Synthesis of α -Amino Acid Derivatives and Peptides via Enantioselective Addition of Masked Acyl Cyanides to Imines

Kin S. Yang and Viresh H. Rawal*

Searle Chemistry Laboratory, Department of Chemistry, The University of Chicago 5735 South Ellis Avenue, Chicago, IL 60637

Table of Contents

General Information	2
General Procedure for the optimization of MAC addition to Imines	3
Procedures for Imine Addition Reactions	4
Experimental protocols for the unmasking 3	
Selected NMR Spectra	18
HPLC Traces of Racemic and Enantioenriched Compounds	43

General Information

Unless stated otherwise, reactions were performed in oven-dried glassware under a nitrogen atmosphere. Solvents were purified over activated alumina using an Innovative Technology solvent purification system. Acetylmalononitrile, peracetic acid, tetrabutylammonium fluoride solution (THF, Tris(dimethylamino)sulfonium difluorotrimethylsilicate (TASF), pyrrolidine, benzyl amine, glycine methyl ester HCl, valine methyl ester HCl, phenylalanine ethyl ester HCl, and trifluoroacetic acid were purchased from Aldrich and used as received. Ambient temperature refers to 22-26 °C. Lower temperatures were maintained using ice (0 °C), a Thermo NEXLAB Cryotrol (-45 to 23 °C), Acetone/CO₂(s) (-78 °C) baths. Thin-layer chromatography (TLC) was performed using Whatman silica gel 60 Å F254 plates (250 µm) with F-254 fluorescent indicator and visualized by UV fluorescence quenching, ceric ammonium molybdate or potassium permanganate staining. SiliCycle SiliaFlash P60 silica gel (particle size 40-63 µm) was used for flash chromatography. Chiral HPLC was performed on a Agilent HPLC with a Chiralcel® or ChiralPak® OD-H, IA, AS-H or AD-H column (250 mm x 10 mm, 5 µm particle size, 1.0 mL/min flow rate) equipped with a guard, employing a mixture of isopropanol and hexanes. Melting points were measured on a Thomas Hoover Uni-Melt capillary melting point apparatus and are uncorrected. ¹H and 13C NMR spectra were recorded on Bruker DRX-500 and DMX-500 (at 500 MHz and 125 MHz, respectively) and are reported relative to Me₄Si (δ 0.0) or residual solvent signals unless otherwise stated. C¹³ NMR spectra were calibrated to residual solvent signals (CHCl₃ at 77.23 ppm) Data for 1H NMR spectra are reported as follows: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), integration). Infrared spectra were recorded on a Nicolet 6700 FT-IR spectrometer and are reported in frequency of absorption (cm⁻¹) using NaBr salt plates using a thin film. High-resolution mass spectra were recorded on an Agilent 6224 Tof-MS (with positive Electrospray ionization mode[+ESi]). Optical rotations were measured on a Perkin Elmer 141 polarimeter using a 100 mm path-length cell.

Imines (10-r)¹, and 1s² were prepared according to literature procedure. MAC reagent 2 was prepared as described previously.³ Catalyst III prepared according to reported procedure.⁴

⁻

⁽¹⁾ Best, D.; Kujawa, S.; Lam, H.W. J. Am. Chem. Soc. 2012, 134, 18193.

⁽²⁾ Kanazawa, A.M.; Denis, J.; Greene, A.E. J. Org. Chem. 1994, 59, 1238.

^{(3) (}a) Nemoto, H.; Li, X. M.; Ma, R. J.; Suzuki, I.; Shibuya, M. *Tetrahedron Lett.* **2003**, *44*, 73.; (b) Yang, K. S.; Nibbs, A. E.; Turkmen, Y. E.; Rawal, V. H. *J. Am. Chem. Soc.* **2013**, *135*, 16050.

⁽⁴⁾ Wang, Y.; Li, H. M.; Wang, Y. Q.; Liu, Y.; Foxman, B. M.; Deng, L. J. Am. Chem. Soc. 2007, 129, 6364.

General Procedure for the optimization of MAC addition to Imines.

To a 1 dram (4 mL) vial equipped with a magnetic stir bar was added imine **1** (10.3 mg, 0.05 mmol). A solution of MAC reagent **2** (0.05 mmol) in solvent was added and the solution was stirred. Catalyst was added as a solid and the vial was sealed. The reaction was monitored by crude analysis of ¹H NMR aliquots. The reaction mixture was filtered through a plug of silica, and analyzed by chiral HPLC for determination of enantioselectivity.

^aConditions: 1a (0.05 mmol), 2 (0.05 mmol), catalyst (5 mol %). ^b% conversion determined by 1H NMR. ^ce.r. determined by chiral stationary phase HPLC. ^d Catalyst (2.5 mol%).

General Procedure for the addition of MAC Reagents to Imines

To a 2 dram (8 mL) vial equipped with a magnetic stir bar was added imine $\bf 1$ (0.33 mmol). A solution of TBS MAC reagent $\bf 2$ (58.9 mg, 0.3 mmol) in 4.5 mL of toluene was added and the solution was stirred at 23 °C. Catalyst III (3.66 mg, 0.0075 mmol, 2.5 mol %) was added as a solid and the vial was sealed. The reaction was monitored by 1 H NMR, and upon completion, was concentrated to afford a sticky residue. Purification by flash column chromatography produced the desired product $\bf 3$.

Imine Addition Reactions

(R)-tert-butyl (2-((tert-butyldimethylsilyl)oxy)-2,2-dicyano-1-phenylethyl)carbamate

(3a): Prepared according to general procedure using imine 1a (67.7 mg, 0.33 mmol), MAC 2 (58.9 mg, 0.3 mmol), and catalyst III (3.66 mg, 0.0075 mmol) in toluene (4.5 mL) at 23 °C for 16 h. Purified by flash column chromatography (SiO₂, 10% $\rm Et_2O/Hexanes$) to afford 115 mg (96%) of 3a as an amorphous solid.

Preparative Scale: Modified general procedure using imine $\bf 1a$ (564 mg, 2.75 mmol), MAC $\bf 2$ (491 mg, 2.5 mmol), and catalyst $\bf III$ (12.2 mg, 0.025 mmol, 1 mol%) in toluene (37.5 mL) at 23 °C for 36 h. Purified by flash column chromatography (SiO₂, 10% Et₂O/Hexanes) to afford 0.984 g (98%) of $\bf 3a$ as an amorphous solid.

IR (film): 3371, 2958, 2933, 2861, 2243, 1707, 1521, 1367, 1259, 1153, 843, 787, 703

¹**H NMR** (500 MHz, CDCl₃) δ 7.40 (s, 5H), 5.49 (s, 1H), 5.39 (s, 1H), 1.46 (s, 9H), 0.85 (s, 9H), 0.27 (s, 3H), 0.21 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 154.53, 133.16, 129.83, 128.81, 128.63, 114.35, 114.20, 81.52, 68.21, 61.60, 28.37, 25.31, 18.20, -4.54, -4.68.

HRMS (+ ESi) Mass calcd. for $C_{21}H_{31}N_3O_3Si$ [M+H]+: 402.2207, Found [M+H]+: 402.2194.

$$[\alpha]^{23.6}_D = +7.0^{\circ} (c = 1.0, CHCl_3)$$

Enantiomeric ratio: 96:4, Rt_1 = 5.1 min, Rt_2 = 6.4 min, Chiralcel OD-H, 1% IPA/Hexanes, 1 mL/min.

(R)-tert-butyl (2-((tert-butyldimethylsilyl)oxy)-2,2-dicyano-1-(naphthalen-2-yl)ethyl)carbamate

(3b): Prepared according to general procedure using imine 1b (84.3 mg, 0.33 mmol), MAC 2 (58.9 mg, 0.3 mmol), and catalyst III (3.66 mg, 0.0075 mmol) in toluene (4.5 mL) at 23 °C for 16 h. Purified by flash column chromatography (SiO_2 , 5% EtOAc/Hexanes) to afford 126 mg (93%) of 3b as an amorphous solid.

IR (film): 3367, 2931, 2850, 2243, 1706, 1506, 1368, 1150, 843, 786

¹H NMR (500 MHz, CDCl₃) δ 7.90 – 7.79 (m, 4H), 7.56 – 7.43 (m, 3H), 5.62 (s, 1H), 5.57 (s, 1H), 1.47 (s, 9H), 0.85 (s, 9H), 0.26 (s, 3H), 0.19 (s, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 154.60, 133.79, 132.96, 130.60, 128.65, 128.60, 128.39, 127.88, 127.20, 126.93, 125.44, 114.38, 114.27, 81.60, 68.23, 61.87, 28.39, 25.32, 18.21, -4.52, -4.63.

HRMS (+ ESi) Mass calcd. for $C_{25}H_{34}N_3O_3Si$ [M+H]+: 452.2364, Found [M+H]+: 452.2354.

$$[\alpha]^{23.6}$$
_D = -16.0° (c = 1.0, CHCl₃)

Enantiomeric ratio: 95.5:4.5, $Rt_1 = 5.7$ min, $Rt_2 = 11.9$ min, Chiralcel OD-H, 1% IPA/Hexanes, 1 mL/min

(R)-tert-butyl (2-((tert-butyldimethylsilyl)oxy)-1-(2-chlorophenyl)-2,2-dicyanoethyl)carbamate

(3c): Prepared according to modified general procedure using imine $\mathbf{1c}$ (79.0 mg, 0.33 mmol), MAC $\mathbf{2}$ (58.9 mg, 0.3 mmol), and catalyst \mathbf{III} (7.33 mg, 0.015 mmol, 5 mol %) in toluene (4.5 mL) at 23 °C for 72 h. Purified by flash column chromatography (SiO₂, 10% Et₂O/Hexanes) to afford 124 mg (95%) of $\mathbf{3c}$ as a viscous oil.

IR (film): 3282, 2932, 2861, 2243, 1708, 1473, 1376, 1259, 1156, 843, 787, 754

¹**H NMR** (500 MHz, CDCl₃) δ 7.56 – 7.40 (m, 2H), 7.37 – 7.30 (m, 2H), 6.15 (s, 1H), 5.46 (s, 1H), 1.46 (s, 9H), 0.84 (s, 9H), 0.29 (s, 3H), 0.29 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 154.30, 135.34, 132.10, 130.79, 130.35, 128.37, 127.35, 114.12 (x2), 81.69, 67.63, 56.93, 28.34, 25.29, 18.20, -4.45, -4.62.

HRMS (+ ESi) Mass calcd. for $C_{21}H_{31}ClN_3O_3Si~[M+H]^+$: 436.1818, Found $[M+H]^+$: 436.1801.

$$[\alpha]^{23.6}D = -4.0^{\circ} (c = 0.5, CHCl_3)$$

Enantiomeric ratio: 92.5:7.5, $Rt_1 = 8.7$ min, $Rt_2 = 11.7$ min, Chiralcel AD-H, 2% IPA/Hexanes, 1 mL/min

(R)-tert-butyl (2-((tert-butyldimethylsilyl)oxy)-2,2-dicyano-1-(3,4-dichlorophenyl)ethyl)carbamate

(3d): Prepared according to general procedure using imine 1d (90.5 mg, 0.33 mmol), MAC 2 (58.9 mg, 0.3 mmol), and catalyst III (3.66 mg, 0.0075 mmol) in toluene (4.5 mL) at 23 °C for 14 h. Purified by flash column chromatography (SiO_2 , 33% Dichloromethane/Hexanes to 66% Dichloromethane/Hexanes) to afford 137 mg (97%) of 3d as an amorphous solid.

IR (film): 3362, 2957, 2932, 2861, 2244, 1707, 1473, 1368, 1259, 1146, 842, 787

¹H NMR (500 MHz, CDCl₃) δ 7.50 (d, J = 8.3 Hz, 2H), 7.28 – 7.24 (m, 1H), 5.40 (s, 1H), 5.36 (s, 1H) 1.47 (s, 9H), 0.88 (s, 9H), 0.30 (s, 3H), 0.26 (s, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 154.29, 134.31, 133.53, 133.18, 130.90, 130.81, 127.77, 113.94, 113.82, 82.14, 67.66, 60.75, 28.38, 25.35, 18.26, -4.50, -4.57.

HRMS (+ ESi) Mass calcd. for $C_{21}H_{30}Cl_2N_3O_3Si$ [M+H]+: 470.1428, Found [M+H]+: 470.1403

$$[\alpha]^{23.6}_{D} = -1.7^{\circ} (c = 1.0, CHCl_3)$$

Enantiomeric ratio: 94:6, $Rt_1 = 5.0$ min, $Rt_2 = 7.0$ min, Chiralcel OD-H, 1% IPA/Hexanes, 1 mL/min

(R)-tert-butyl (2-((tert-butyldimethylsilyl)oxy)-2,2-dicyano-1-(4-(trifluoromethyl)phenyl)ethyl)carbamate

(3e): Prepared according to general procedure using imine 1e (90.3 mg, 0.33 mmol), MAC 2 (58.9 mg, 0.3 mmol), and catalyst III (3.66 mg, 0.0075 mmol) in toluene (4.5 mL) at 23 °C for 14 h. Purified by flash column chromatography (SiO₂, 10% Et₂O/Hexanes) to afford 138 mg (98%) of 3e as an amorphous solid.

IR (film): 3363, 2934, 2863, 2244, 1708, 1513, 1368, 1327, 1260, 1168, 1134, 1070, 840, 787

¹H NMR (500 MHz, CDCl₃) δ 7.68 (d, J = 8.2 Hz, 2H), 7.56 (d, J = 8.0 Hz, 2H), 5.57 (s, 1H), 5.49 (s, 1H), 1.47 (s, 9H), 0.85 (s, J = 48.3 Hz, 9H), 0.29 (s, 3H), 0.23 (s, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 154.41, 137.23, 132.04 (q, J = 33.2 Hz), 129.25, 125.73, 123.87 (q, J = 272.4 Hz), 114.05, 113.92, 81.94, 67.84, 61.24, 28.33, 25.27, 18.20, -4.55, -4.67.

HRMS (+ ESi) Mass calcd. for $C_{22}H_{31}F_3N_3O_3Si$ [M+H]+: 470.2081, Found [M+H]+: 470.2058.

$$[\alpha]^{23.6}D = +5.3^{\circ} (c = 1.0, CHCl_3)$$

Enantiomeric ratio: 94:6, $Rt_1 = 4.5$, $Rt_2 = 5.5$, Chiralcel OD-H, 1% IPA/Hexanes, 1 mL/min

(R)-tert-butyl (2-((tert-butyldimethylsilyl)oxy)-2,2-dicyano-1-(4-methoxyphenyl)ethyl)carbamate

(3f): Prepared according to general procedure using imine 1f (77.6 mg, 0.33 mmol), MAC 2 (58.9 mg, 0.3 mmol), and catalyst III (3.66 mg, 0.0075 mmol) in toluene (4.5 mL) at 23 °C for 24 h. Purified by flash column chromatography (SiO_2 , 10% $Et_2O/Hexanes$) to afford 124 mg (96%) of 3f as an amorphous solid.

IR (film): 3371, 2933, 2861, 2243, 1707, 1512, 1367, 1256, 1154, 1032, 835, 787

1H NMR (500 MHz, CDCl₃) δ 7.35 – 7.29 (m, 2H), 6.96 – 6.87 (m, 2H), 5.49 (s, 1H), 5.33 (s, 1H), 3.81 (s,3H), 1.45 (s, 9H), 0.87 (s, 9H), 0.28 (s, 3H), 0.23 (s, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 160.70, 154.48, 129.82, 125.29, 114.41, 114.30, 114.17, 81.36, 68.33, 61.26, 55.47, 28.36, 25.33, 18.19, -4.54, -4.64.

HRMS (+ ESi) Mass calcd. for C₂₂H₃₄N₃O₄Si [M+Na]⁺: 454.2133, Found [M+Na]⁺: 454.2120.

$$[\alpha]^{23.6}_{D} = -4.2^{\circ} (c = 1.0, CHCl_3)$$

Enantiomeric ratio: 95:5, $Rt_1 = 5.8$, $Rt_2 = 7.8$, Chiralcel OD-H, 1% IPA/Hexanes, 1 mL/min

(R)-tert-butyl (2-((tert-butyldimethylsilyl)oxy)-2,2-dicyano-1-(3-methoxyphenyl)ethyl)carbamate

(3g): Prepared according to general procedure using imine 1g (77.6 mg, 0.33 mmol), MAC 2 (58.9 mg, 0.3

mmol), and catalyst **III** (3.66 mg, 0.0075 mmol) in toluene (4.5 mL) at 23 °C for 14 h. Purified by flash column chromatography (SiO_2 , 75% Dichloromethane/Hexanes, then 10% EtOAc/Hexanes) to afford 125 mg (97%) of **3g** as an amorphous solid.

