hs)Σy(dm,d

′
m)

∣∣∣∣∣∣ .
A sufficient condition of (R.4) is |T1(h1)| + |T2(h1)| + |T3(h1)| = op(1). It follows from

Theorem 1 that T1(h1) ≤ supdm,d′m∈D0
|Σ̂y(dm,d

′
m) − Σy(dm,d

′
m)| = op(1). Moreover,

ω̃j(d0,dm;hs)− ω̃(0)
j (d0,dm;hs) equals

ωj(d0,dm;hs)− ω(0)
j (d0,dm;hs)∑

dm∈B(d0,hs)∩D0
ωj(d0,dm;hs)

+ F1(d0, h1)ω̃
(0)
j (d0,dm;hs). (36)

Substituting (36) into T2(h1), we have

T2(h1) ≤ C1{|F1(d0, h1)|+
∑

dm∈B(d0,hs)∩D0
|ω(0)
j (d0,dm;h1)− ωj(d0,dm;h1)|∑

dm∈B(d0,h1)∩D0
ωj(d0,dm;h1)

} = op(1).

Similar to the derivation of T2(h1), we can prove T3(h1) = op(1).
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For d0 ∈ ∂D(j)(hS), we assume d0 ∈ ∂D(j)(h1) without loss of generality. It fol-

lows from assumption (C10) that B(d0, h1) is the union of B(d0, h1) ∩ {d′0 : d′0 ∈

D0,∆j∗(d0,d
′
0) = 0} and B(d0, h1) ∩ {d′0 : d′0 ∈ D0, |∆j∗(d0,d

′
0)| ≥ u(j)(h1)}. For

d′0 ∈ B(d0, h1) ∩ {d′0 : d′0 ∈ D0,∆j∗(d0,d
′
0) = 0}, it is easy to see that (32) is true. For

d′0 ∈ B(d0, h1) ∩ Ij(d0,u
(j)(h1),∞), it follows from the inequality 2(a − b)2 + 2b2 ≥ a2

for any a, b that

Dβj(d0,d
′
0;h0)/Cn ≥ C−1

n n[0.5∆j∗(d0,d
′
0)2 − {∆̂j(d0)− ∆̂j(d

′
0)}2]/Σ̂n(

√
nβ̂j(d0))

≥ [0.5C−1
n nu(j)(h1)2 − 4C−1

n n sup
d0

∆̂j(d0)2]/Σ̂n(
√
nβ̂j(d0)). (37)

Thus, we have

Kst(Dβj(d0,d
′
0;h0)/Cn) ≤ Op(1)Kst(0.5C

−1
n nu(j)2/Σ̂n(

√
nβ̂j(d0))), (38)

which yields that∑
dm∈B(d0,h1)∩D0∩Ij(d0,u(j)(h1),∞) Kloc(||d0 − dm||2/h1)Kst(Dβj(d0,dm;h0)/Cn)∑

dm∈B(d,h1)∩D0
Kloc(||d0 − dm||2/h1)Kst(Dβj(d0,dm;h0)/Cn)

≤ Op(1)Kst(0.5C
−1
n nu(j)(h1)2/Σ̂n(

√
nβ̂j(d0)))×∑

dm∈B(d0,h1)∩Ij(d0,u(j)(h1)2,∞)∩D0
Kloc(||d0 − dm||2/h1)

Kloc(0)Kst(0)

≤ Op(1)NDh
3
1Kst(0.5C

−1
n nu(j)(h1)2/Σ̂n(

√
nβ̂j(d0))). (39)

Therefore, it follows from (38) and (39) that

F1(d0, hs) = Op(1){log(1 +ND)C−1
n +NDh

3
1Kst(0.5C

−1
n nu(j)(h1)2/Σ̂n(

√
nβ̂j(d0)))} = op(1),

F2(d0, h1) ≤ {log(1 +ND)}3/2/(Cn
√
n)Op(1) +

Op(NDh
3
1Kst(0.5C

−1
n nu(j)(h1)2/Σ̂n(

√
nβ̂j(d0))))

√
log(1 +ND)/n

= op(
√

log(1 +ND)/n), (40)

which yield (R.1). Furthermore, it follows from (39) that

|∆̃j∗(d0;hs)| ≤
∑

dm∈B(d0,h1)∩D0∩Ij(d0,
√
Cn/nu(j),∞)

ω̃j(d0,dm;hs)|βj∗(dm)− βj∗(d0)|

≤ Op(1)NDh
3
1Kst(0.5C

−1
n nu(j)(h1)2/Σ̂n(

√
nβ̂j(d0))). (41)
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Furthermore, it follows from (32)-(34) that

β̂j(d0;h1) = β̃j∗(d0;h1) + F2(d0, h1) + F0(d0, h1)[1 + F1(d0, h1)]−1 (42)

= βj∗(d0) + ∆̃j∗(d0;h1) + F2(d0, h1) + F0(d0, h1)[1 + F1(d0, h1)]−1

= βj∗(d0) + F0(d0, h1)[1 + op(1)] + op(
√

log(1 +ND)/n),

which yields (R.3). Similar to the arguments near (36), we can easily prove (R.4) for

d0 ∈ ∂D(j)(hS) ∩ D0.

