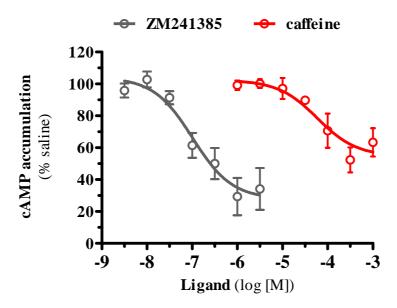
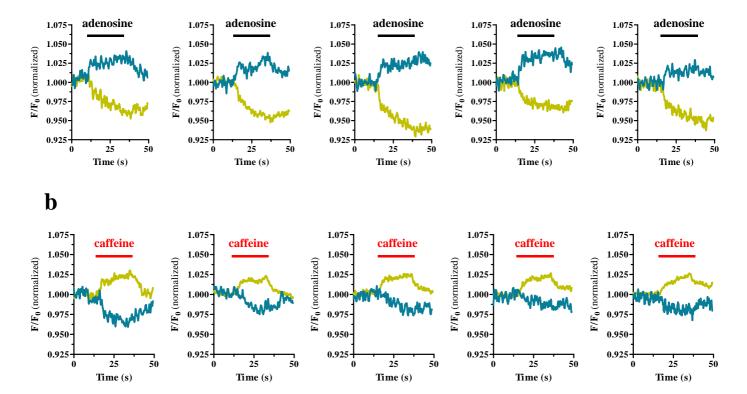
Uncovering caffeine's adenosine $\mathbf{A}_{2\mathbf{A}}$ receptor inverse agonism in experimental parkinsonism


Víctor Fernández-Dueñas¹, Maricel Gómez-Soler¹, Marc López-Cano¹, Jaume J. Taura¹, Catherine Ledent², Masahiko Watanabe³, Kenneth A. Jacobson⁴, Jean-Pierre Vilardaga^{5,*} & Francisco Ciruela^{1,*}

¹Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, 08907 Barcelona, Spain; ²IRIBHM, Université Libre de Bruxelles, Brussels, Belgium; ³Department of Anatomy, Hokkaido University School of Medicine, Sapporo, Japan; ⁴Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 20892 Bethesda, MD, USA; ⁵Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh PA 15261, USA.


Contents

Supplemental Figures

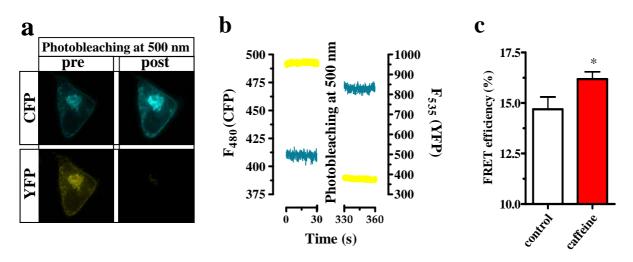

- Figure S1. Dose-dependent effects of caffeine and ZM241385 in reducing cAMP levels.
- ullet Figure S2. FRET changes of the $A^{2A}R^{FlAsH/CFP}$ in response to a full or an inverse agonist.
- \bullet Figure S3. Evaluation of energy transfer efficiency of the $A_{2A}R^{\text{FlAsH/CFP}}$ biosensor.

Figure S1. Dose-dependent effects of caffeine and ZM241385 in reducing cAMP levels. HEK293 cells expressing $A_{2A}R$ were incubated with saline or increasing concentrations of caffeine or ZM241385. Saline-stimulated cAMP was set as 100%, and the maximum inhibitory response obtained with the prototypic inverse agonist ZM241385 was set to 0%. Data represent the mean \pm s.e.m. of three independent experiments.

Figure S2. FRET changes of the $A_{2A}R^{FlAsH/CFP}$ in response to a full or an inverse agonist. Shown are the changes on the FlAsH (FlAsH, yellow trace) and CFP (FCFP, blue trace) signals induced by rapid superfusion of (a) adenosine (100 μ M, black) or (b) caffeine (300 μ M, red).

Figure S3. Evaluation of energy transfer efficiency of the $A_{2A}R^{FlAsH/CFP}$ biosensor. (a) Fluorescence images and (b) Emission intensities of CFP (480 nm, blue) and FlAsH (535 nm, yellow) recorded before (pre) and after (post) FlAsH was photobleached by 5 min of exposure to light at 500 nm. Images and traces are representative of the experiments performed upon saline or caffeine continuous superfusion. Scale bar: 10 μ m. (c) Quantification of the FRET efficiency of the $A_{2A}R^{FlAsH/CFP}$, determined photodestroying FlAsH in the absence (saline) or the continuous superfusion of caffeine (300 μ M). Data indicate the mean \pm s.e.m. (saline, n=10; caffeine, n=11). An asterisk designates a significant difference between groups (P < 0.05).