IR (film): 3365, 2933, 2861, 2243, 1707, 1603, 1494, 1367, 1258, 1153, 1044. 844, 786

¹H NMR (500 MHz, CDCl₃) δ 7.31 (dd, J = 8.4, 7.7 Hz, 1H), 6.99 (d, J = 7.7 Hz, 1H), 6.96 – 6.91 (m, 2H), 5.49 (d, J = 7.9 Hz, 1H), 5.34 (d, J = 7.8 Hz, 1H), 3.81 (s, 3H), 1.46 (s, 9H), 0.86 (s, 9H), 0.28 (s, 3H), 0.23 (s, 3H).

 13 C NMR (126 MHz, CDCl₃) δ 159.86, 154.52, 134.69, 129.89, 120.69, 115.33, 114.55, 114.38, 114.27, 81.53, 68.16, 61.71, 55.51, 28.38, 25.32, 18.20, -4.52, -4.65.

HRMS (+ ESi) Mass calcd. for $C_{22}H_{34}N_3O_4Si$ [M+Na]+: 454.2133, Found [M+Na]+: 454.2123.

$$[\alpha]^{23.6}D = +1.4^{\circ} (c = 1.0, CHCl_3)$$

Enantiomeric ratio: 97:3, $Rt_1 = 5.6$, $Rt_2 = 7.0$, Chiralcel OD-H, 1% IPA/Hexanes, 1 mL/min

(R)-tert-butyl (1-(benzo[d][1,3]dioxol-5-yl)-2-((tert-butyldimethylsilyl)oxy)-2,2-dicyanoethyl)carbamate

(3h): Prepared according to general procedure using imine 1h (82.3 mg, 0.33 mmol), MAC 2 (58.9 mg, 0.3 mmol), and catalyst III (3.66 mg, 0.0075 mmol) in toluene (4.5 mL) at 23 °C for 16 h. Purified by flash column chromatography (SiO₂, 10% Et₂O, 30% CHCl₃, 60% Hexanes) to afford 128 mg (96%) of 3h as an amorphous solid.

IR (film): 3376, 2957, 2932, 2861, 2243, 1706, 1505, 1490, 1368, 1242, 1155, 1041, 844, 787

¹H NMR (500 MHz, CDCl₃) δ 6.91 – 6.85 (m, 2H), 6.81 (d, J = 8.4 Hz, 1H), 5.98 (s, 2H), 5.44 (s, 1H), 5.29 (s, 1H), 1.46 (s, 9H), 0.88 (s, 9H), 0.30 (s, 3H), 0.26 (s, 3H).

 13 C NMR (126 MHz, CDCl₃) δ 154.42, 148.79, 148.07, 126.96, 122.64, 114.30, 114.19, 108.73, 108.44, 101.66, 81.45, 68.18, 61.53, 28.34, 25.33, 18.20, -4.52, -4.62.

HRMS (+ ESi) Mass calcd. for $C_{22}H_{31}N_3O_5Si$ [M+Na]+: 468.1925, Found [M+Na]+: 468.1918.

$$[\alpha]^{23.6}_{D} = -2.8^{\circ} (c = 1.0, CHCl_3)$$

Enantiomeric ratio: 96:4, $Rt_1 = 6.7$, $Rt_2 = 9.3$, Chiralcel OD-H, 1% IPA/Hexanes, 1 mL/min

(R)-tert-butyl (2-((tert-butyldimethylsilyl)oxy)-2,2-dicyano-1-(pyridin-3-yl)ethyl)carbamate

(3i): Prepared according to general procedure using imine 1i (68.1 mg, 0.33 mmol), MAC 2 (58.9 mg, 0.3 mmol), and catalyst III (3.66 mg, 0.0075 mmol) in toluene (4.5 mL) at 23 °C for 14 h. Purified by flash column chromatography (SiO₂, 30% EtOAc/Hexanes) to afford 118 mg (98%) of 3i as an amorphous solid.

IR (film): 3310, 2957, 2933, 2861, 2243, 1721, 1522, 1368, 1257, 1154, 1048, 843,787

¹H NMR (500 MHz, CDCl₃) δ 8.68 (s, 2H), 7.79 (d, J = 6.4 Hz, 1H), 7.37 (dd, J = 7.8, 4.9 Hz, 1H), 5.85 (s, 1H), 5.49 (s, 1H), 1.47 (s, 9H), 0.85 (s, 9H), 0.29 (s, 3H), 0.23 (s, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 154.47, 150.94, 150.14, 135.81, 129.30, 123.54, 114.02, 113.85, 81.95, 67.81, 59.79, 28.31, 25.27, 18.17, -4.53, -4.66.

HRMS (+ ESi) Mass calcd. for $C_{20}H_{31}N_4O_3Si$ [M+H]⁺: 403.2160, Found [M+H]⁺: 403.2151.

$$[\alpha]^{23.6}_D = +3.1^{\circ} (c = 1.0, CHCl_3)$$

Enantiomeric ratio: 93:7, $Rt_1 = 6.3$, $Rt_2 = 8.0$, Chiralcel AD-H, 8% IPA/Hexanes, 1 mL/min

(S)-tert-butyl (2-((tert-butyldimethylsilyl)oxy)-2,2-dicyano-1-(thiophen-2-yl)ethyl)carbamate

(3j): Prepared according to general procedure using imine 1j (69.7 mg, 0.33 mmol), MAC 2 (58.9 mg, 0.3 mmol), and catalyst III (3.66 mg, 0.0075 mmol) in toluene (4.5 mL) at 23 °C for 12 h. Purified by flash column chromatography (SiO₂, 10% Et₂O/Hexanes) to afford 121 mg (99%) of 3j as an amorphous solid.

IR (film): 3357, 2933, 2861, 2243, 1710, 1506, 1368, 1258, 1156, 842, 787

¹H NMR (500 MHz, CDCl₃) δ 7.35 (dd, J = 5.1, 0.9 Hz, 1H), 7.22 (d, J = 3.5 Hz, 1H), 7.04 (dd, J = 5.0, 3.7 Hz, 1H), 5.68 (d, J = 8.9 Hz, 1H), 5.42 (s, 1H), 1.47 (s, 9H), 0.92 (s, 9H), 0.33 (s, 3H), 0.30 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 154.28, 135.24, 128.17, 127.11, 127.05, 114.05, 113.98, 81.63, 68.13, 58.08, 28.30, 25.32, 18.19, -4.53, -4.64.

HRMS (+ ESi) Mass calcd. for $C_{19}H_{29}N_3O_3SSi$ [M+Na]+: 430.1591, Found [M+Na]+: 430.158.

$$[\alpha]^{23.6}_D = +0.5^{\circ} (c = 1.0, CHCl_3)$$

Enantiomeric ratio: 97.5:2.5, $Rt_1 = 5.0$, $Rt_2 = 5.7$, Chiralcel AD-H, 8% IPA/Hexanes, 1 mL/min

(R)-tert-butyl (2-((tert-butyldimethylsilyl)oxy)-2,2-dicyano-1-(furan-3-yl)ethyl)carbamate

(3k): Prepared according to general procedure using imine 1k (64.4 mg, 0.33 mmol), MAC 2 (58.9 mg, 0.3 mmol), and catalyst III (3.66 mg, 0.0075 mmol) in toluene (4.5 mL) at 23 °C for 36 h. Purified by flash column chromatography (SiO₂, 10% Et₂O/Hexanes) to afford 113 mg (96%) of 3k as an amorphous solid.

IR (film): 3364, 2933, 2861, 2244, 1708, 1506, 1358, 1259, 1156, 1023, 844, 787

¹H NMR (500 MHz, CDCl₃) δ 7.57 (s, 1H), 7.45 (t, J = 1.5 Hz, 1H), 6.52 (d, J = 0.7 Hz, 1H), 5.38 (s, 1H), 5.26 (s, 1H), 1.47 (s, 9H), 0.90 (s, 9H), 0.33 (s, 3H), 0.31 (s, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 154.47, 143.97, 141.89, 118.82, 114.36, 114.31, 109.39, 81.60, 68.14, 55.22, 28.38, 25.33, 18.21, -4.49, -4.58.

HRMS (+ ESi) Mass calcd. for C₁₉H₂₉N₃O₄Si [M+Na]⁺: 414.1820, Found [M+Na]⁺: 414.1809

 $[\alpha]^{23.6}_D = 7.3^{\circ} (c = 1.0, CHCl_3)$

Enantiomeric ratio: 93.5:6.5, $Rt_1 = 5.0$, $Rt_2 = 5.7$, Chiralcel OD-H, 1% IPA/Hexanes, 1 mL/min

(R)-tert-butyl (2-((tert-butyldimethylsilyl)oxy)-2,2-dicyano-1-cyclohexylethyl)carbamate

(31): Prepared according to modified general procedure using imine 11 (69.7 mg, 0.33 mmol), MAC 2 (58.9 mg, 0.3 mmol), and catalyst III (7.33 mg, 0.015 mmol) in toluene (3 mL) at 23 °C for 72 h. Purified by flash column chromatography (SiO₂, 10% Et₂O/Hexanes) to afford 110 mg (90%) of 31 as a clear viscous oil.

IR (film): 3363, 2931, 2858, 2242, 1709, 1506, 1367, 1259, 1153, 1007, 843, 786

¹H NMR (500 MHz, CDCl₃) δ 4.85 (d, J = 10.9 Hz, 1H), 4.17 (dd, J = 10.9, 3.9 Hz, 1H), 1.97 – 1.62 (m, 6H), 1.47 (s, 9H), 1.35 – 1.00 (m, 5H), 0.94 (s, 9H), 0.38 (s, 3H), 0.37 (s, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 155.19, 114.80, 114.70, 80.87, 66.96, 61.92, 38.70, 31.41, 28.36, 27.49, 26.19, 25.89, 25.88, 25.33, 18.20, -4.47, -4.57.

HRMS (+ ESi) Mass calcd. for $C_{21}H_{37}N_3O_3Si$ [M+H]+: 430.2491, Found [M+H]+: 430.2496

$$[\alpha]^{23.6}_D = 29.6^{\circ} (c = 1.0, CHCl_3)$$

Enantiomeric ratio: 92:8 (derived from benzyl amide (8),)

(R)-tert-butyl (1-((tert-butyldimethylsilyl)oxy)-1,1-dicyano-4-phenylbutan-2-yl)carbamate

(3m): To a 1 dram (4 mL) vial equipped with a magnetic stir bar was added imine 1m (84.0 mg 0.33 mmol). A solution of MAC 2 (58.9 mg, 0.3 mmol) in 0.6 mL of CHCl₃ was added. The sealed vial was submerged in a -40 °C bath and stirred for 10 minutes before catalyst III (7.33 mg, 0.015 mmol, 5 mol %) was added as a solid. The vial was re-sealed, stirred for 30 h, warmed to 23 °C, concentrated, and purified by flash column chromatography (SiO₂, 5% to 10% EtOAc/Hexanes) to afford 116 mg (90%) of 3m as a clear viscous oil.

IR (film): 3374, 2932, 2861, 2243, 1709, 1497, 1367, 1259, 1141, 1048, 843, 787

1H NMR (500 MHz, CDCl₃) δ 7.30 (t, J = 7.4 Hz, 2H), 7.21 (t, J = 7.4 Hz, 1H), 7.17 (d, J = 7.2 Hz, 2H), 4.72 (d, J = 10.4 Hz, 1H), 4.27 (td, J = 11.4, 2.1 Hz, 1H), 2.81 (dd, J = 8.6, 5.3 Hz, 1H), 2.67 (dd, J = 14.0, 8.0 Hz, 1H), 2.26 – 2.11 (m, 1H), 1.87 – 1.71 (m, 1H), 1.48 (s, 9H), 0.90 (s, 9H), 0.35 (s, 3H), 0.33 (s,3).

¹³**C NMR** (126 MHz, CDCl₃) δ 154.96, 140.12, 128.85, 128.58, 126.66, 114.35, 114.28, 81.15, 67.94, 58.01, 31.90, 31.33, 28.42, 25.37, 18.22, -4.47, -4.51.

HRMS (+ ESi) Mass calcd. for C₂₃H₃₅N₃O₃Si [M+Na]⁺: 452.2340, Found [M+Na]⁺: 452.2331

$$[\alpha]^{23.6}_D = +39.4^{\circ} (c = 1.0, CHCl_3)$$

Enantiomeric ratio: 92:8. $Rt_1 = 12.2$. $Rt_2 = 15.9$. Chiralcel AD-H. 1% IPA/Hexanes. 1 mL/min

Experimental protocols for the unmasking 3a

(R)-methyl 2-((tert-butoxycarbonyl)amino)-2-phenylacetate

(4a): To a 2 dram (8 mL) vial was added adduct 3a (68 mg, 0.17 mmol), 1.10 mL MeOH, and 0.57 mL THF. The vial was sealed with a Septa-cap, and cooled to $-45\,^{\circ}$ C for 15 minutes before TBAF (1.0 M in THF) (0.19 mL, 0.19 mmol) was added dropwise over 5 minutes. The reaction was allowed to stir for 2 hours at $-45\,^{\circ}$ C before being quenched with aq. NH₄Cl (3 mL), and H₂O (3 mL). The reaction was warmed to ambient temperature, and extracted with EtOAc (10 mL, 3x) The combined organic solvents were dried over Na₂SO₄, concentrated, and purified by flash column chromatography (SiO₂, 10% to 15% EtOAc/Hexanes) to afford 42 mg (93%) of 4a as a white solid.

IR (film): 3374, 2977, 1746, 1715, 1497, 1436, 1165, 1053

1H NMR (500 MHz, CDCl₃) δ 7.41 – 7.29 (m, 5H), 5.56 (d, J = 5.6 Hz, 1H), 5.32 (d, J = 7.4 Hz, 1H), 3.71 (s, 3H), 1.43 (s, 9H).

13C NMR (126 MHz, CDCl₃) δ 171.85, 155.02, 137.14, 129.09, 128.63, 127.34, 80.35, 57.82, 52.85, 28.50.

HRMS (+ ESi) Mass calcd. for $C_{14}H_{19}NO_4$ [M+H]⁺: 266.1387, Found [M+H]⁺: 266.1350

$$[\alpha]^{23.6}_D = -119.4^{\circ} (c = 1.0, CHCl_3)$$
 Lit: $[\alpha]^{20}_D$: $-130 (c = 1.0, CHCl_3)^5$

Enantiomeric ratio: 96:4, $Rt_1 = 5.9$, $Rt_2 = 6.8$, Chiralcel OD-H, 4% IPA/Hexanes, 1 mL/min.

(R)-methyl 2-((tert-butoxycarbonyl)amino)-2-(2-chlorophenyl)acetate

(4c): To a 2 dram (8 mL) vial was added adduct 3c (84 mg, 0.193 mmol), 1.33 mL MeOH, and 0.67 mL THF. The vial was sealed with a Septa-cap, and cooled to -45 °C for 15 minutes before TBAF (1.0 M in THF) (0.21 mL, 0.21 mmol) was added dropwise over 5 minutes. The reaction was allowed to stir for 2 hours at -45 °C before being quenched with aq. NH₄Cl (3 mL). The reaction was warmed to ambient temperature, diluted with EtOAc (10 mL), H₂O (5 mL), and brine (2 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc (10 mL, 2x). The combined organic solvents were dried over Na₂SO₄, concentrated, and purified by flash column chromatography (SiO₂, 10% EtOAc/Hexanes) to afford 55 mg (95%) of 4c as a white solid.

IR (film): 3373, 2977, 1748, 1715, 1494, 1162, 1054, 755

¹**H NMR** (500 MHz, CDCl₃) δ 7.42 – 7.31 (m, 2H), 7.27 – 7.20 (m, 2H), 5.72 (br m, 2H), 3.71 (s, 3H), 1.42 (s, 9H).

⁽⁵⁾ Yuste, F.; Ortiz, B.; Carrasco, A.; Peralta, M.; Quintero, L.; Sanchez-Obregon, R.; Walls, F.; Ruano, J. L. G. *Tetrahedron: Asymmetry.* **2000**, *11*, 3079.