Note that (R.2) and (R.3) are the key results used in deriving (31)-(42). Based

on (R.1)-(R.4) for s = 1, we can use the same arguments from (31) to (42) to prove

(R.1)-(R.4) for s = 2. Generally, if (R.1)-(R.4) are true for any s, we can use the same

arguments in (31)-(42) to prove (R.1)-(R.4) for s+1. This finishes the proof of Theorem

3.

Proof of Theorem 4. For s ≥ 1, we define

∆̂j(d0;hs) = β̂j(d0;hs)− β̃j∗(d0;hs), ∆̃j∗(d0,d
′
0;hs) = β̃j∗(d0;hs)− β̃j∗(d′0;hs). (43)

For 0 ≤ s ≤ S, we want to prove the following results by introduction:

(R.1) F1(d0, hs) = op(1), F2(d0, hs) = op(
√

log(1 +ND)/n),

(R.2) ∆̃j∗(d0;hs) = Ljhs + δL +Op(1)NDh
3
sKst(0.5M

2
n/Σ̂n(

√
nβ̂j(d0))),

(R.3) β̂j(d0;hs)− β̃j∗(d0;hs) = F0(d0, hs)[1 + op(1)] = Op(
√

log(1 +ND)/n),

(R.4) sup
d0∈D0

|Σ̂n(
√
nβ̂j(d0;hs))− Σ

(1)
j (d0;hs)| = op(1).

It follows from Theorem 1 that (R.1)-(R.4) hold for s = 0. For s = 1, we consider

two different cases including (i) d0 ∈ D\∂D(j)(hS) and (ii) d0 ∈ ∂D(j)(hS). For d0 ∈ D\

∂D(j)(hS) and d′0 ∈ B(d0, h1), it follows from assumption (C9) that Dβj(d0,d
′
0;h0)/Cn

can be written as

Dβj(d0,d
′
0;h0)/Cn = C−1

n n{∆̂j(d0)− ∆̂j(d
′
0) + ∆j∗(d0,d

′
0)}2/Σ̂n(

√
nβ̂j(d0))

≤ 2Σ̂n(
√
nβ̂j(d0))−1{log(1 +ND)C−1

n +K2
j nC

−1
n ||d0 − d′0||22}Op(1).
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Therefore, we have

|Kst(Dβj(d0,d
′
0;h0)/Cn)−Kst(0)| ≤ Op(1)Σ̂n(

√
nβ̂j(d0))−1| log(1 +ND)C−1

n +K2
j nC

−1
n h2

1|

= Op(1) log(1 +ND)C−1
n . (44)

For d0 ∈ ∂D(j)(hS), we assume d0 ∈ ∂D(j)(h1) without loss of generality. It follows from

assumption (C10b) that B(d0, h1) is the union of Pj(d0, h1), Pj(d0, h1)c∩Ij(d0, 0, δL) and

Pj(d0, h1)c ∩ Ij(d0, δU ,∞), and Pj(d0, h1)c ∩ Ij(d0, δL, δU) = ∅. For d′0 ∈ Pj(d0, h1) ∪

[Pj(d0, h1)c ∩ Ij(d0, 0, δL)], it is easy to see that (44) is true. For d′0 ∈ B(d0, h1) ∩

Ij(d0, δU ,∞), by using the same arguments in (34)-(37), we have∑
dm∈B(d0,h1)∩Ij(d0,δU ,∞)Kloc(||d0 − dm||2/h1)Kst(Dβj(d0,dm;h0)/Cn)∑

dm∈B(d0,h1) Kloc(||d0 − dm||2/h1)Kst(Dβj(d0,dm;h0)/Cn)

≤ Op(1)NDh
3
1Kst(0.5M

2
n/Σ̂n(

√
nβ̂j(d))). (45)

Therefore, similar to (34) and (40), we have

F1(d0, h1) = Op(1){log(1 +ND)C−1
n +NDh

3
1Kst(0.5M

2
n/Σ̂n(

√
nβ̂j(d0)))} = op(1),

F2(d0, h1) = op(
√

log(1 +ND)/n), (46)

which yield (R.1).

