Supporting Information

Structural Analysis of Asunaprevir Resistance in HCV NS3/4A Protease

Djadé I. Soumana, Akbar Ali, Celia A. Schiffer*

Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester MA, 01605

* Corresponding author: celia.schiffer@umassmed.edu

Complexes/crystal	WT-ASV	R155K-ASV	WT-ASVmc								
PDB ID	4WF8	4WH6	4WH8								
Resolution (Å)	1.6	1.9	2.7								
Space Group	P212121	P212121	P2 ₁ 2 ₁ 2 ₁								
Molecules in AU ^a	1	1	2								
Cell Dimensions											
a	39.35	54.92	58.43								
b	60.89	58.41	54.96								
_c	80.87	60.09	59.88								
β (°)	90	90	90								
Completeness (%)	92.7	91.7	99.8								
Measured Reflections	170394	61851	26199								
Unique Reflections	22158	12673	6134								
Average Ι/σ ^c	11.6 (7)	9.2 (4.3)	10.5								
Redundency	7.7	4.9	4.3								
R _{sym} (%) ^{b, c}	6.8 (31.5)	10 (32)	6.8 (21.2)								
RMSD ^d in											
Bonds (Å)	0.013	0.006	0.015								
Angles (°)	1.67	1.5	1.6								
R _{factor} ^e	19.2	16.8	17.6								
R _{free} ^f	21.8	21.9	24.8								

 Table S1. Crystallography statistics for HCV NS3/4A protease-inhibitor structures.

a, AU, asymmetric unit.

b, $R_{svm} = \Sigma |I - \langle I \rangle | / \Sigma I$, where I = observed intensity, $\langle I \rangle$ = average intensity over symmetry equivalent.

c, values in parentheses are for the highest resolution shell.

d, RMSD, root mean square deviation.

e, $R_{\text{factor}} = \Sigma ||F_o| - |F_c||/\Sigma |F_o|$. f, R_{free} was calculated from 5% of reflections, chosen randomly, which were omitted from the refinement process.

Table S2. Intra and intermolecular hydrogen bond analysis of protease-inhibitor

complexes

	Complex Structure								
		WT-ASV		R155K-ASV		WT-ASVmc			
	Donnor Atom	Acceptor Atom	Distance (Å)	Donnor Atom	Acceptor Atom	Distance (Å)	Donnor Atom	Acceptor Atom	Distance (Å)
S2 Subsite Residues	His57 Hδ	Asp81 COδ1	1.8	His57 NH	Asp81 COδ1	1.9	His57 NH	Asp81 COδ1	1.7
	His57 NH	Asp81 COδ2	1.6	His57 Hδ1	Asp81 COδ2	1.7	His57 NHδ1	Asp81 COδ2	1.6
	Arg155 NH	Asp168 CO	1.9	Lys155 NH	Asp168 CO	2.0	Arg155 NH	Asp168 CO	1.9
	Arg155 NεH	Asp168 Οδ1	1.6	Arg123 NεH	Asp168 COõ1	1.6	Arg155 NH12	Asp168 COõ1	2.0
	Arg123 NεH	Asp168 Οδ2	2.7	Arg123 NH21	Asp81 COδ2	2.1	Arg155 NεH	Asp168 COõ1	1.7
							Arg123 NH22	Asp168 CO ₀ 2	2.9
							Arg123 NHε	Asp168 COδ2	1.6
	Desta a s Atare	lahihitan Ataua	Distance (Å)	Distance Alere	lahihitan Ataun	Distance (Å)	Desta a se Atam	lahihitan Ataus	Distance (Å)
- Protease Backbone	Protease Atom	Inhibitor Atom	Distance (A)	Protease Atom		Distance (A)	Protease Atom	Inhibitor Atom	Distance (A)
		HIN 17	1.9			1.9		NH39	2.1
	AIA157 NH	015	1.9			2.0	Ala 157 NH	034	2.1
	Arg 155 CO	NHU6	1.9	Lys 155 CO	NHBB	2.0	Arg155 CO	H35	4.0
	HISS/ NEZ	NH45	2.2	HISO7 NEZ	NHBC	2.4	Arg 155 CO	H13	2.3
	Ser138 NH	044	2.9	Ser138 NH	OAK	2.6	Ser138 NH	038	3.0
	GIV137 NH	044	2.0	GIY137 NH	OAK	2.1	GIY137 NH	038	2.3
	GIY137 NH	048	2.3	GIY137 NH	OAM	2.2	Ala139 NH	038	2.8
	Ser139 NH	044	2.6	Ser139 NH	OAK	2.5	Gly137 NH	041	2.4
	Ser139 NH	047	3.1	Ser139 NH	OAN	2.7	Gly137 NH	042	2.5
	Ser139 Hy	047	2.1	Ser139 Hy	OAN	1.8	Ala139 NH	042	2.7
	Water Molecule	Inhibitor Atom	Distance (Å)	Water Molecule	Inhibitor Atom	Distance (Å)			
Water Molecules	HW1 HOH 26	O20	2.1	HW1 HOH 29	OBF	1.9			
	HW1 HOH 122	O08	1.8	HW1 HOH 142	NAZ	2.0			
	HW2 HOH 135	O48	2.6	HW1 HOH 145	0	1.9			
				HW1 HOH 139	0	1.9			
				HW2 HOH 139	OAM	2.0			
				HW2 HOH 60	OAM	2.1			

Figure S1. Electrostatic network spanning Arg155-Asp168-Arg123 is not conserved in the mutant structure: (a) in the apo NS3/4A (orange transparent sticks, PDB: 3RC6), Asp168 is oriented toward Arg123 for interactions (grey dashed lines). The WT-ASV complex (white sticks) has Asp168's carbonyl oxygens oriented towards Arg155's nitrogens forming a salt-bridge (yellow dashed lines). (b) In the R155K complex (white sticks), Asp168 rotates away from Lys155 and towards Arg123 for interaction, as is observed in the apo structure. (c) In the WT-ASVmc (white sticks), Asp168's position enables an extended salt-bridge formation spanning Arg155-Asp168-Arg123. Both conformers of the crystal structure are represented.

rigure 33. Change in van der Waars contact energy of protease residues with the

inhibitor in WT-ASVmc (black) and R155K-ASV (grey) relative to the WT-ASV structure.