 13 C NMR (126 MHz, CDCl₃) δ 171.15, 154.94, 135.37, 133.70, 130.17, 129.88, 129.67, 127.33, 80.27, 55.70, 52.91, 28.36.

HRMS (+ ESi) Mass calcd. for C₁₄H₁₈ClNO₄ [M+Na]⁺: 322.0817, Found [M+Na]⁺: 322.0813

$$[\alpha]^{23.6}_D = -100.5^{\circ} (c = 1.0, CHCl_3)$$
 Lit $[\alpha]^{25}_D$: 119.3 $(c = 1.0, CHCl_3)^6$

Enantiomeric ratio: 92.5:7.5, $Rt_1 = 7.7$, $Rt_2 = 9.2$, Chiralcel OD-H, 3% IPA/Hexanes, 1 mL/min

(R)-tert-butyl (2-oxo-1-phenyl-2-(pyrrolidin-1-yl)ethyl)carbamate

(5): To a 1 dram (4 mL) vial was added adduct 3a (71 mg, 0.177 mmol), pyrrolidine (37.8 mg, 0.531 mmol), and 0.54 mL Dichloromethane. The vial was sealed with a Septa-cap, and cooled to -78 °C in a CO_2 /Acetone bath for 15 minutes before TASF (58.5 mg, 0.21 mmol) in DCM (0.12 mL) (1.8 M) was added dropwise over 5 minutes. The reaction was allowed to stir for 1.5 hours at -78 °C before being quenched with aq. HCl (1.0M, 3 mL). The reaction was warmed to ambient temperature, diluted with EtOAc (10 mL), H₂O (5 mL), and brine (2 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc (10 mL, 2x). The combined organic solvents were dried over Na₂SO₄, concentrated, and purified by flash column chromatography (SiO₂, 50% EtOAc/Hexanes) to afford 52 mg (96%) of **5** as a white solid.

IR (film): 3411, 3324, 2974, 2877, 1711, 1645, 1435, 1166, 1053, 700

¹H NMR (500 MHz, CDCl₃) δ 7.47 – 7.28 (m, 5H), 6.05 (d, J = 7.4 Hz, 1H), 5.37 (d, J = 7.7 Hz, 1H), 3.62 – 3.50 (m, 2H), 3.46 – 3.34 (m, 1H), 3.14 – 3.00 (m, 1H), 1.96 – 1.63 (m, 4H), 1.41 (s, 9H).

 $^{13}\textbf{C}$ NMR (126 MHz, CDCl $_3$) δ 168.59, 155.23, 138.04, 129.06, 128.26, 128.10, 79.75, 56.73, 46.38, 46.28, 28.54, 26.07, 24.14.

HRMS (+ ESi) Mass calcd. for $C_{17}H_{24}N_2O_3$ [M+Na]+: 327.1679, Found [M+Na]+: 327.1674.

$$[\alpha]^{23.6}_{D} = -129.8^{\circ} (c = 1.0, CHCl_3)$$

Enantiomeric ratio: 96:4, $Rt_1 = 8.0$, $Rt_2 = 9.4$, Chiralcel OD-H, 6% IPA/Hexanes, 1 mL/min

(S)-tert-butyl (2-(benzylamino)-2-oxo-1-(thiophen-2-yl)ethyl)carbamate

(6): To a 1 dram (4 mL) vial was added adduct 3j (82 mg, 0.20 mmol), benzylamine (64.3 mg, 0.60 mmol) and 0.60 mL Dichloromethane. The vial was sealed with a Septa-cap, and cooled to -78 °C in a CO_2 /Acetone bath for 15 minutes before TASF (66.1 mg, 0.24 mmol) in DCM (0.13 mL) (1.8 M) was added dropwise over 5 minutes. The reaction was allowed to stir for 2 hours at -78 °C before being quenched with aq. HCl (1.0M, 3 mL). The reaction was warmed to ambient temperature, diluted with EtOAc (10 mL), H₂O (5 mL), and brine (2 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc (10 mL, 2x). The combined organic solvents were dried over Na₂SO₄, concentrated, and purified by flash column chromatography (SiO₂, 30% EtOAc/Hexanes) to afford 65 mg (93%) of **6** as a white solid.

S12

IR (film): 3308, 2977, 2929, 1693, 1660, 1496, 1367, 1247, 1164, 1064, 697.

1H NMR (500 MHz, CDCl₃) δ 7.29 – 7.19 (m, 4H), 7.15 (d, J = 6.8 Hz, 2H), 7.01 (d, J = 3.4 Hz, 1H), 6.90 (dd, J = 5.0, 3.6 Hz, 1H), 6.86 (s, 1H), 5.87 (s, 1H), 5.59 (s, 1H), 4.40 (ddd, J = 36.4, 15.0, 5.8 Hz, 2H), 1.37 (s, 9H).

 13 C NMR (126 MHz, CDCl₃) δ 169.65, 155.30, 141.02, 137.86, 128.76, 127.69, 127.59, 127.03, 126.22, 125.83, 80.49, 54.24, 43.80, 28.40.

HRMS (+ ESi) Mass calcd. for $C_{18}H_{22}N_2O_3S$ [M+H]⁺: 347.1424, Found [M+H]⁺: 347.1414

$$[\alpha]^{23.6}_D = -63.8^{\circ} (c = 1.0, CHCl_3)$$

Enantiomeric ratio: 97.5:2.5, $Rt_1 = 10.0$, $Rt_2 = 15.0$, Chiralcel OD-H, 5% IPA/Hexanes, 1 mL/min

(S)-2-acetamido-N-benzyl-2-(thiophen-2-yl)acetamide

(7): To a 1 dram (4 mL) vial was added 6 (35 mg, 0.1 mmol), and 0.50 mL Dichloromethane. The vial was sealed with a Septa-cap, and cooled to 0 °C in an ice bath for 15 minutes before Trifluoroacetic acid (0.5 mL) was added dropwise. The reaction was allowed to stir for 1 hour at 0 °C, before being concentrated in vacuo with stirring at 0 °C. The ice bath was removed and the dry residue was re-dissolved in pyridine (0.5 mL). Acetic Anhydride (102 mg, 1 mmol) was added and the reaction was stirred with 2 h at ambient temperature. The reaction was diluted with 15 mL EtOAc, and washed with aq. NaHCO₃ (5 mL), aq HCl (1.0M, 5 mL), and Brine (5 mL). The organic layer was dried over Na₂SO₄, concentrated, and purified by flash column chromatography (SiO₂, 50% to 100% EtOAc/Hexanes) to afford 27.7 mg (96%) of 7 as a white solid.

IR (film): 3283, 3065, 1638, 1539, 1376, 1229, 696.

¹H NMR (500 MHz, CDCl₃) δ 7.32 (t, J = 5.1 Hz, 1H), 7.30 – 7.23 (m, 3H), 7.22 – 7.16 (m, 3H), 7.08 (d, J = 7.6 Hz, 1H), 7.03 (d, J = 3.4 Hz, 1H), 6.90 (dd, J = 5.1, 3.6 Hz, 1H), 6.02 (d, J = 7.7 Hz, 1H), 4.39 (ddd, J = 20.5, 14.5, 5.5 Hz, 2H), 1.88 (s, 9H).

 $^{13}\textbf{C}$ NMR (126 MHz, CDCl $_3$) δ 170.02, 169.53, 140.76, 137.71, 128.84, 127.89, 127.71, 127.07, 126.52, 125.86, 52.65, 44.04, 23.11.

HRMS (+ ESi) Mass calcd. for $C_{15}H_{16}N_2O_2S$ [M+H]+: 289.1005, Found [M+H]+: 289.0997

$$[\alpha]^{23.6}D = -90.0^{\circ} (c = 1.0, CHCl_3)$$

Enantiomeric ratio: 97.5:2.5, $Rt_1 = 6.4$, $Rt_2 = 13.5$, Chiralcel AD-H, 25% IPA/Hexanes, 1 mL/min

(R)-tert-butyl (2-(benzylamino)-1-cyclohexyl-2-oxoethyl)carbamate

(8): To a 2 dram (8 mL) vial was added adduct 3a (110 mg, 0.27 mmol), benzylamine (86.8 mg, 0.81 mmol) and 0.82 mL Dichloromethane. The vial was sealed with a Septa-cap, and cooled to -78 °C in a CO_2 /Acetone bath for 15 minutes before TASF (89 mg, 0.32 mmol) in DCM (0.18 mL) (1.8 M) was added dropwise over 5

minutes. The reaction was allowed to stir for 1.5 hours at -78 °C before being quenched with aq. HCl (1.0M, 5 mL). The reaction was warmed to ambient temperature, diluted with EtOAc (10 mL), H₂O (5 mL), and brine (2 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc (10 mL, 2x). The combined organic solvents were dried over Na₂SO₄, concentrated, and purified by flash column chromatography (SiO₂, 20% EtOAc/Hexanes) to afford 90 mg (92%) of **8** as a clear viscous oil.

IR (film): 3296, 2927, 2852, 1684, 1653, 1522, 1455, 1294, 1245, 1173, 697.

1H NMR (500 MHz, CDCl₃) δ 7.32 – 7.26 (m, 2H), 7.26 – 7.20 (m, 3H), 6.76 (s, 1H), 5.25 (d, J = 8.6 Hz, 1H), 4.40 (ddd, J = 36.7, 14.9, 5.6 Hz, 2H), 3.97 (t, J = 7.4 Hz, 1H), 1.88 – 1.56 (m, 6H), 1.39 (s, J = 10.0 Hz, 9H), 1.29 – 0.67 (m, 5H).

 13 C NMR (126 MHz, CDCl₃) δ 171.86, 156.11, 138.31, 128.77, 127.81, 127.54, 79.92, 59.85, 43.54, 40.51, 29.95, 28.66, 28.48, 26.31, 26.11.

HRMS (+ ESi) Mass calcd. for C₂₀H₃₀N₂O₃ [M+Na]+: 369.2149, Found [M+Na]+: 369.2143

$$[\alpha]^{23.6}_{D} = -0.3^{\circ} (c = 1.0, CHCl_3)$$

Enantiomeric ratio: 92:8, $Rt_1 = 6.1$, $Rt_2 = 8.1$, Chiralcel AD-H, 10% IPA/Hexanes, 1 mL/min

(R)-methyl 2-(2-((tert-butoxycarbonyl)amino)-2-phenylacetamido)acetate

(9): To a 1 dram (4 mL) vial was added adduct 3a (70 mg, 0.174 mmol), 0.52 mL Dichloromethane, glycine methyl ester hydrochloride (43.8 mg, 0.348 mmol), diisopropyl ethyl amine (45.1 mg, 0.348 mmol, and stirred at ambient temperature until dissolution. The vial was sealed with a Septa-cap, and cooled to -78 °C in a CO₂/Acetone bath for 15 minutes before TASF (58 mg, 0.21 mmol) in DCM (0.12 mL) (1.8 M) was added dropwise over 5 minutes. The reaction was allowed to stir for 2 hours at -78 °C before being quenched with aq. HCl (1.0M, 3 mL). The reaction was warmed to ambient temperature, diluted with EtOAc (10 mL), H₂O (5 mL), and brine (2 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc (10 mL, 2x). The combined organic solvents were dried over Na₂SO₄, concentrated, and purified by flash column chromatography (SiO₂, 35% EtOAc/Hexanes) to afford 52.0 mg (93%) of 9 as a white solid.

IR (film): 3320, 2977, 1751, 1667, 1497, 1367, 1167, 698.

¹**H NMR** (500 MHz, CDCl₃) δ 7.41 – 7.28 (m, 5H), 6.66 (s, 1H), 5.82 (s, 1H), 5.26 (s, 1H), 3.99 (ddd, J = 22.3, 18.2, 4.8 Hz, 2H), 3.70 (s, 3H), 1.41 (s, 9H).

 13 C NMR (126 MHz, CDCl₃) δ 170.70, 170.08, 155.30, 138.20, 129.12, 128.54, 127.47, 80.29, 58.59, 52.48, 41.53, 28.45.

HRMS (+ ESi) Mass calcd. for $C_{16}H_{22}N_2O_5$ [M+Na]+: 345.1421, Found [M+Na]+: 345.1415.

$$[\alpha]^{23.6}_{D} = -81.4^{\circ} (c = 1.0, CHCl_3)$$

Enantiomeric ratio: 96:4, Rt₁ = 17.6, Rt₂ = 24.0, Chiralcel AD-H, 10% IPA/Hexanes, 1 mL/min

(S)-methyl 2-((R)-2-((tert-butoxycarbonyl)amino)-2-phenylacetamido)-3-methylbutanoate

(10): To a 2 dram (8 mL) vial was added adduct 3a (82 mg, 0.204 mmol), valine methyl ester ⁷ (80.4 mg, 0.612 mmol), and Dichloromethane (0.62 mL). The vial was sealed with a Septa-cap, and cooled to –45 °C in cryogenic bath for 15 minutes before TASF (67.4 mg, 0.245 mmol) in DCM (0.135 mL) (1.8 M) was added dropwise over 5 minutes. The reaction was allowed to stir for 6 hours at –45 °C before being quenched slowly by the dropwise addition of a 1.0 M solution of Trifluoroacetic acid in DCM (2 mL, 2 mmol) over 5 minutes. Aq. HCl (1.0M, 3 mL) was added and the reaction was warmed to ambient temperature, diluted with EtOAc (20 mL), and washed aq. HCl (1.0 M, 10 mL, 2x), sat. NaHCO₃ (10 mL), and brine (5 mL). ⁸ The organic layer was separated and dried over Na₂SO₄, concentrated, and purified by flash column chromatography (SiO₂, 20-25% EtOAc/Hexanes) to afford 53.6 mg (72%) of 10 as a white solid.

IR (film): 3318, 2967, 1742, 1716, 1662, 1450, 1366, 1054, 698.

¹**H NMR** (major diastereomer) (500 MHz, CDCl₃) δ 7.44 – 7.28 (m, 5H), 6.32 (d, J = 8.7 Hz, 1H), 5.77 (s, 1H), 5.19 (s, 1H), 4.54 (dd, J = 9.0, 4.9 Hz, 1H), 3.74 (s, 3H), 2.11 – 2.03 (m, 1H), 1.41 (s, 9H), 0.74 (d, J = 6.9 Hz, 3H), 0.69 (d, J = 6.9 Hz, 3H).

 13 C NMR (major diastereomer) (126 MHz, CDCl₃) δ 172.31, 170.11, 155.17, 138.68, 129.22, 128.60, 127.38, 80.31, 59.08, 57.25, 52.43, 31.52, 28.47, 18.92, 17.47.

HRMS (+ ESi) Mass calcd. for C₁₉H₂₈N₂O₅ [M+Na]+: 387.1890, Found [M+Na]+: 387.1883

(S)-ethyl 2-((R)-2-((tert-butoxycarbonyl)amino)-2-phenylacetamido)-3-phenylpropanoate

(11): To a 2 dram (8 mL) vial was added adduct 3a (73 mg, 0.182 mmol), Phenylalanine ethyl ester⁷ (105.4 mg, 0.545 mmol), and Dichloromethane (0.55 mL). The vial was sealed with a Septa-cap, and cooled to -45 °C in cryogenic bath for 15 minutes before TASF (60 mg, 0.218 mmol) in DCM (0.12 mL) (1.8 M) was added dropwise over 5 minutes. The reaction was allowed to stir for 5 hours at -45 °C before being quenched slowly by the dropwise addition of a 1.0 M solution of Trifluoroacetic acid in DCM (2 mL, 2 mmol) over 5 minutes. Aq. HCl (1.0M, 3 mL) was added and the reaction was warmed to ambient temperature, diluted with EtOAc (20 mL), and washed aq. HCl (1.0 M, 10 mL, 2x), sat. NaHCO₃ (10 mL), and brine (5 mL).⁸ The organic layer was separated and dried over Na₂SO₄, concentrated, and purified by flash column chromatography (SiO₂, 20-25% EtOAc/Hexanes) to afford 54.2 mg (70%) of **11** as a white solid.

IR (film): 3320, 2978, 2931, 1734, 1717, 1662, 1497, 1367, 1168, 699.

¹**H NMR** (major diastereomer) (500 MHz, CDCl₃) δ 7.40 – 7.28 (m, 5H), 7.14 (t, I = 7.4 Hz, 1H), 7.06 (t,

 $^{^{7}}$ Free base obtained by washing the amino ester hydrochloride salt with sat. aq. K_2CO_3 , extraction with DCM, and concentration. The concentrated free base was stable for weeks in the fridge.

⁸ It is essential to wash away excess free amine with aq. HCl prior to washing with aq. NaHCO₃ (to remove TFA) since the amine will react with the unreacted acyl cyanide at elevated temperatures and lead to noticeable epimerization.