We prove (R.2) as follows. For d0 ∈ ∂D(j)(hS) ∩ D0, it follows from (44) and (45)

that

|∆̃j∗(d0;h1)| ≤ |
∑

dm∈Pj(d0,h1)

ω̃j(d0,dm;hs)[βj∗(dm)− βj∗(d0)]|

+
∑

dm∈Pj(d0,h1)c∩Ij(d0,0,δL)

ω̃j(d0,dm;hs)|βj∗(dm)− βj∗(d0)|

+
∑

dm∈Pj(d0,h1)c∩Ij(d0,δU ,∞)

ω̃j(d0,dm;hs)|βj∗(dm)− βj∗(d0)|

≤ Ljh1 + δL +NDh
3
1Kst(0.5M

2
n/Σ̂n(

√
nβ̂j(d0)))Op(1). (47)

However, for d0 ∈ D \ ∂D(j)(hS), by using Taylor series expansion, we have

|∆̃j∗(d0;h1)| = |
∑

dm∈B(d,h1)

ω̃j(d0,dm;hs)[βj∗(dm)− βj∗(d0)]| ≤ Ljh1. (48)
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This yields (R.2). Similar to the arguments in Theorem 3, we can easily prove (R.3)

and (R.4) for s = 1. So we omit the details.

For s = 2, we only prove the result (R.1). Dβj(d0,d
′
0;h1) can be written as

Dβj(d0,d
′
0;h1) = n{β̂j(d0;h1)− β̂j(d′0;h1)}2/Σ̂n(

√
nβ̂j(d0;h1)) (49)

= n{∆̂j(d0;h1)− ∆̂j(d
′
0;h1) + ∆̃j∗(d0,d

′
0;h1)}2/Σ̂n(

√
nβ̂j(d0;h1)).

We first consider the cases with d′0 ∈ Pj(d, h2) for d0 ∈ D\∂D(j)(hS) and d′0 ∈ B(d0, h2)

for d0 ∈ ∂D(j)(hS). It follows from (R.2) and (R.3) that

nC−1
n {∆̂j(d0;h1)− ∆̂j(d

′
0;h1) + ∆̃j(d0,d

′
0;h1)}2

≤ 2nC−1
n {∆̂j(d0;h1)− ∆̂j(d

′
0;h1)}2 + 2nC−1

n {∆̃j∗(d0;h1)− ∆̃j∗(d
′
0;h1) + ∆j∗(d0,d

′
0)}2

≤ Op(1){log(1 +ND)C−1
n + nC−1

n (h2
1 + h2

2)},

which yields F1(d0, h2) ≤ Op(1)| log(1 +ND)C−1
n + nC−1

n (h2
1 + h2

2)|.

For d′0 ∈ Pj(d0, h1)c ∩ Ij(d0, δU ,∞), by using the same arguments in (34)-(37), we

have

{β̂j(d0;h1)− β̂j(d′0;h1)}2

≥ 0.5∆j∗(d0,d
′
0)2 − {∆̃j∗(d0;h1)− ∆̃j∗(d

′
0;h1) + ∆̂j(d0;h1)− ∆̂j(d

′
0;h1)}2

≥ 0.5n−1CnM
2
n − 2{∆̃j∗(d0;h1)− ∆̃j∗(d

′
0;h1)}2 − 2{∆̂j(d0;h1)− ∆̂j(d

′
0;h1)}2

≥ 0.5n−1CnM
2
n −Op(h

2
1 + n−1 log(1 +ND)).

Thus, we have∑
dm∈Pj(d0,h2)c∩Ij(d0,δU ,∞) Kloc(||d0 − dm||2/h2)Kst(Dβj(d0,dm;h1)/Cn)∑

dm∈B(d0,h2) Kloc(||d0 − dm||2/h2)Kst(0)

≤ Op(1)NDh
3
2Kst(0.5M

2
n/Σ̂n(

√
nβ̂j(d0;h1))) (50)

Therefore, by using the similar arguments in (34) and (40), we can get

F1(d0, h2) ≤ Op(1)| log(1 +ND)C−1
n + nC−1

n (h2
1 + h2

2)| (51)

+ Op(1)NDh
3
2Kst(0.5M

2
n/Σ̂n(

√
nβ̂j(d0;h1))),

F2(d0, h2) = op(
√

log(1 +ND)/n).
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Generally, if (R.1)-(R.4) are true for any s, we can use the same arguments in (43)-(51)

to prove (R.1)-(R.4) for s+ 1. This finishes the proof of Theorem 4.

Simulation Studies

Additional Simulation Results

We present some additional results obtained from the simulation studies in the main

paper. Figure S1 shows some selected results based on β̂3(d0, h0) and β̂3(d0;h10) with

N(0, 1) distributed data and n = 60 from the 200 simulated data sets. The biases

slightly increase from h0 to h10 (Figure S1 (b) and (g)), whereas the root-mean-square

errors (RMSs) and standard deviations (SDs) at h10 are much smaller than those at h0

(Figure S1 (c), (d), (h), and (i)). In addition, the RMSs and their corresponding SDs

are relatively close to each other at all scales for both the normal (Figure S1 (e) and

(j)) and Chi-square distributed data (not shown here). Moreover, SDs in these voxels of

regions of interest (ROIs) with β3(d0) > 0 are larger than SDs in those voxels of ROI

with β3(d0) = 0 (the last column in the lower row of Figure S1), because the interior

of ROI with β3(d0) = 0 contains more pixels (Figure 3 (c)). Moreover, both the SDs at

steps h0 and h10 show clear spatial patterns caused by spatial correlations (Figure S1

(d) and (i)). The RMSs also show some evidence of spatial patterns (Figure S1 (c) and

(h)). All these results confirm the conclusions that we make based on Table 1 in the

main paper.