7.5 Hz, 2H), 6.66 (d, J = 6.2 Hz, 2H), 6.15 (s, 1H), 5.82 (s, 1H), 5.08 (s, 1H), 4.87 (dt, J = 8.0, 5.4 Hz, 1H), 4.22 – 4.11 (m, 2H), 3.03 – 2.88 (m, 2H), 1.41 (s, 9H), 1.25 (t, J = 7.2 Hz, 3H).

 13 C NMR (major diastereomer) (126 MHz, CDCl₃) δ 171.09, 169.55, 155.18, 138.62, 135.37, 129.37, 129.32, 128.62, 128.58, 127.48, 127.13, 80.21, 61.85, 58.87, 53.27, 37.86, 28.49, 14.30.

HRMS (+ ESi) Mass calcd. for $C_{24}H_{30}N_2O_5$ [M+Na]+: 449.2047, Found [M+Na]+: 449.2043

(S)-methyl 2-((R)-2-((tert-butoxycarbonyl)amino)-2-cyclohexylacetamido)-3-methylbutanoate

(12): To a 1 dram (4 mL) vial was added adduct 3a (32 mg, 0.079 mmol), valine methyl ester (20.6 mg, 0.157 mmol), and Dichloromethane (0.24 mL). The vial was sealed with a Septa-cap, and cooled to -78 °C in cryogenic bath for 15 minutes before TASF (26 mg, 0.094 mmol) in DCM (0.052 mL) (1.8 M) was added dropwise over 5 minutes. The reaction was allowed to stir for 3 hours at -78 °C, and another 5 hours at -45 °C before being quenched with aq. HCl (1.0M, 2 mL). The reaction was warmed to ambient temperature, diluted with EtOAc (10 mL), H₂O (3mL), and brine (2 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc (10 mL, 2x). The combined organic solvents were dried over Na₂SO₄, concentrated, and purified by flash column chromatography (SiO₂, 20% EtOAc/Hexanes) to afford 27 mg (93%) of 12 as an amorphous solid.

IR (film): 3314, 2926, 2852, 1746, 1682, 1650, 1530, 1450, 1366, 1256, 1177, 1018

¹**H NMR** (major diastereomer) (500 MHz, CDCl₃) δ 6.51 (d, J = 8.7 Hz, 1H), 5.05 (s, 1H), 4.55 (dd, J = 8.7, 4.8 Hz, 1H), 3.99 (s, 1H), 3.74 (s, 3H), 2.25 – 2.13 (m, 1H), 1.90 – 1.79 (m, 1H), 1.79 – 1.62 (m, 5H), 1.44 (d, J = 3.4 Hz, 9H), 1.34 – 1.18 (m, 3H), 1.18 – 1.06 (m, 2H), 1.01 (ddd, J = 25.0, 12.5, 3.5 Hz, 1H), 0.94 (d, J = 6.9 Hz, 3H), 0.90 (d, J = 6.9 Hz, 3H).

 13 C NMR (major diastereomer) (126 MHz, CDCl₃) δ 172.40, 171.62, 80.14, 59.86, 57.20, 52.33, 40.48, 31.37, 30.05, 28.50, 28.17, 26.29, 26.23, 26.18, 19.16, 17.94.

HRMS (+ ESi) Mass calcd. for $C_{19}H_{34}N_2O_5Si$ [M+Na]+: 393.2360, Found [M+Na]+: 393.2354.

(*R*)-methyl 2-(2-((*tert*-butoxycarbonyl)amino)-*N*-methyl-2-(naphthalen-2-yl)acetamido)acetate (**13**): To a 1 dram (4 mL) vial was added adduct **3b** (49 mg, 0.1085 mmol), sarcosine methyl ester⁷ (33.6 mg, 0.325 mmol), and dichloromethane (0.33 mL). The vial was sealed with a Septa-cap, and cooled to -78 °C in cryogenic bath for 15 minutes before TASF (36 mg, 0.13 mmol) in dichloromethane (0.072 mL) (1.8 M) was added dropwise over 5 minutes. The reaction was allowed to stir for 2 hours at -78 °C, and another 5 hours at -45 °C before being quenched by the dropwise addition of a 1.0 M solution of Trifluoroacetic acid in DCM (1 mL, 2 mmol) over 5 minutes. Aq. HCl (1.0M, 2 mL) was added and the reaction was warmed to ambient temperature, diluted with EtOAc (15 mL), and washed aq. HCl (1.0 M, 5 mL, 2x), sat. NaHCO₃ (10 mL), and brine (5 mL).⁸ The organic layer was separated and dried over Na₂SO₄, concentrated, and purified by flash column chromatography (SiO₂, 25-30% EtOAc/Hexanes) to afford 34 mg (81%) of **13** as an amorphous solid.

¹**H NMR** - (major rotamer) (500 MHz, CDCl3) δ 7.93 - 7.77 (m, 4H), 7.58 - 7.40 (m, 3H), 6.03 (d, J = 7.8 Hz, 1H), 5.80 (d, J = 7.9 Hz, 1H), 4.16 (dd, J = 145.6, 17.2 Hz, 2H), 3.73 (s, 3H), 2.95 (s, 3H), 1.41 (s, 9H).

 13 C NMR – (major rotamer) (126 MHz, CDCl3) δ 171.07, 169.35, 155.30, 134.89, 133.56, 133.29, 129.10, 128.40, 127.86, 127.40, 126.59, 126.54, 125.73, 80.02, 55.62, 52.38, 50.16, 36.57, 28.56

HRMS (+ ESi) Mass calcd. for $C_{21}H_{27}N_2O_5$ [M+H]+: 387.1914, Found [M+Na]+: 387.1898.

 $[\alpha]^{23.6}_D = -147.6^{\circ} (c = 1.0, CHCl_3)$

Enantiomeric ratio: 95.5:4.5, $Rt_1 = 10.7$, $Rt_2 = 13.5$, Chiralcel OD-H, 10% IPA/Hexanes, 1 mL/min

110 100 90 80 f1 (ppm)