We test the hypotheses H0(d0) : βj(d0) = 0 versus H1(d0) : βj(d0) 6= 0 for j = 1, 2, 3

across all d0 ∈ D0 using the MASS procedure at scales h0 and h10. The − log10(p) values

on some selected slices are shown in Figure S2. The values that are greater than 1.3

indicate a significant effect at 5% significance level and a highly significant effect at 1%

significance level if they are greater than 3. The results are consistent with that from

Table 2. In the lower panels of Figure S2 at scale h10, all the nonzero regions of βj(d0)

are detected as significant at 5% significance level, while most of them are even identified
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as highly significant and the boundaries between different regions are fairly identifiable.

In contrast, in the upper panels of Figure S2, at scale h0, many voxels in ROIs with

β2(d0) 6= 0 are significant at α = 5% significance level, while the boundaries of ROIs are

blurred.

Local Constant Estimation

As suggested by one of the referees, we compare SVCM with another estimation method,

called local constant estimation (LCE). Specifically, we calculate the least squares es-

timate β̂j(d0) and then use local constant method based on the Epanechnikov kernel

function, K(u) = 3/4(1 − u2)I(|u| ≤ 1), to directly smooth the initial estimate image,

which leads to a new estimate, denoted as β̃j(d0;h), at each voxel. Subsequently, we

use the method in Stage (III) of SVCM to compute the standard errors of β̃j(d0;h) and

construct a Wald type test. We consider small (hs = 1.1), moderate (hm = 2), and large

bandwidths (hl = 4).

Figure S3 presents the LCE estimates obtained from the three different bandwidths

based on one selected simulated data set. For the small bandwidth, effect ROIs cannot

be clearly detected. As bandwidth increases, the − log10(p) plots in Figure S5 reveal

that the coefficients near the boundaries of all ROIs are easily oversmoothed and the

edges of all ROIs are blurred at moderate and large bandwidths. In addition, Figure S5

shows that false positive rates are high for moderate and large bandwidths, as confirmed

in Table S2. The failure of detecting edges by LCE is also observed from the bias plots

in Figure S4 (panels (b), (g), and (l)). As shown in Figure S4 (panels (e), (j), and (o)),

the ratios of RMS over SD are uniformly greater than 1, which indicates that the SDs

are underestimated.

We repeated the simulation 200 times at the three different bandwidths with N(0, 1)

and χ2(3)− 3 distributed data for two different sample sizes (n = 60 and 80) as we did

in the main paper. For the sake of space, we only report the results for β2(d0) in Table

S1. The bias in ROIs with no or weak signals (β2(d0) = 0 or 0.2) is positive, whereas
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the bias is negative for ROIs with median or strong signals (β2(d0) = 0.4, 0.6 or 0.8).

It indicates that weak signals are overestimated, whereas mediate and strong signals are

underestimated mainly due to the burring edges of LCE. Table S1 reveals that the SDs

are underestimated. We also calculated the rejection rates for testing H0 : β2(d0) = 0

in all voxels and include them in Table S2. The effect sizes (or false positive rates) are

much larger than the preselected significant level α = 5%, and thus the Wald test is

invalid even though it is very powerful for detecting relatively weak signals. Such large

false positive rates may be due to positive bias in ROIs with none or weak signals and

underestimated SDs.

Gaussian Kernel Smoothing

As suggested by one of the referees, we compare SVCM with a standard voxel-wise

method, called Gaussian Kernel Smoothing (GKS) hereafter. The GKS consists of two

steps including a smoothing step to smooth the simulated raw imaging data and an

inference step to calculate the least squares estimate of β(d0), denoted as β̃
o
(d0;h), and

test hypothesis of interest at each voxel. In the smoothing step, we use the Gaussian

kernel smoothing function and consider three different bandwidths including a small

bandwidth (hs = 1.1), a moderate bandwidth (hm = 2), and a large bandwidth (hl = 4).

Figure S6 presents the GSK estimates obtained from the three different bandwidths

based on one selected simulated data set. Similar to LCE, small bandwidth does not

increase signal detection especially near the boundaries of ROIs (Figure S6 (a)-(c)),

while moderate and large bandwidths oversmooth the coefficient images and blur the

boundaries of ROIs (Figure S6 (d)-(i)). It indicates that GKS is not capable of effectively

estimating functions with potential jumps and edges. Figure S8 shows that the false

positive rates are high for moderate and large bandwidths. See also Table S4. The

bias plots in Figure S7 (panels (b), (g), and (l)) show strong blurred edges. It further

confirms the limitation of GKS in preserving boundaries.

We repeated the simulation 200 times at the three different bandwidths with N(0, 1)
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and χ2(3) − 3 distributed data for two different sample sizes (n = 60, 80) as we did in

the main paper. For the sake of space, we only report the results for β2(d0) in Table S3.

Inspecting Table S3 reveals that bias in ROIs with weak signals (β2(d0) = 0 or 0.2 is

positive, whereas bias in ROIs with mediate and strong signals (β2(d0) = 0.4, 0.6 or 0.8)

are negative. The rejection rate results for testing H0(d0) : β2(d0) = 0 are shown in

Table S4. The effect sizes (false positive rates) are much larger than the preselected

significant level α = 0.05.

ADHD 200

Image Processing

The image processing is performed as follows. First, we do an AC-PC (anterior commis-

sure - posterior commissure) correction on all images using MIPAV software (Medical

Image Processing and software package, 2013), and then resampled the MRI images to

256×256×256. To correct the intensity inhomogeneity, we use N3 algorithm (Sled et al.,

1998). An accurate and robust skull stripping method (Wang et al., 2011) was per-

formed, and the skull stripping results were further manually reviewed to ensure clean

skull and dura removal. After the skull-stripping, we used N3 algorithm again to correct

for intensity inhomogeneity. Then the cerebellum is removed based on registration, in

which we use a manually labeled cerebellum as a template. After intensity inhomogene-

ity correction, we use FAST in FSL (Zhang et al., 2001) to segment the human brain

into three different tissues: grey matter (GM), white matter (WM), and Cerebrospinal

fluid (CSF). We use HAMMER (Shen and Davatzikos, 2002) to do the registration. Af-

ter registration, we get the subject-labeled image based on the Jacob template (Kabani

et al., 1998), which is manually labeled into 93 ROIs. For each of the 93 ROIs in the

labeled image of one subject, we compute the GM/WM/CSF tissue volumes in this ROI

region combining the segmentation result of this subject.

To quantify the local volumetric group differences, we generate the RAVENS maps
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(Goldszal et al., 1998; Davatzikos et al., 2001) for whole brain and for GM, WM and

CSF, respectively, by using the deformation field that we get in registration. RAVENS

methodology is based on a volume-preserving spatial transformation, which ensures that

no volumetric information is lost during the process of spatial normalization, since this

process changes an individual’s brain morphology to conform it to the morphology of

a template. A physical analog is the squeezing of a rubber object, which changes the

density of the rubber, to maintain the same total mass in the object. Regional volumetric

measurements are then performed via the resulting tissue density maps. We also do

automatic subject labeling by transferring the labels of the template after deformable

registration with the subjects. We have 93 ROIs in total. After labeling, we can get the

ROI volumes of all subjects.

Additional Results

We are also interested in assessing the gender and diagnostic interaction. Specifically,

we tested H0(d0) : β7(d0) = 0 against H1(d0) : β7(d0) 6= 0 for the gender×diagnosis

interaction across all voxels. As s increases from 0 to 10, MASS shows an advantage

in smoothing effective signals within relatively homogeneous ROIs, while preserving the

edges of these ROIs (Figure S9 (a)-(b)). Inspecting Figure S9 (c) and (d) reveals that

it is much easy to identify significant ROIs in the − log10(p) images at scale h10, which

are much smoother than those at scale h0. Thus, MASS shows a clear advantage in

detecting more significant and smoothed activation regions. Furthermore, as shown in

Figure S10 , the largest estimated eigenvalue is much larger than the rest estimated

eigenvalues, which decrease very slowly to zero, and explains 22% of variation in data

after accounting for xi. This is quite common in neuroimaging data (Caffo et al., 2010).

To formally detect significant ROIs, we used a cluster-form of threshold of 5% with

a minimum voxel clustering value of 50 voxels. We were able to detect 26 and 10

significant clusters for testing H0(d0) : β6(d0) = 0 (Figure S11 (a)) and H0(d0) :

β7(d0) = 0 (Figure S11 (b)), respectively, across all voxels. Table S5 lists the first
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two largest predefined regions (ROIs) within the first six largest significant blocks for

testing H0(d0) : β6(d0) = 0 and H0(d0) : β7(d0) = 0, respectively, along with their

voxel sizes. Left and right frontal lobe white matter ROIs are the largest ROIs with

significant Age×Diagnosis interaction effect while the first largest ROI with significant

Gender×Diagnosis interaction effect is temporal lobe. We can also observe that size of

the significant blocks for Age×Diagnosis interaction effect becomes much small starting

from the fifth largest block while size of the significant blocks for Gender×Diagnosis

interaction effect becomes much small starting from the third largest block.
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Figure S1: Simulation results: a selected slice of (a) and (f) β̂3(d0;hs); (b) and (g) the

biases of β̂3(d0;hs); (c) and (h) the root-mean-square errors (RMSs) of β̂3(d0;hs); (d)

and (i) the standard deviation estimates (SDs) of β̂3(d0;hs); and (e) and (f) the ratios

of RMS over SD. Upper panels and lower panels correspond to h0 and h10, respectively.
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Figure S2: Simulation results: a selected slice of the − log10(p) images for testing (a)

and (d) H0(d0) : β1(d0) = 0; (b) and (e) H0(d0) : β2(d0) = 0; and (c) and (f) H0(d0) :