200

190

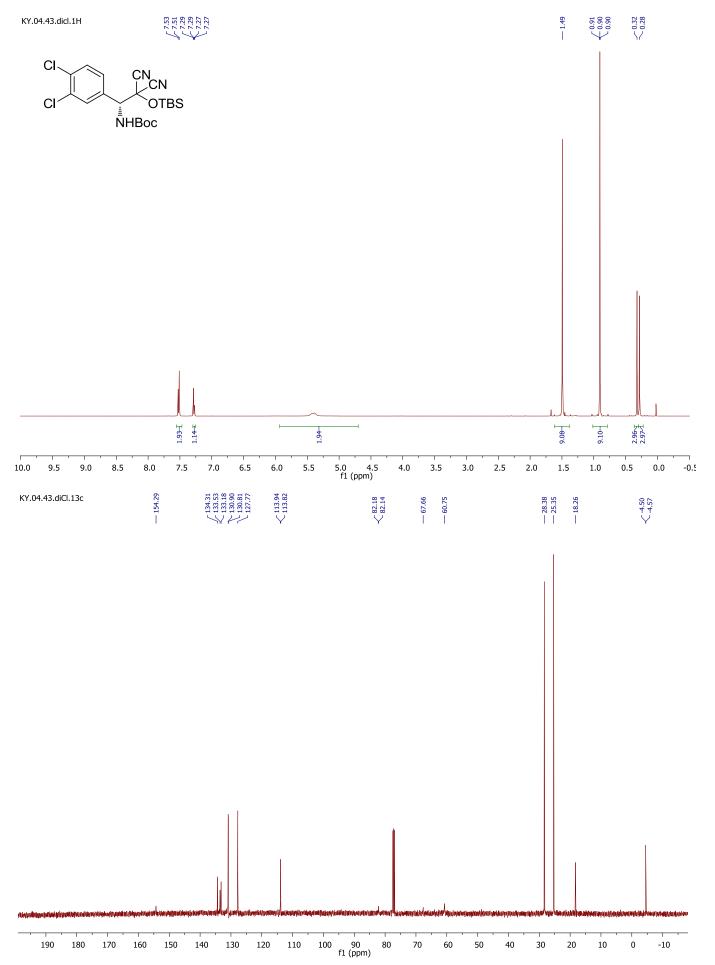
180

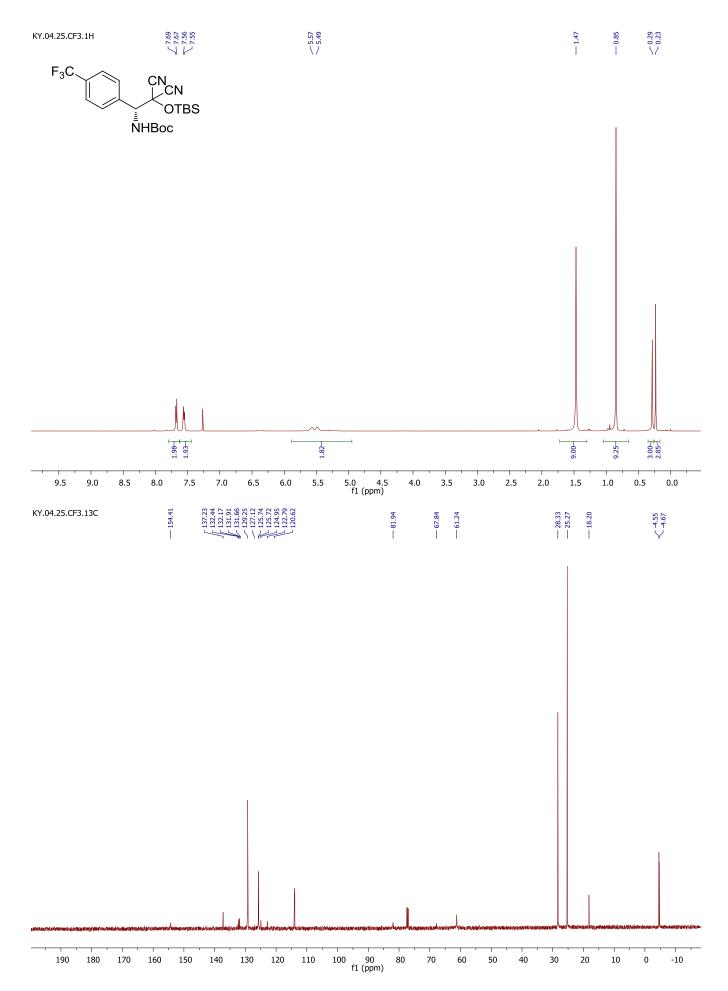
170

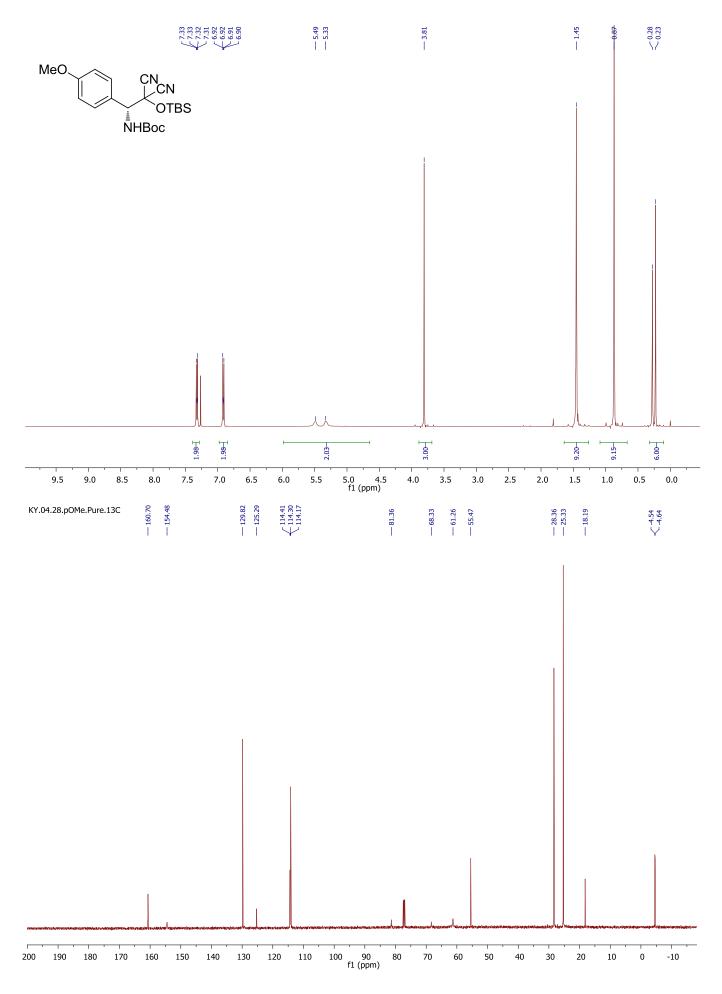
160 150

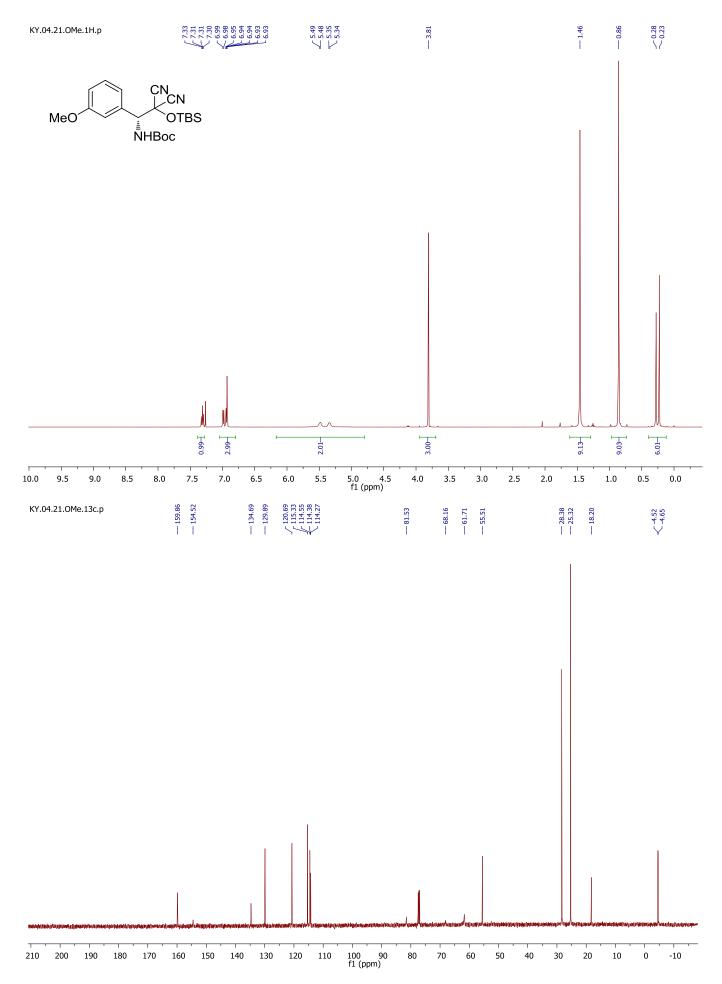
140

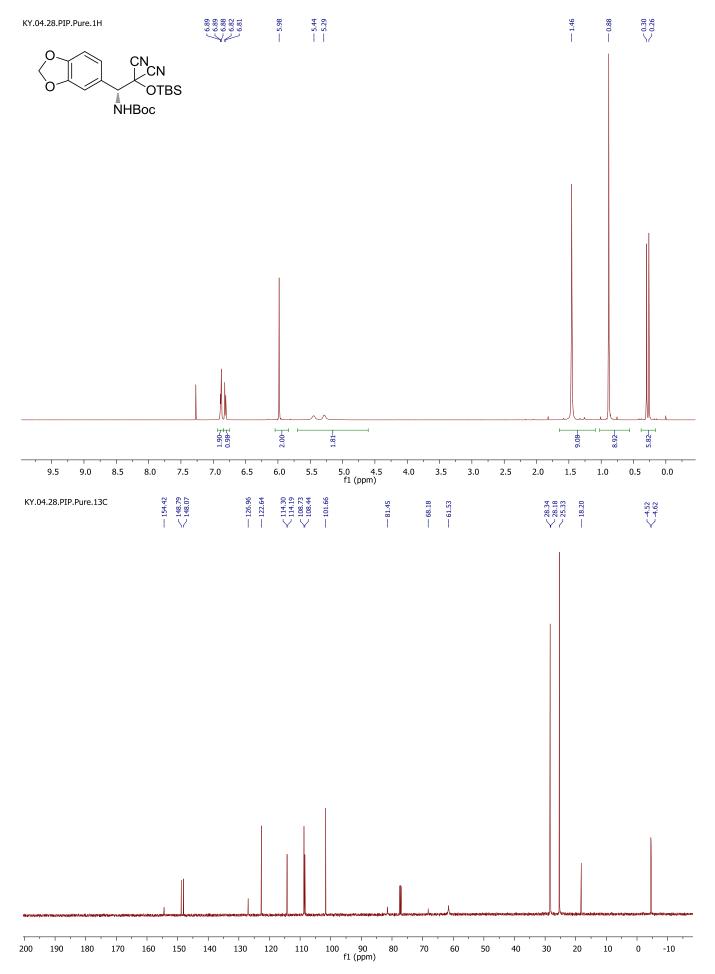
130

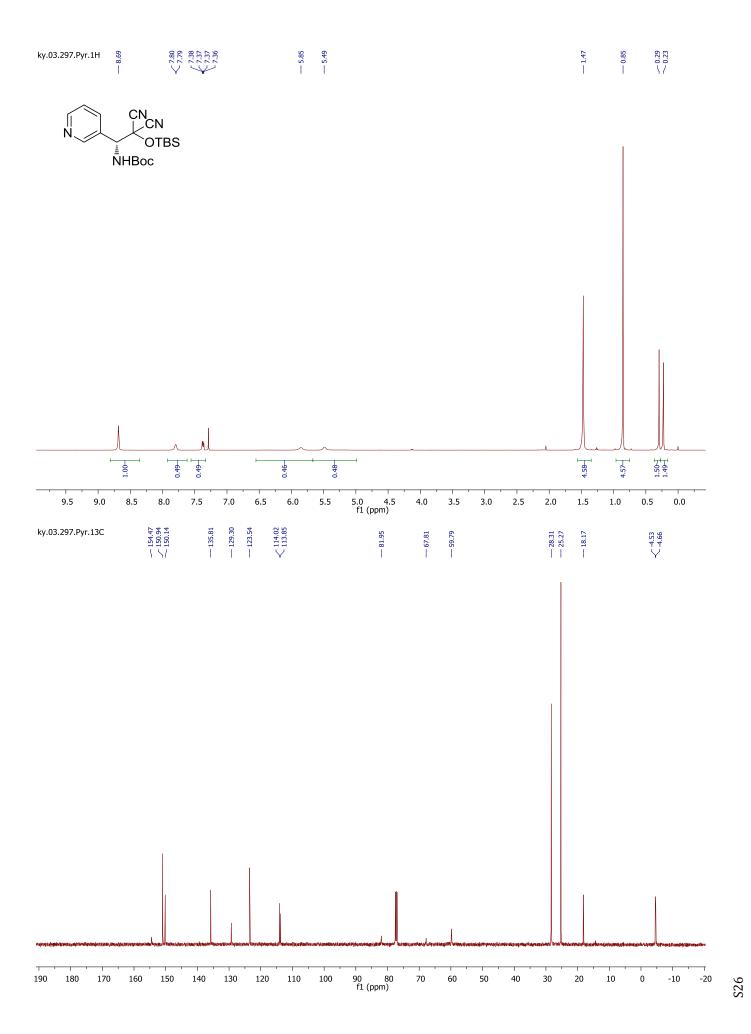

120

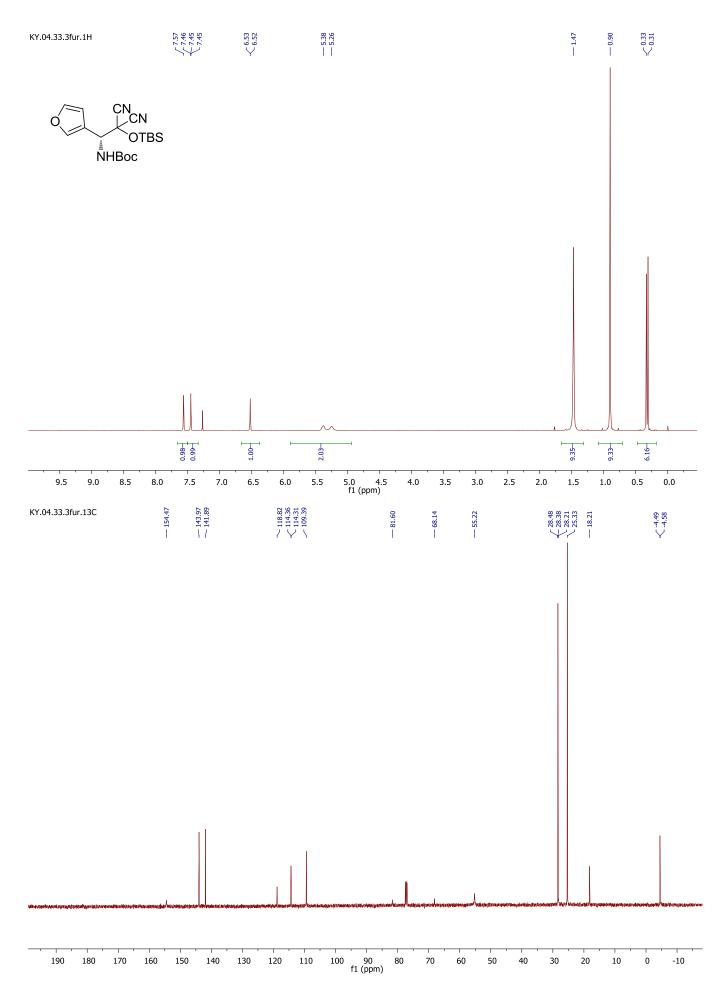

30

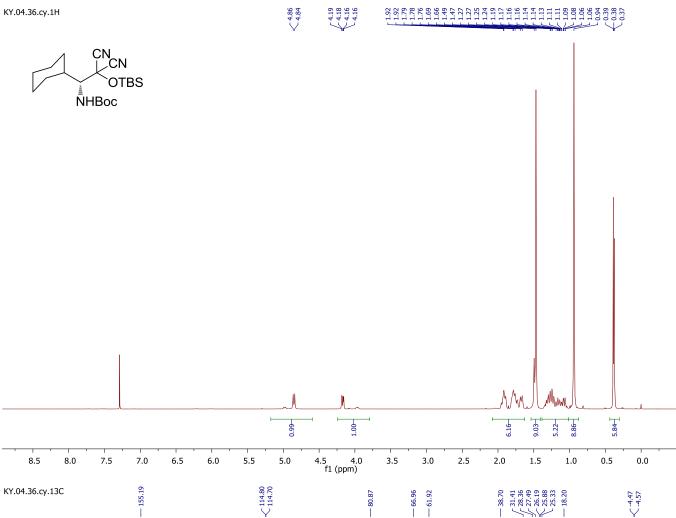

20

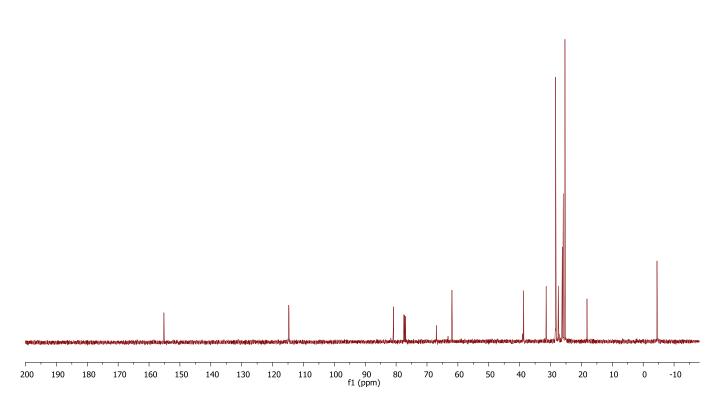


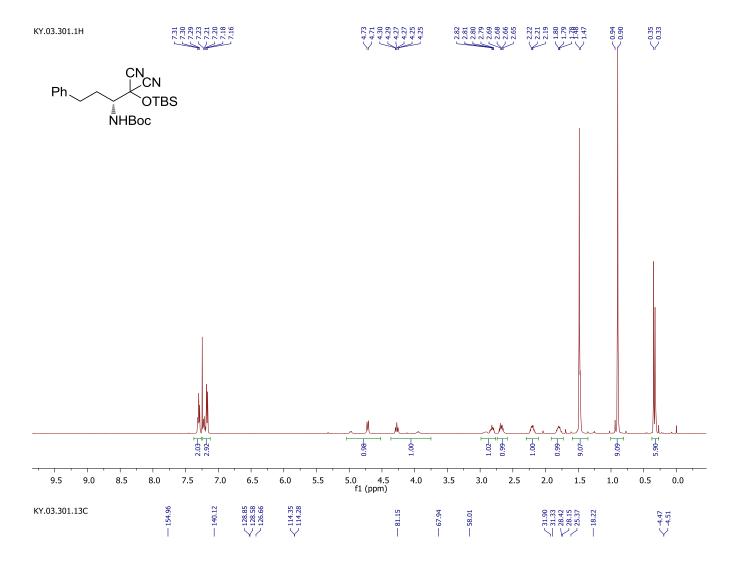


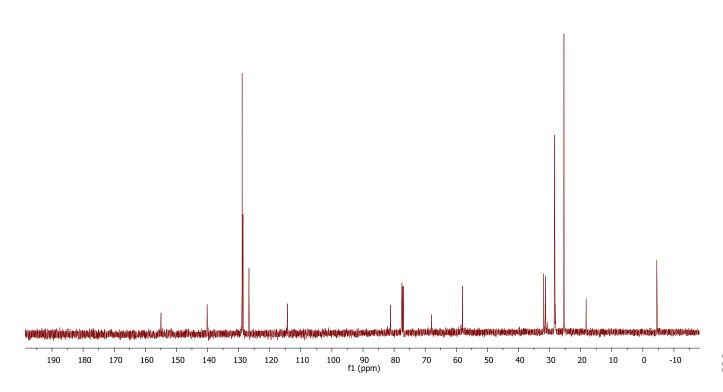


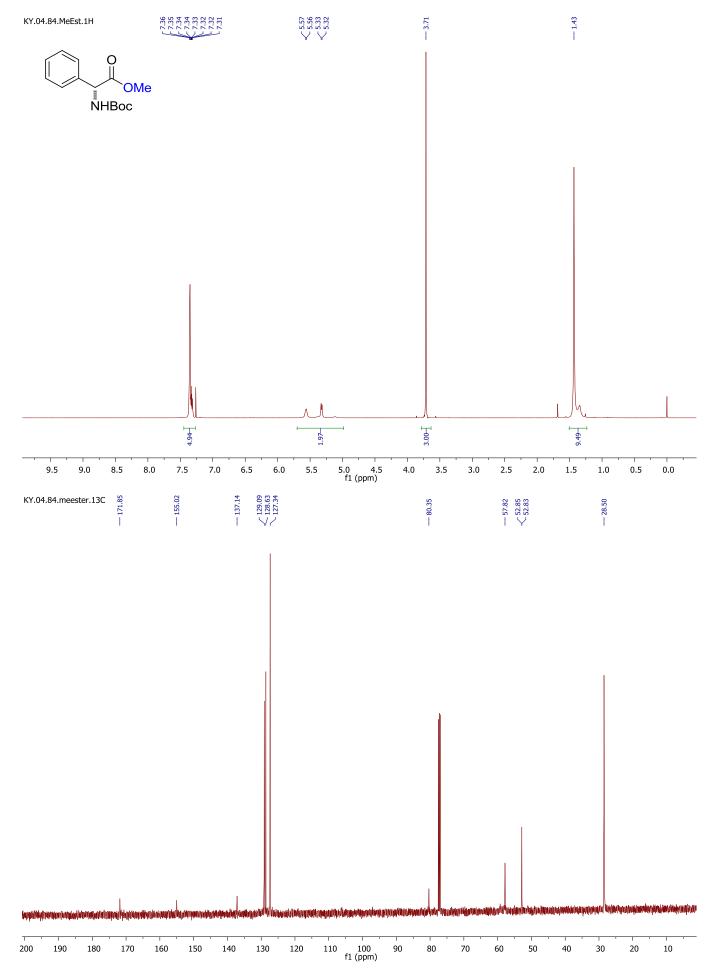


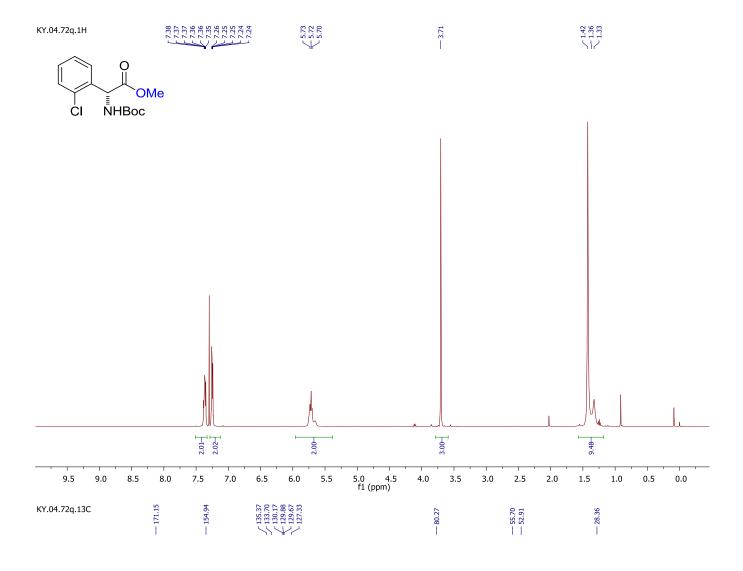


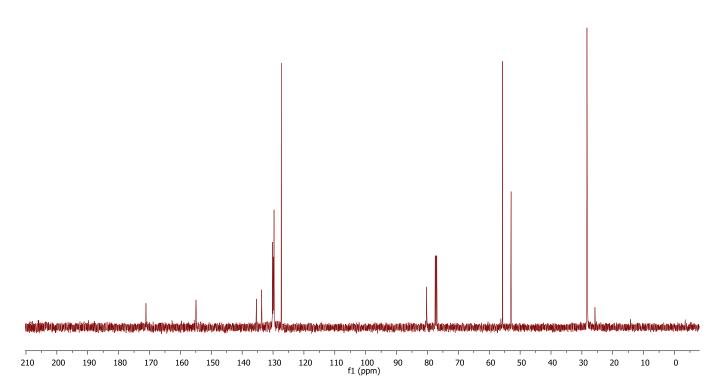


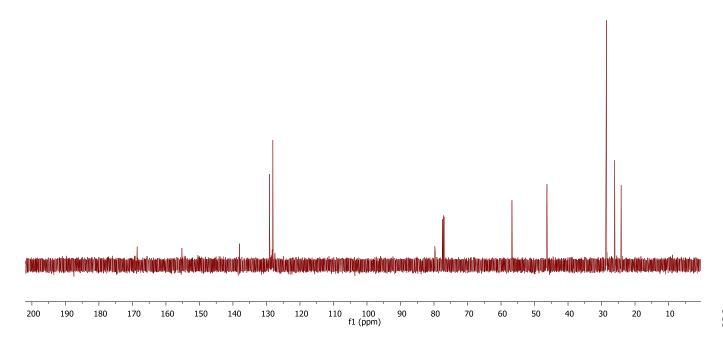


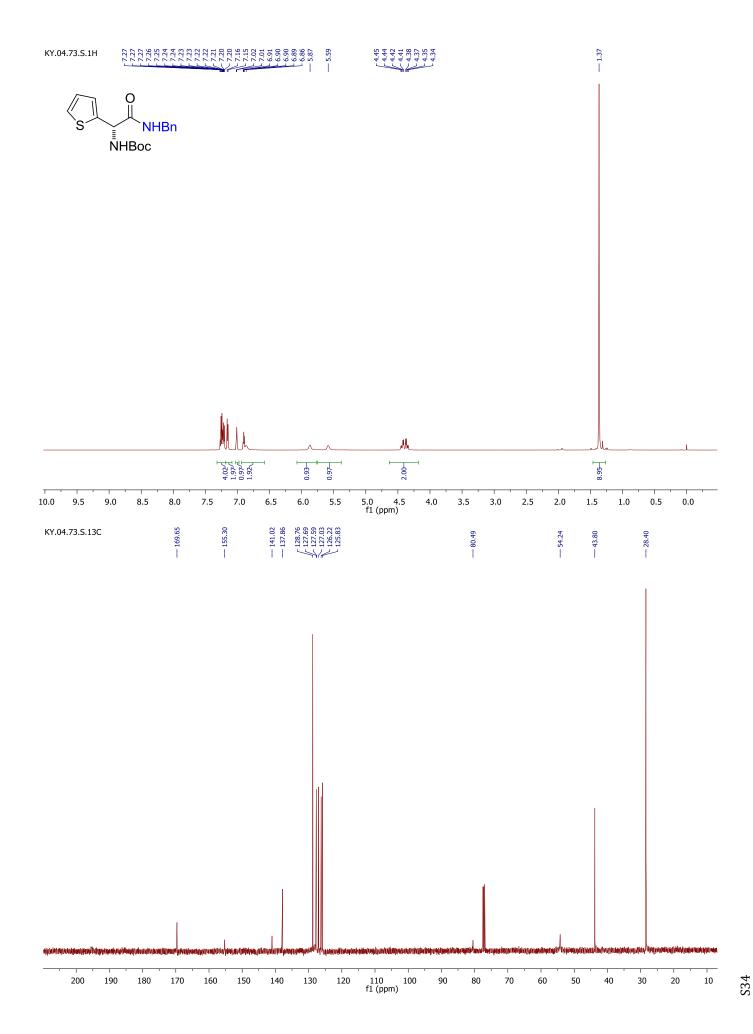


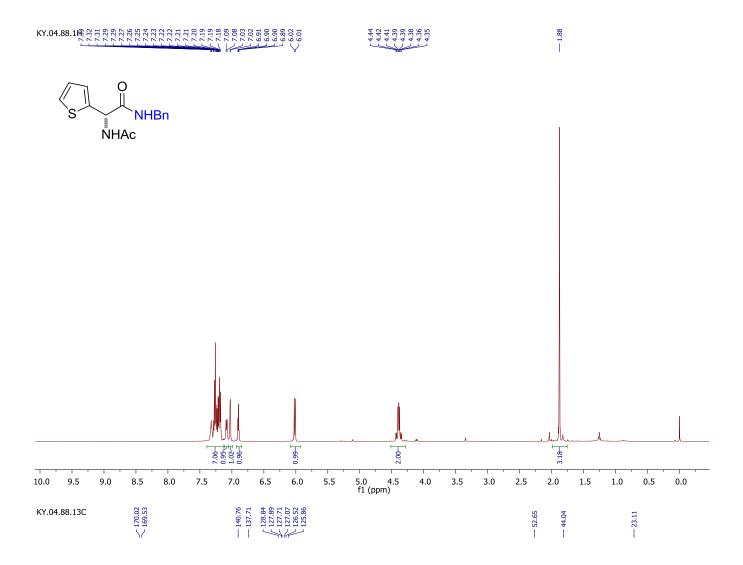


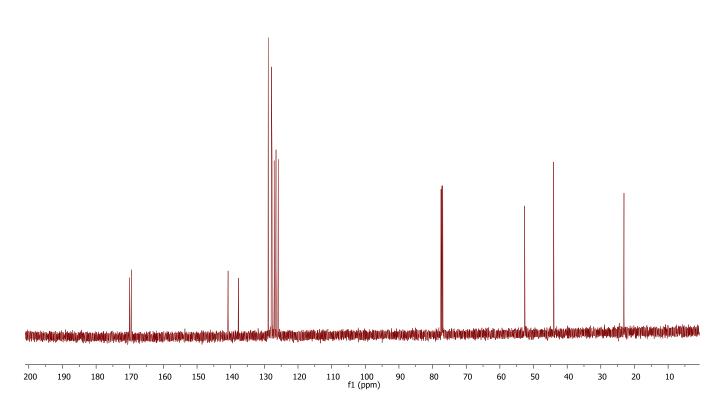


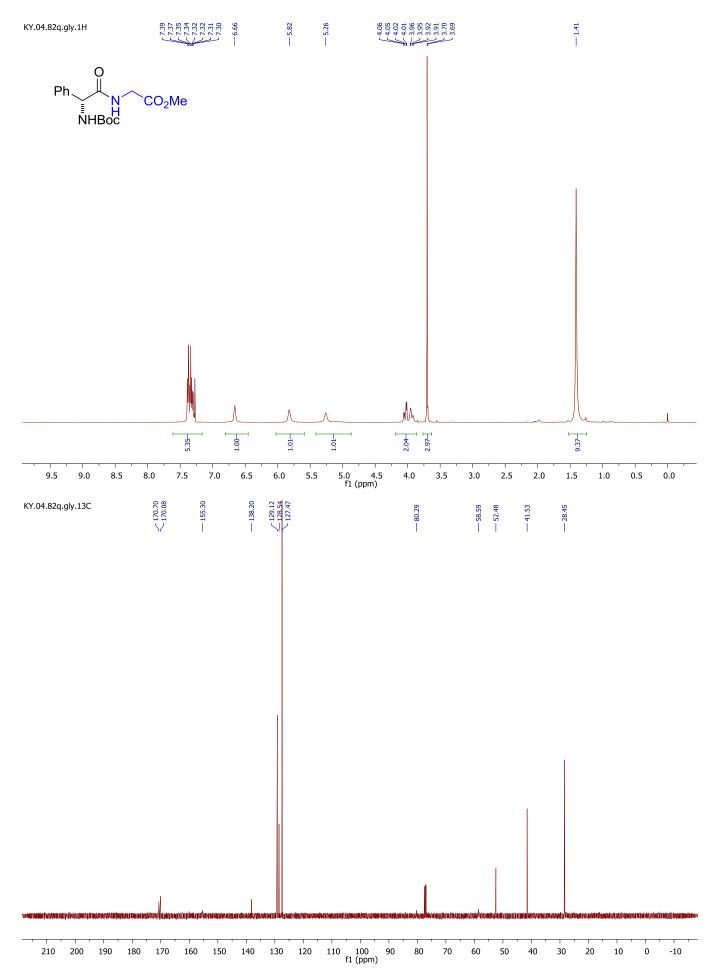


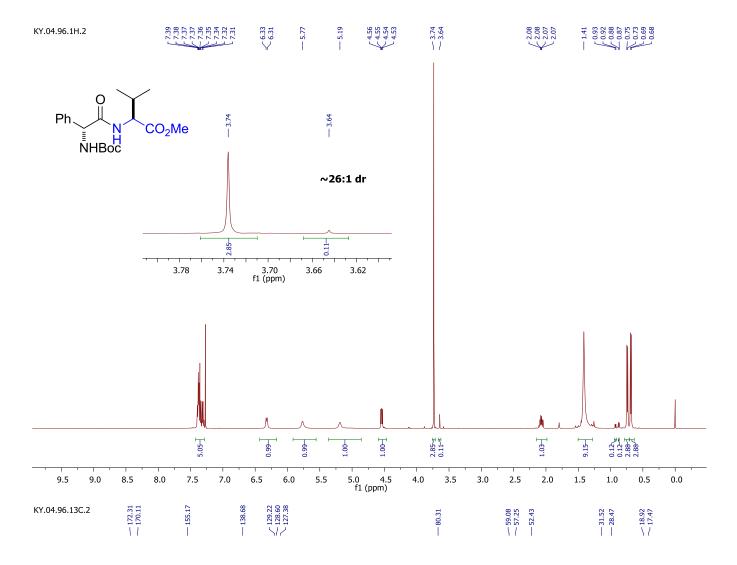


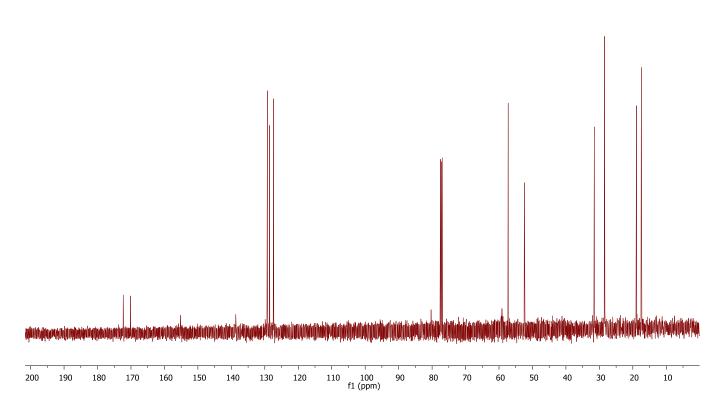


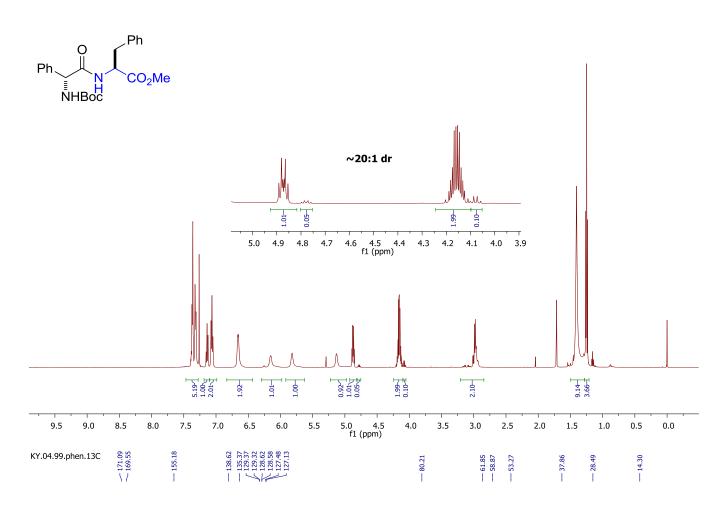


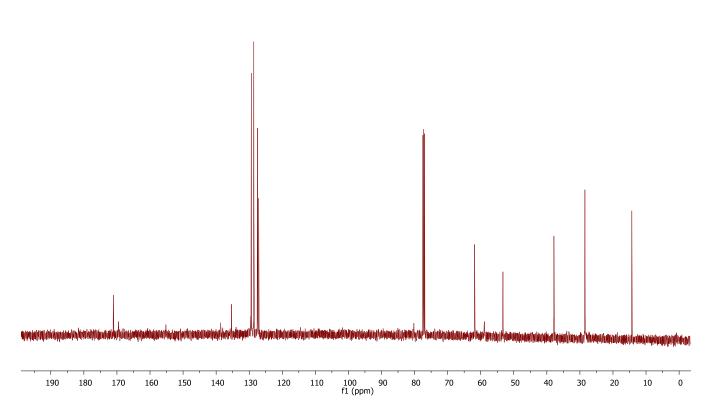


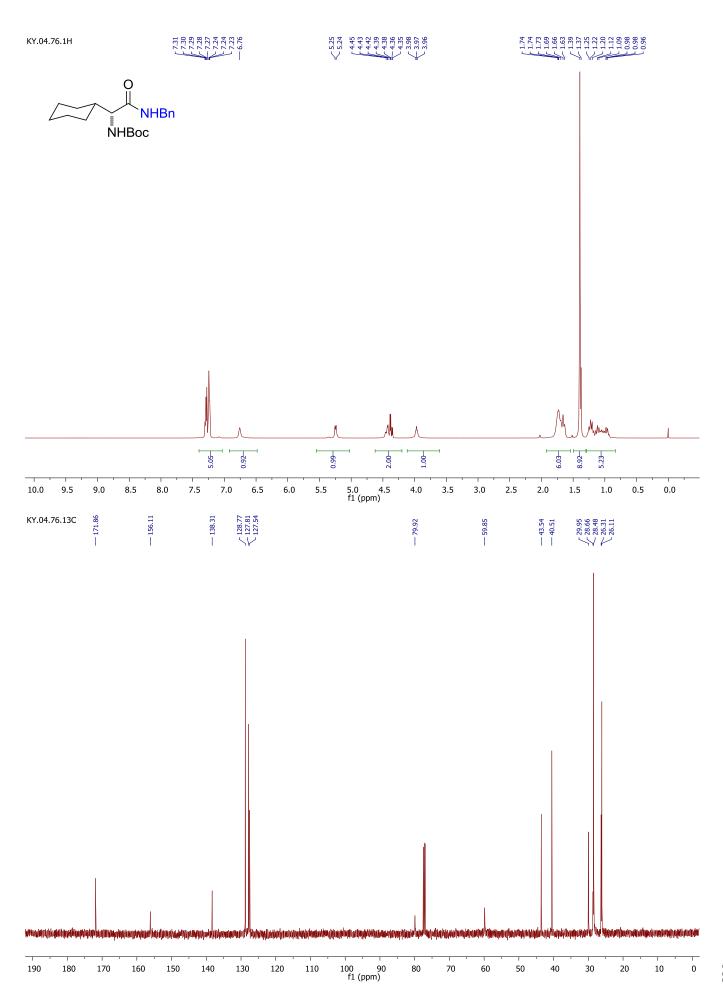


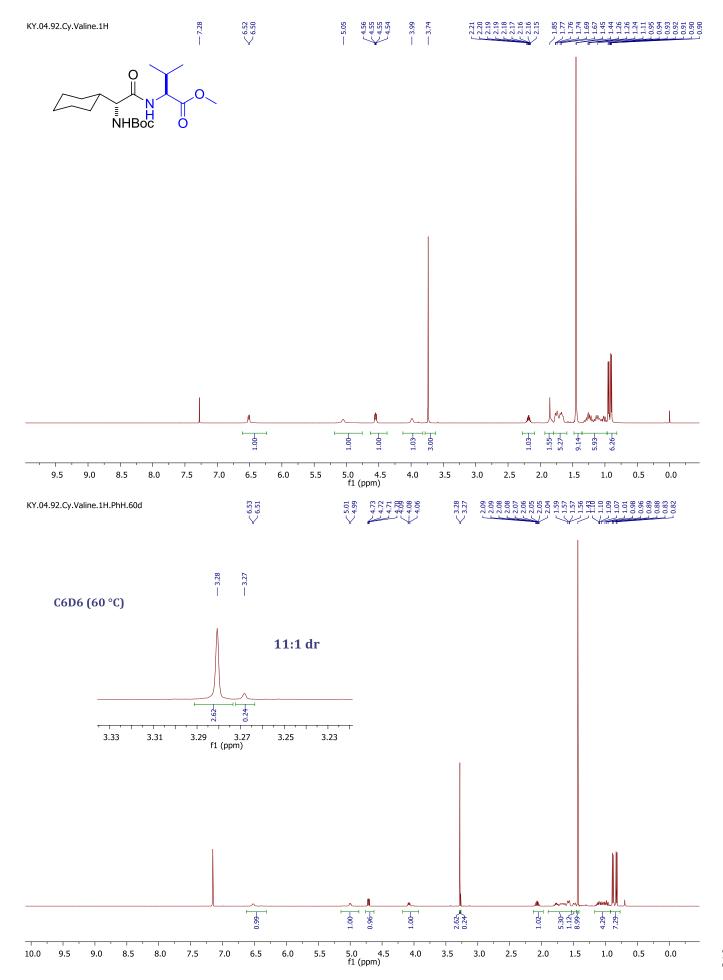


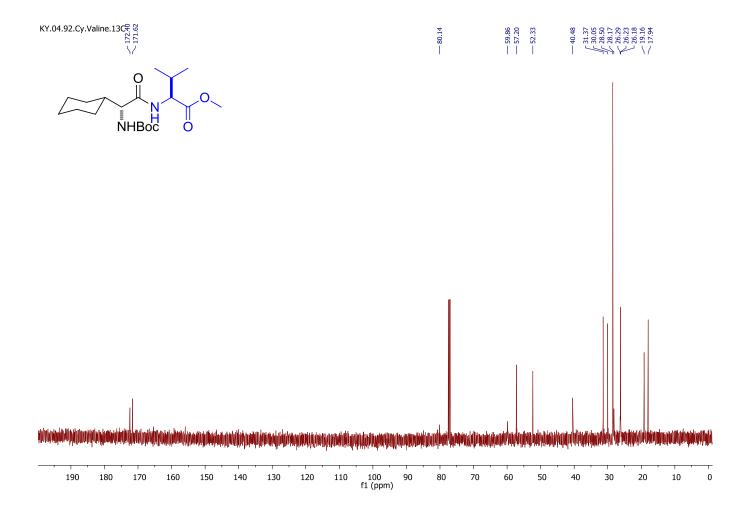


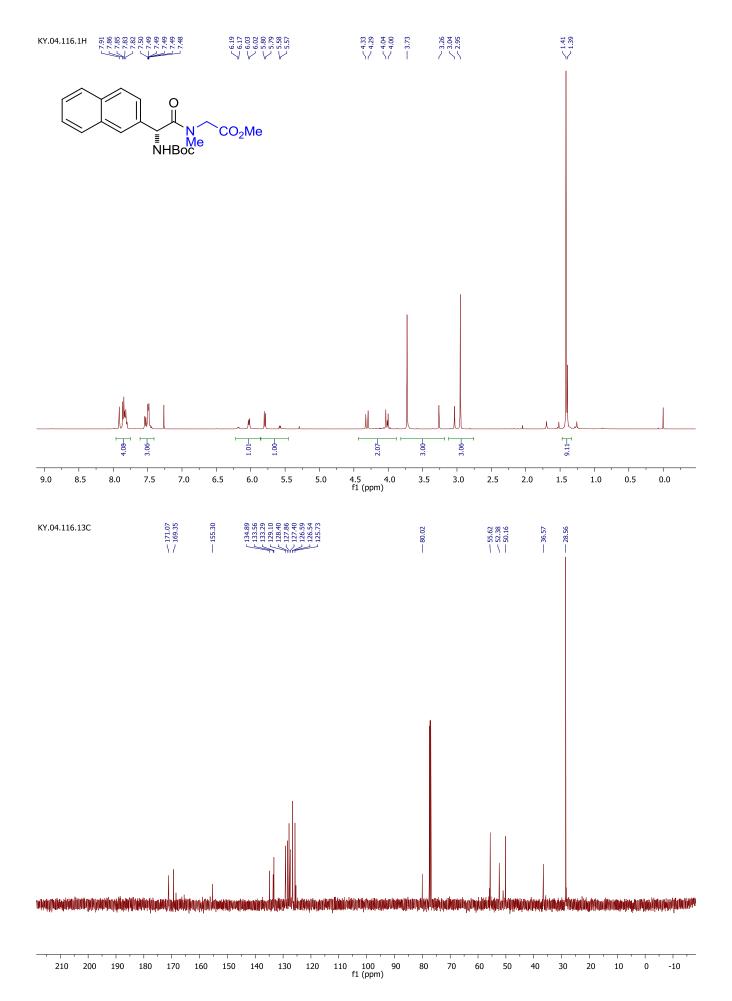


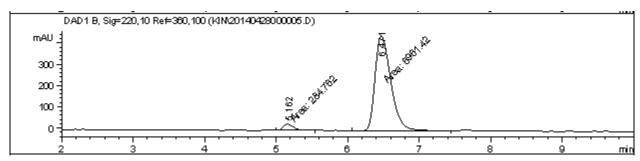




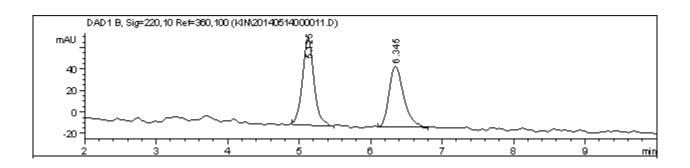








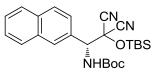
HPLC Traces of Racemic and Enantioenriched Compounds

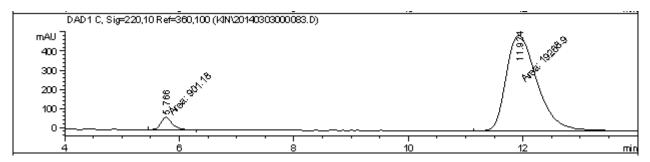


Signal 2: DAD1 B, Sig=220,10 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.162	MM	0.1631	284.76154	29.10411	3.9298
2	6.471	MM	0.2587	6961.41895	448.50278	96.0702

Totals: 7246.18048 477.60689

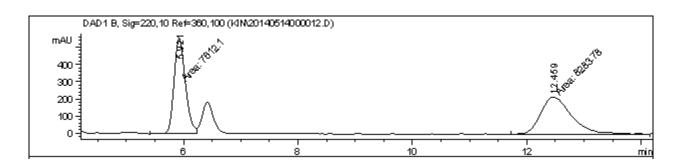



Signal 2: DAD1 B, Sig=220,10 Ref=360,100

	RetTime [min]		Width [min]	Area [mAU*s]	Height [mAU]	Area %
1		I I				
1	5.125	BB	0.1708	917.36328	81.82123	53.0653
2	6.345	BB	0.2189	811.37970	56.72670	46.9347

Totals: 1728.74298 138.54792

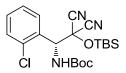
 $Enantiomeric\ ratio:\ 96:4$ $Rt_1=5.1\ min,\ Rt_2=6.4\ min$ $Chiracel\ OD\text{-H},\ 1\%\ IPA/Hexanes,\ 1\ mL/min$

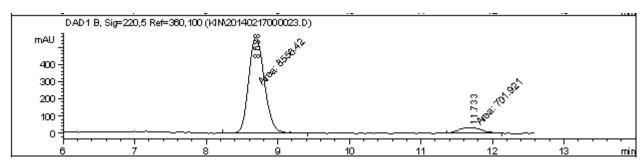


Signal 3: DAD1 C, Sig=220,10 Ref=360,100

	RetTime		Width	Area	Height	Area
••				[mAU*s]	[mAU]	. % .
1	5.766	MM	0.2297	901.17969	65.39148	4.4679
2	11.924	MM	0.6373	1.92689e4	503.90161	95.5321

Totals: 2.01701e4 569.29309

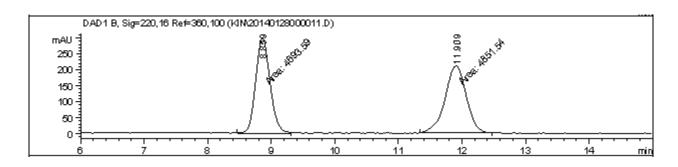



Signal 2: DAD1 B, Sig=220,10 Ref=360,100

	RetTime [min]			Area [mAU*s]	Height [mAU]	Area %
		l l				
1	5.921	MM	0.2292	7612.09521	553.58398	47.8872
2	12.459	MM	0.6338	8283.77930	217.82986	52.1128

Totals: 1.58959e4 771.41385

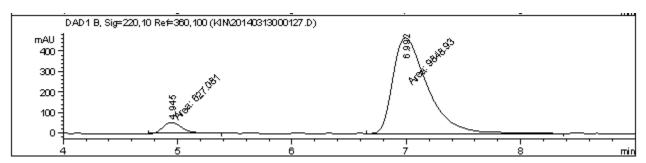
 $\begin{aligned} &Enantiomeric\ ratio:\ 95.5:4.5,\\ &Rt_1=5.7\ min,\ Rt_2=11.9\ min\\ &Chiracel\ OD\text{-H},\ 1\%\ IPA/Hexanes,\ 1\ mL/min \end{aligned}$



Signal 2: DAD1 B, Sig=220,5 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
		I I				
1	8.688	MM	0.2573	8556.41797	554.25000	92.4185
2	11.733	MM	0.3486	701.92084	33.56302	7.5815

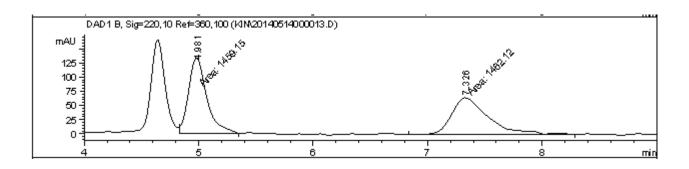
Totals: 9258.33881 587.81302



Signal 2: DAD1 B, Sig=220,16 Ref=360,100

#	[min]		[min]		Height [mAU]		
1		MM	0.2625	4693.59229	298.00638 209.18297	49.1726	

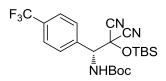
Totals: 9545.13623 507.18935

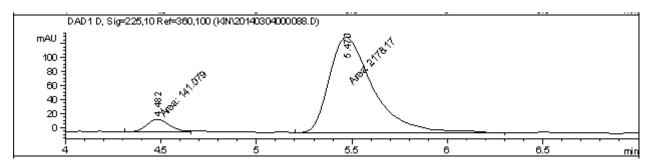

 $\begin{aligned} &Enantiomeric\ ratio:\ 92.5:7.5\\ &Rt_1=8.7\ min,\ Rt_2=11.7\ min\\ &Chiracel\ AD-H,\ 2\%\ IPA/Hexanes,\ 1\ mL/min \end{aligned}$

Signal 3: DAD1 C, Sig=225,10 Ref=360,100

Peak 1	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	4.947	MM	0.1961	629.87152	53.53183	6.0194
2	6.992	MM	0.3446	9834.17578	475.57086	93.9806

Totals: 1.04640e4 529.10269

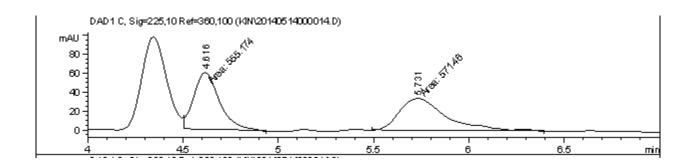



Signal 2: DAD1 B, Sig=220,10 Ref=360,100

Peak RetTime # [min]		[min]		Height [mAU]	Area %	
1 4.981 2 7.326	MM	0.1824	1459.14526 1462.11633	133.31259	49.9491	

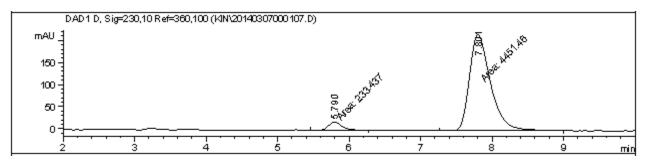
Totals: 2921.26160 198.46684

 $Enantiomeric\ ratio:\ 94:6$ $Rt_1=5.0\ min,\ Rt_2=7.0\ min$ $Chiracel\ OD-H,\ 1\%\ IPA/Hexanes,\ 1\ mL/min$



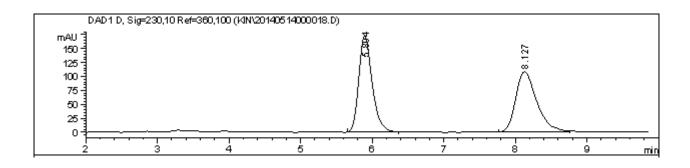
Signal 4: DAD1 D, Sig=225,10 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	4.482	MM	0.1336	141.07899	17.59560	6.0830
2	5.470	MM	0.2662	2178.17212	136.39267	93.9170


Totals: 2319.25111 153.98827

Signal 3: DAD1 C, Sig=225,10 Ref=360,100

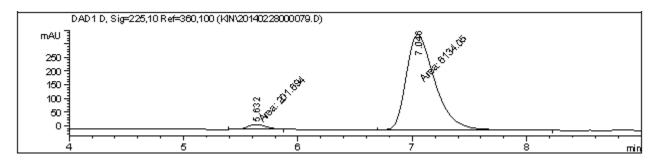
Peak RetTime Tyn # [min]	[min]	[mAU*s]	[mAU]	8
1 4.616 MM 2 5.731 MM	0.1534	555.17401		49.2772
Totals :		1126.63416	93.92646	