β3(d0) = 0. Upper panels and lower panels correspond to h0 and h10, respectively.
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Figure S3: Simulation results from LCE: a selected slide of (a) β̃1(d0;hs); (b) β̃2(d0;hs);

and (c) β̃3(d0;hs) with small bandwidth hs; (d) β̃1(d0;hm); (e) β̃2(d0;hm); and (f)

β̃3(d0;hm) with mediate bandwidth hm; (g) β̃1(d0;hl); (h) β̃2(d0;hl); and (i) β̃3(d0;hl)

with large bandwidth hl;
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Figure S4: Simulation results from LCE: a selected slice of (a) , (f) and (k) β̃3(d0;h); (b),

(g) and (l) the biases of β̃3(d0;h); (c), (h) and (m) the root-mean-square errors (RMSs)

of β̃3(d0;h); (d), (i) and (n) the standard deviation estimates (SDs) of β̃3(d0;h); and

(e), (j) and (o) the ratios of RMS over SD. Upper, middle and lower panels correspond

to bandwidths hs, hm and hl, respectively.
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Figure S5: Simulation results from LCE: a selected slice of the − log10(p) images for

testing (a), (d) and (g) H0(d0) : β1(d0) = 0; (b), (e) and (h) H0(d0) : β2(d0) = 0; and

(c), (f) and (i) H0(d0) : β3(d0) = 0. Upper, middle and lower panels correspond to

bandwidths hs, hm and hl, respectively.
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Figure S6: Simulation results from GKS: a selected slide of (a) β̃o1(d0;hs); (b) β̃o2(d0;hs);

and (c) β̃o3(d0;hs) with small bandwidth hs; (d) β̃o1(d0;hm); (e) β̃o2(d0;hm); and (f)

β̃o3(d0;hm) with mediate bandwidth hm; (g) β̃o1(d0;hl); (h) β̃o2(d0;hl); and (i) β̃o3(d0;hl)

with large bandwidth hl;
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Figure S7: Simulation results from GKS: a selected slice of (a) , (f) and (k) β̃o3(d0;h); (b),

(g) and (l) the biases of β̃o3(d0;h); (c), (h) and (m) the root-mean-square errors (RMSs)

of β̃o3(d0;h); (d), (i) and (n) the standard deviation estimates (SDs) of β̃o3(d0;h); and

(e), (j) and (o) the ratios of RMS over SD. Upper, middle and lower panels correspond

to bandwidths hs, hm and hl, respectively.
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Figure S8: Simulation results from GKS: a selected slice of the − log10(p) images for

testing (a), (d) and (g) H0(d0) : β1(d0) = 0; (b), (e) and (h) H0(d0) : β2(d0) = 0; and

(c), (f) and (i) H0(d0) : β3(d0) = 0. Upper, middle and lower panels correspond to

bandwidths hs, hm and hl, respectively.
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Figure S9: Results from the ADHD 200 data: five selected slices of (a) β̂7(d0;h0), (b)

β̂7(d0;h10), (c) the − log10(p) images for testing H0(d0) : β7(d0) = 0 at scale h0 and (d)

at scale h10. Moreover, β7(d0) is associated with the gender×diagnosis interaction.
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Figure S10: Results from the ADHD 200 data: the first 60 relative eigenvalues of Σ̂η

(left) and their cumulative variation explained (right).

34



Figure S11: Results from the ADHD 200 data: The 26 and 10 significant blocks to test

H0 : β6(d) = 0 (a) and H0 : β7(d) = 0 (b) overlaid with − log10(p) values, respec-

tively, on selected slices, where β6(d0) and β7(d0) are, respectively, associated with the

age×diagnosis and gender×diagnosis interactions.
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Table S1: Simulation results from LCE: Average Bias, RMS, SD, and RE of β2(d0)

parameters in the five ROIs at three different bandwidths (hs, hm, hl), N(0, 1) and χ2(3)−
3 distributed data, and 2 different sample sizes (n = 60, 80). BIAS denotes the bias of

the mean of estimates; RMS denotes the root-mean-square error; SD denotes the mean

of the standard deviation estimates; RE denotes the ratio of RMS over SD. For each

case, 200 simulated data sets were used.