 $Enantiomeric\ ratio:\ 94:6$ $Rt_1=4.5,\ Rt_2=5.5$ Chiracel OD-H, 1% IPA/Hexanes, 1 mL/min

Signal 4: DAD1 D, Sig=230,10 Ref=360,100

Peak F	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
-						
1	5.790	MM	0.2133	233.43719	18.24405	4.9828
2	7.801	MM	0.3407	4451.45947	217.73611	95.0172

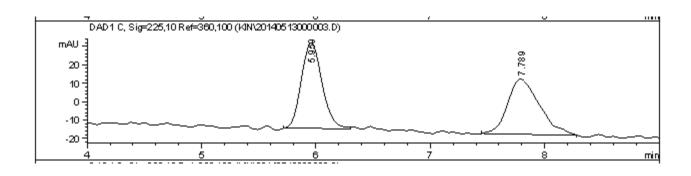
Totals: 4684.89667 235.98016



Signal 4: DAD1 D, Sig=230,10 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	5.894	BB	0.1991	2227.16089	171.96913	50.0732
2	8.127	BB	0.3114	2220.64575	108.21827	49.9268

Totals: 4447.80664 280.18740


 $Enantiomeric\ ratio:\ 95:5$ $Rt_1=5.8,\ Rt_2=7.8$ Chiracel OD-H, 1% IPA/Hexanes, 1 mL/min

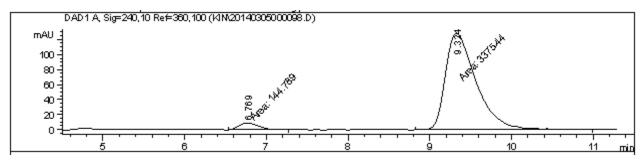
Signal 4: DAD1 D, Sig=225,10 Ref=360,100

Peak :	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.632	MM	0.1894	201.69406	17.74987	3.1834
2	7.046	MM	0.2917	6134.05225	350.48969	96.8166

Totals: 6335.74631 368.23956

Signal 3: DAD1 C, Sig=225,10 Ref=360,100

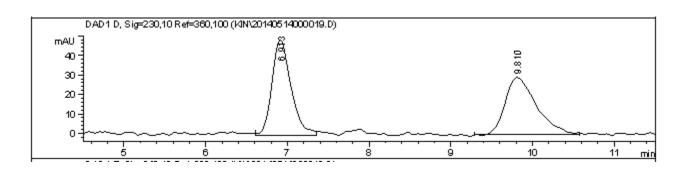
Totals :


		[min]	 [mAU]	
1 5.959 2 7.789	ВВ	0.1948	46.61628	50.1872

Enantiomeric ratio: 97:3 $Rt_1 = 5.6$, $Rt_2 = 7.0$

1169.06219

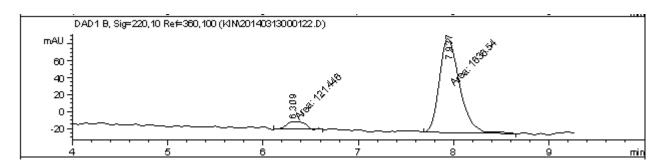
76.80185


Chiracel OD-H, 1% IPA/Hexanes, 1 mL/min

Signal 1: DAD1 A, Sig=240,10 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	6.769	MM	0.2672	144.78928	9.03069	4.1131
2	9.324	MM	0.4378	3375.43799	128.48534	95.8869

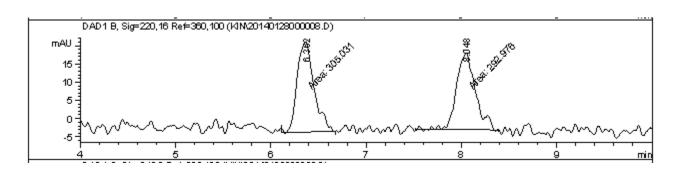
Totals: 3520.22726 137.51602



Signal 4: DAD1 D, Sig=230,10 Ref=360,100

Peak	${\tt RetTime}$	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	6.913	BB	0.2498	793.47815	48.76608	50.2971
2	9.810	BB	0.3831	784.10358	29.40558	49.7029

Totals: 1577.58173 78.17166

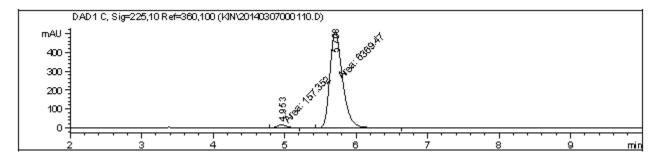

 $Enantiomeric\ ratio:\ 96:4$ $Rt_1=6.7,\ Rt_2=9.3$ Chiracel OD-H, 1% IPA/Hexanes, 1 mL/min

Signal 2: DAD1 B, Sig=220,10 Ref=360,100

	RetTime			Area	Height	Area
				[mAU*s]		- %
	6.309			 121.44621		
2	7.937	MM	0.2452	1636.53870	111.22278	93.0917

Totals: 1757.98490 120.14341

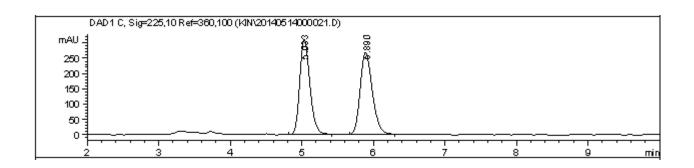
Signal 2: DAD1 B, Sig=220,16 Ref=360,100


Totals:

	RetTime [min]			Area [mAU*s]	Height [mAU]	Area %
1	6.362	MM	0.2057	305.03070	24.71835	51.0079
2	8.048	MM	0.2298	292.97632	21.25029	48.9921