χ2(3)− 3 N(0, 1)

n = 60 n = 80 n = 60 n = 80

β2(d0) hs hm hl hs hm hl hs hm hl hs hm hl

0.0 BIAS 0.01 0.01 0.03 0.01 0.01 0.03 0.01 0.01 0.03 0.01 0.01 0.03

RMS 0.07 0.05 0.05 0.06 0.04 0.04 0.07 0.05 0.04 0.06 0.04 0.04

SD 0.05 0.03 0.01 0.05 0.02 0.01 0.05 0.03 0.01 0.05 0.02 0.01

RE 1.27 1.85 4.39 1.23 1.74 4.04 1.20 1.67 3.82 1.23 1.76 4.09

0.2 BIAS 0.01 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.01 0.00 0.01 0.02

RMS 0.07 0.06 0.05 0.06 0.05 0.04 0.07 0.05 0.04 0.06 0.05 0.04

SD 0.05 0.03 0.01 0.05 0.02 0.01 0.05 0.03 0.01 0.05 0.02 0.01

RE 1.35 2.08 5.28 1.27 1.89 4.66 1.25 1.84 4.51 1.31 1.99 5.00

0.4 BIAS -0.01 -0.01 -0.03 0.00 -0.01 -0.02 0.00 -0.01 -0.02 0.00 -0.01 -0.02

RMS 0.08 0.06 0.06 0.06 0.05 0.04 0.07 0.05 0.05 0.06 0.05 0.04

SD 0.06 0.03 0.01 0.05 0.02 0.01 0.06 0.03 0.01 0.05 0.02 0.01

RE 1.38 2.15 5.53 1.28 1.93 4.80 1.26 1.88 4.65 1.33 2.05 5.20

0.6 BIAS -0.03 -0.06 -0.13 -0.03 -0.06 -0.13 -0.03 -0.06 -0.13 -0.03 -0.06 -0.13

RMS 0.07 0.06 0.05 0.06 0.04 0.04 0.07 0.05 0.04 0.06 0.05 0.04

SD 0.05 0.03 0.01 0.05 0.02 0.01 0.05 0.03 0.01 0.05 0.02 0.01

RE 1.33 2.04 5.13 1.25 1.82 4.44 1.23 1.79 4.34 1.29 1.94 4.82

0.8 BIAS -0.04 -0.09 -0.20 -0.04 -0.09 -0.20 -0.04 -0.09 -0.20 -0.04 -0.09 -0.20

RMS 0.08 0.06 0.06 0.06 0.05 0.04 0.07 0.06 0.05 0.06 0.05 0.05

SD 0.06 0.03 0.01 0.05 0.02 0.01 0.06 0.03 0.01 0.05 0.02 0.01

RE 1.40 2.22 5.73 1.31 2.00 5.04 1.28 1.92 4.82 1.35 2.11 5.39
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Table S2: Simulation Study for Wβ(d0;h) from LCE: estimates (ES) and standard errors

(SE) of rejection rates for pixels inside the five ROIs were reported at three different

bandwidths (hs, hm, hl), N(0, 1) and χ2(3) − 3 distributed data, and 2 different sample

sizes (n = 60, 80) at α = 5%. For each case, 200 simulated data sets were used.

χ2(3)− 3 N(0, 1)

n = 60 n = 80 n = 60 n = 80

β2(d0) h ES SE ES SE ES SE ES SE

0.0 hs 0.135 0.078 0.129 0.091 0.115 0.076 0.130 0.093

hm 0.335 0.206 0.317 0.215 0.289 0.211 0.312 0.217

hl 0.688 0.191 0.688 0.198 0.658 0.205 0.670 0.203

0.2 hs 0.883 0.070 0.950 0.045 0.892 0.071 0.944 0.047

hm 0.969 0.051 0.989 0.028 0.975 0.048 0.986 0.032

hl 0.992 0.019 0.998 0.009 0.994 0.016 0.996 0.012

0.4 hs 1.000 0.002 1.000 0.001 1.000 0.001 1.000 0.000

hm 1.000 0.002 1.000 0.001 1.000 0.001 1.000 0.001

hl 1.000 0.001 1.000 0.000 1.000 0.001 1.000 0.000

0.6 hs 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

hm 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

hl 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

0.8 hs 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

hm 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

hl 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
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Table S3: Simulation results from GKS: Average Bias, RMS, SD, and RE of β2(d0)

parameters in the five ROIs at three different bandwidths (hs, hm, hl), N(0, 1) and χ2(3)−
3 distributed data, and 2 different sample sizes (n = 60, 80). BIAS denotes the bias of

the mean of estimates; RMS denotes the root-mean-square error; SD denotes the mean

of the standard deviation estimates; RE denotes the ratio of RMS over SD. For each

case, 200 simulated data sets were used.

χ2(3)− 3 N(0, 1)

n = 60 n = 80 n = 60 n = 80

β2(d0) hs hm hl hs hm hl hs hm hl hs hm hl

0.0 BIAS 0.01 0.01 0.03 0.01 0.01 0.03 0.01 0.01 0.03 0.01 0.01 0.03

RMS 0.07 0.05 0.05 0.06 0.04 0.04 0.07 0.05 0.04 0.06 0.04 0.04

SD 0.07 0.05 0.04 0.06 0.04 0.04 0.07 0.05 0.04 0.06 0.04 0.04

RE 1.03 1.05 1.06 0.99 0.99 0.99 0.97 0.95 0.93 1.00 1.00 0.99

0.2 BIAS 0.01 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.01 0.00 0.01 0.02

RMS 0.07 0.06 0.05 0.06 0.05 0.04 0.07 0.05 0.04 0.06 0.05 0.04

SD 0.07 0.06 0.05 0.06 0.05 0.04 0.07 0.06 0.05 0.06 0.05 0.04

RE 1.05 1.07 1.09 0.99 0.98 0.96 0.97 0.95 0.93 1.02 1.03 1.03

0.4 BIAS -0.01 -0.01 -0.03 0.00 -0.01 -0.02 0.00 -0.01 -0.02 0.00 -0.01 -0.02

RMS 0.08 0.06 0.06 0.06 0.05 0.04 0.07 0.05 0.05 0.06 0.05 0.04

SD 0.07 0.06 0.05 0.06 0.05 0.04 0.07 0.06 0.05 0.06 0.05 0.04

RE 1.05 1.08 1.10 0.98 0.97 0.96 0.97 0.95 0.93 1.02 1.03 1.04

0.6 BIAS -0.03 -0.06 -0.13 -0.03 -0.06 -0.13 -0.03 -0.06 -0.13 -0.03 -0.06 -0.13

RMS 0.07 0.06 0.05 0.06 0.04 0.04 0.07 0.05 0.04 0.06 0.05 0.04

SD 0.07 0.05 0.05 0.06 0.05 0.04 0.07 0.05 0.05 0.06 0.05 0.04

RE 1.05 1.08 1.10 0.98 0.97 0.95 0.97 0.95 0.93 1.02 1.03 1.04

0.8 BIAS -0.04 -0.09 -0.20 -0.04 -0.09 -0.20 -0.04 -0.09 -0.20 -0.04 -0.09 -0.20

RMS 0.08 0.06 0.06 0.06 0.05 0.04 0.07 0.06 0.05 0.06 0.05 0.05

SD 0.07 0.06 0.05 0.06 0.05 0.05 0.07 0.06 0.05 0.06 0.05 0.05

RE 1.05 1.08 1.09 0.98 0.97 0.96 0.96 0.93 0.92 1.01 1.02 1.03
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Table S4: Simulation Study for Wβ(d0;h) from GKS: estimates (ES) and standard errors

(SE) of rejection rates for pixels inside the five ROIs were reported at three different

bandwidths (hs, hm, hl), N(0, 1) and χ2(3) − 3 distributed data, and 2 different sample

sizes (n = 60, 80) at α = 5%. For each case, 200 simulated data sets were used.

χ2(3)− 3 N(0, 1)

n = 60 n = 80 n = 60 n = 80

β2(d0) h ES SE ES SE ES SE ES SE

0.0 hs 0.068 0.050 0.064 0.065 0.056 0.051 0.066 0.066

hm 0.118 0.194 0.115 0.218 0.100 0.203 0.117 0.216

hl 0.199 0.276 0.206 0.307 0.178 0.292 0.206 0.306

0.2 hs 0.783 0.110 0.886 0.085 0.785 0.117 0.880 0.085

hm 0.872 0.142 0.936 0.109 0.879 0.151 0.930 0.108

hl 0.897 0.157 0.941 0.122 0.901 0.168 0.937 0.121

0.4 hs 0.998 0.005 1.000 0.001 0.999 0.004 1.000 0.001

hm 0.998 0.014 1.000 0.005 0.999 0.009 1.000 0.004

hl 0.995 0.026 0.999 0.010 0.997 0.017 0.999 0.009

0.6 hs 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

hm 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

hl 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

0.8 hs 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

hm 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

hl 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
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Table S5: Results from the ADHD 200 data: the first two largest significant regions of the

first six largest significant blocks for hypothesis tests H0 : β6(d) = 0 and H0 : β7(d) = 0

with block and region voxel sizes. WM, L and R, respectively, represent white matter,

left hemisphere, and right hemisphere. Moreover, β6(d0) and β7(d0) are, respectively,

associated with the age×diagnosis (A×D) and gender×diagnosis (G×D) interactions.

1st largest predefined ROI 2nd largest predefined ROI

block size ROI label size ROI label size

A×D 1 3954 frontal lobe WM L 1567 frontal lobe WM R 455

2 2065 frontal lobe WM R 900 anterior limb of internal capsule R 220

3 1642 nucleus accumbens L 1019 frontal lobe WM L 213

4 1143 parietal lobe WM R 688 superior parietal lobule R 132

5 282 frontal lobe WM R 260 lateral front-orbital gyrus R 22

6 250 temporal lobe WM L 131 frontal lobe WM L 35

G×D 1 228 temporal lobe WM L 184 middle temporal gyrus L 22

2 216 frontal lobe WM L 163 superior frontal gyrus L 33

3 95 temporal lobe WM R 66 lateral occipitotemporal gyrus R 21

4 94 medial frontal gyrus R 44 frontal lobe WM R 24

5 89 frontal lobe WM L 49 globus palladus L 21

6 83 superior occipital gyrus R 71 occipital lobe WM R 7
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