 $Enantiomeric\ ratio:\ 93:7$ $Rt_1=6.3,\ Rt_2=8.0$ Chiracel AD-H, 8% IPA/Hexanes, 1 mL/min

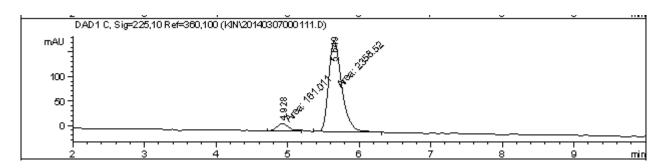
598.00702


45.96865

Signal 3: DAD1 C, Sig=225,10 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	4.953	MM	0.1535	157.35161	17.08101	2.4108
2	5.708	MM	0.2075	6369.47266	511.51535	97.5892

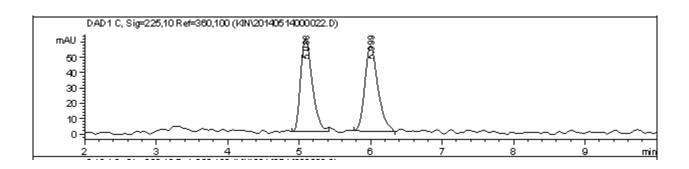
Totals: 6526.82426 528.59636



Signal 3: DAD1 C, Sig=225,10 Ref=360,100

	etTime			Area [mAU*s]	Height [mAU]	Area %
				 	. —	-
1	5.033	BB	0.1506	3091.17236	314.55560	49.3359
2	5.890	BB	0.1816	3174.39160	269.19434	50.6641

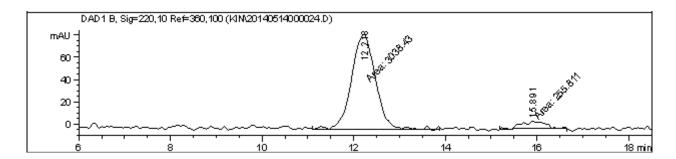
Totals: 6265.56396 583.74994


 $Enantiomeric\ ratio:\ 97.5:2.5$ $Rt_1=5.0,\ Rt_2=5.7$ Chiracel AD-H, $8\%\ IPA/Hexanes,\ 1\ mL/min$

Signal 3: DAD1 C, Sig=225,10 Ref=360,100

	RetTime [min]			Area [mAU*s]	Height [mAU]	Area %
		I I				
1	4.928	MM	0.1913	161.01129	14.02466	6.3905
2	5.649	MM	0.2114	2358.51953	185.94507	93.6095

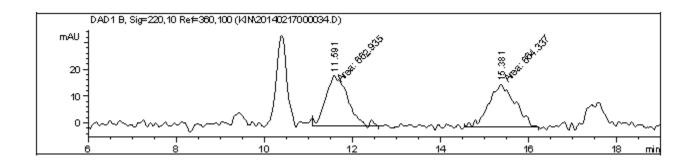
Totals: 2519.53082 199.96972



Signal 3: DAD1 C, Sig=225,10 Ref=360,100

#			[min]	Area [mAU*s]		Area %	
						'	
1	5.088	BB	0.1730	694.02582	60.85961	49.3408	
2	5.999	BV	0.1932	712.57019	55.72057	50.6592	

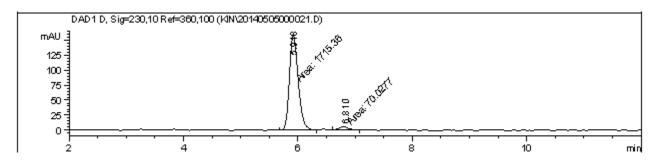
Totals: 1406.59601 116.58018


 $Enantiomeric\ ratio:\ 93.5:6.5$ $Rt_1=5.0,\ Rt_2=5.7$ Chiracel OD-H, 1% IPA/Hexanes, 1 mL/min

Signal 2: DAD1 B, Sig=220,10 Ref=360,100

#			[min]	Area [mAU*s]	 Area %
1	12.218 15.891	MM	0.5991	3038.42822 255.81119	92.2346

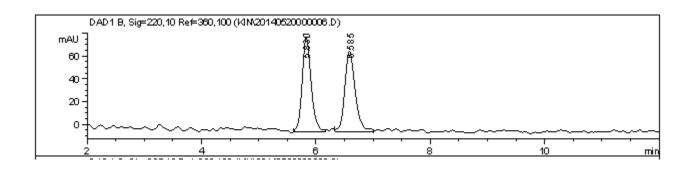
Totals: 3294.23941 91.54834



Signal 2: DAD1 B, Sig=220,10 Ref=360,100

		[min]	Area [mAU*s]	. —	Area %
1 11.591 2 15.381	MM	0.5781		19.11344	49.9472

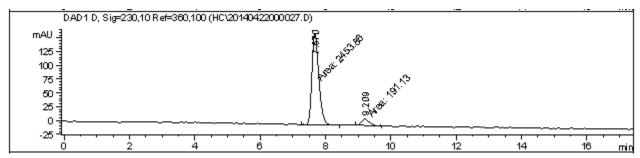
Totals: 1327.27130 35.17297


 $\begin{aligned} &Enantiomeric\ ratio:\ 92:8,\\ &Rt_1=12.2,\ Rt_2=15.9\\ &Chiracel\ AD\text{-H},\ 1\%\ IPA/Hexanes,\ 1\ mL/min \end{aligned}$

Signal 4: DAD1 D, Sig=230,10 Ref=360,100

Peak R	etTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
-						
1	5.918	MM	0.1782	1715.36487	160.45755	96.0777
2	6.810	MM	0.1977	70.02773	5.90485	3.9223

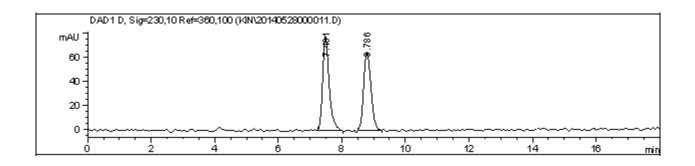
Totals: 1785.39260 166.36240


Signal 2: DAD1 B, Sig=220,10 Ref=360,100

#			[min]	Area [mAU*s]	Height [mAU]	Area %	
1	5.830 6.585	ВВ	0.1677		83.08879 70.83281	50.0507	

Totals: 1817.74097 153.92160

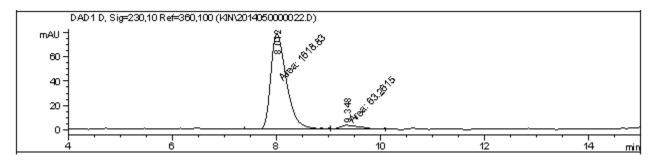
 $Rt_1 = 5.9, Rt_2 = 6.8$ Chiracel OD-H, 4% IPA/Hexanes, 1 mL/min



Signal 4: DAD1 D, Sig=230,10 Ref=360,100

Peak F	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	₽6
-						
1	7.670	MM	0.2459	2453.85718	166.30014	92.7739
2	9.209	MM	0.2748	191.13040	11.59078	7.2261

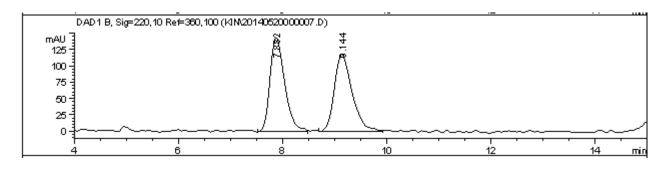
Totals: 2644.98758 177.89092



Signal 4: DAD1 D, Sig=230,10 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	7.481	BB	0.2148	1126.63782	78.78534	51.4616
2	8.786	BB	0.2620	1062.64001	65.23598	48.5384

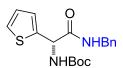
Totals: 2189.27783 144.02132

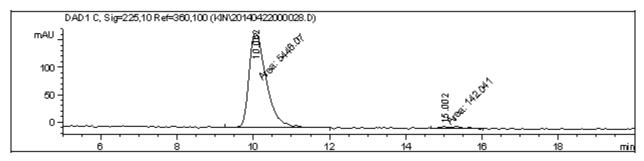

 $\begin{aligned} &\text{Enantiomeric ratio: } 92.5:7.5\\ &\text{Rt}_1 = 7.7, \text{Rt}_2 = 9.2\\ &\text{Chiracel OD-H, } 3\% \text{ IPA/Hexanes, } 1\text{ mL/min} \end{aligned}$

Signal 2: DAD1 B, Sig=220,10 Ref=360,100

Peak 1	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	8.012	MM	0.3476	5512.33447	264.30740	96.0273
2	9.405	MM	0.3896	228.04552	9.75634	3.9727

Totals: 5740.37999 274.06374

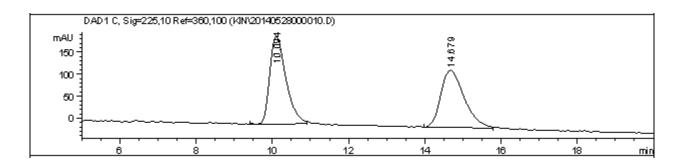



Signal 2: DAD1 B, Sig=220,10 Ref=360,100

#				Area [mAU*s]	Height [mAU]	Area %
1	7.882	BB	0.3053	2846.78418	144.86963	50.3484
2	9.144	BB	0.3642	2807.38599	118.58601	49.6516

Totals: 5654.17017 263.45564

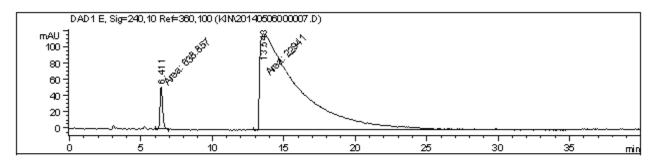
 $\begin{aligned} & Enantiomeric \ ratio: 96:4 \\ & Rt_1 = 8.0, \, Rt_2 = 9.4 \\ & Chiracel \ OD-H, \, 6\% \ IPA/Hexanes, \, 1 \ mL/min \end{aligned}$



Signal 3: DAD1 C, Sig=225,10 Ref=360,100

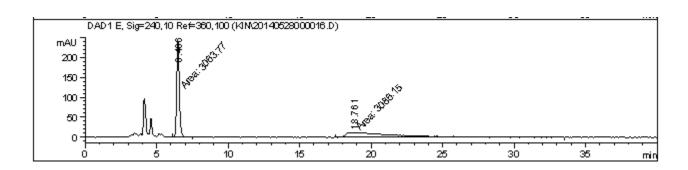
Peak :	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	10.062	MM	0.5273	5446.06641	172.13522	97.4582
2	15.002	MM	0.5967	142.04095	3.96758	2.5418

Totals: 5588.10736 176.10280



Signal 3: DAD1 C, Sig=225,10 Ref=360,100

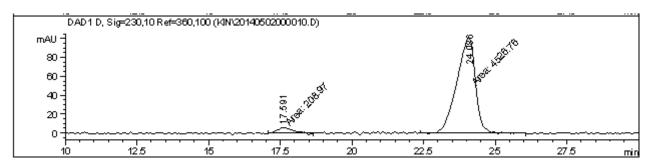
Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	10.094	BB	0.4471	5882.38477	197.73755	51.5364
2	14.679	BB	0.5860	5531.64795	129.58434	48.4636


Totals: 1.14140e4 327.32188

 $\begin{aligned} &Enantiomeric\ ratio:\ 97.5:2.5\\ &Rt_1=10.0,\ Rt_2=15.0\\ &Chiracel\ OD\text{-H},\ 5\%\ IPA/Hexanes,\ 1\ mL/min \end{aligned}$

Signal 5: DAD1 E, Sig=240,10 Ref=360,100

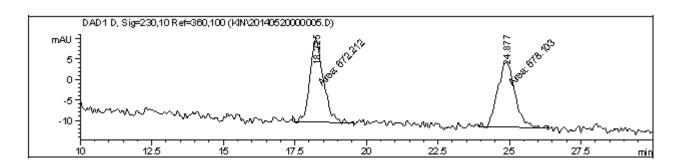
	RetTime [min]		Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	6.411	MM	0.2057	638.85657	51.75616	2.7093
2	13.543	MM	3.2340	2.29410e4	118.22781	97.2907



Signal 5: DAD1 E, Sig=240,10 Ref=360,100

	RetTime			Area [mAU*s]	Height [mAU]	Area %
••						-
1		ı				
1	6.486	MM	0.2129	3063.77368	239.85925	49.8181
2	18.761	MM	4.1374	3086.14917	12.43204	50.1819

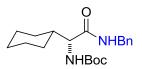
Totals: 6149.92285 252.29129

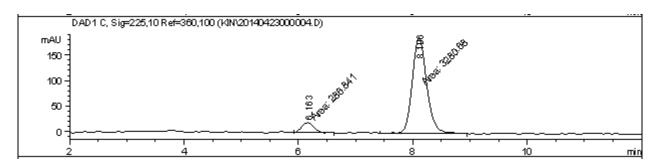

 $Enantiomeric\ ratio:\ 97.5:2.5$ $Rt_1 = 6.4,\ Rt_2 = 13.5$ Chiracel AD-H, 25% IPA/Hexanes, 1 mL/min

Signal 2: DAD1 B, Sig=220,10 Ref=360,100

	RetTime [min]			Area [mAU*s]	Height [mAU]	Area %
1	17.602	MM	0.5122	499.01599	16.23784	4.0211
2	24.079	MM	0.7649	1.19110e4	259.52893	95.9789

Totals: 1.24100e4 275.76677

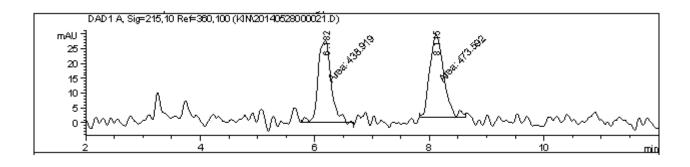



Signal 4: DAD1 D, Sig=230,10 Ref=360,100

#			[min]	Area [mAU*s]	. —	Area %
1	18.225	MM	0.5480	672.21161	20.44411	49.7819
2	24.877	MM	0.7104	678.10254	15.90893	50.2181

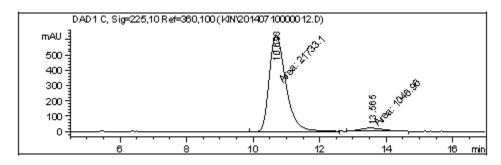
Totals: 1350.31415 36.35304

 $Enantiomeric\ ratio:\ 96:4$ $Rt_1=17.6,\ Rt_2=24.0$ Chiracel AD-H, 10% IPA/Hexanes, 1 mL/min



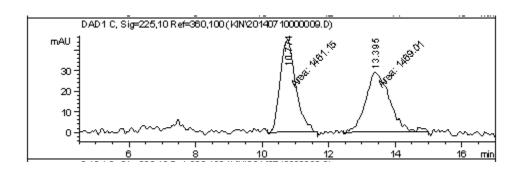
Signal 3: DAD1 C, Sig=225,10 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	6.163	MM	0.2452	286.84122	19.49683	8.0404
2	8.106	MM	0.2941	3280.67505	185.92407	91.9596


Totals: 3567.51627 205.42090

Signal 1: DAD1 A, Sig=215,10 Ref=360,100

Peak RetTime Type # [min]	[min]	[mAU*s]	[mAŪ]	Area %
 1 6.182 MM 2 8.115 MM	0.2653	438.91867	27.57840	48.1001
Totals :		912.51025	55.49803	


 $Enantiomeric\ ratio:\ 92:8$ $Rt_1=6.1,\ Rt_2=8.1$ Chiracel AD-H, 10% IPA/Hexanes, 1 mL/min

Signal 3: DAD1 C, Sig=225,10 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	10.693	MM	0.5740	2.17331e4	631.06171	95.4041
2	13.565	MM	0.7872	1046.95850	22.16533	4.5959

Totals: 2.27800e4 653.22704

Signal 3: DAD1 C, Sig=225,10 Ref=360,100

#	RetTime [min]		[min]	Area [mAU*s]	Height [mAU]	Area %
1	10.774 13.395	MM	0.5428	 1461.14636 1469.01428		49.8657

Totals: 2930.16064 74.00510

 $Enantiomeric\ ratio:\ 95.5:4.5$ $Rt_1=10.7,\ Rt_2=13.5$ Chiracel OD-H, 10% IPA/Hexanes, 1 mL/min