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1 Materials and Methods

The dynamic infection process is simulated through a discrete-time individual-based SLIR
model that explicitly accounts for transmission occurring in households, schools, work-
places and in the general community. The model aims at reproducing the actual mixing of
individuals in a population. The explicit modeling of households, schools and workplaces
allows us to reproduce preferential contact patterns between individuals driven by their
membership to specific clusters of individuals, e.g members of the same household or school
mates. The resulting mixing by age is strongly assortative within schools and reflects gen-
erational age gaps within households, as already shown in [1, 2, 3]. What is novel here is
that contacts between individuals occur only when they are sharing the same environment
at the same time. The dynamic process is driven by time-use data collected for the Italian
population at 10 minutes time resolution [4]. We found that individuals with different age
and/or employment spend a different amount of time and at different time of the day in
different social settings. This widely affects the mixing of individuals in the different social
contexts.

1.1 Socio-demographic model

The simulated population of agents, each one corresponding to an individual of the actual
population, is generated according to available descriptive statistics (e.g. age structure of
the population, distribution of household size and composition, school attendance rates
by age, employment rates by age, etc.) of the Italian population provided by the Italian
Institute of Statistics and by the Statistical Office of the European Commission. All details
about the algorithm used for simulating the socio-demographic structure of the population
are available in [1, 2, 3].

Briefly, we use a heuristic model matching marginal distributions of household age by
size, age of household members by size (and thus the age structure of the total popula-
tion), and maintaining realistic generational age gaps between household members. The
procedure used to build a household is the following. First, we determine household size by
sampling from the distribution of household size. Then, we assign an age ah to the house-
hold head, by sampling from the distribution of age for the specific household size, under
the constraint that ah ≥ 18 years. For households having two, three or four members, we
determine if there is a single adult or a couple, according to the corresponding probability
for households of the assigned size. For the sake of simplicity, we do not consider house-
holds with more than two adults, e.g. a couple with children and an aggregate member.
All households with more than four members are assumed to be composed by a couple
with children, since type “couple with children” represents more than 95% of the total
number of households. The age of the other household members is assigned by sampling
from the age distribution for the specific household size, taking into account the following
constraints:

(a) the age of the (possible) spouse, as, satisfies max {ah − 15, 18} ≤ as ≤
min {100, ah + 15};
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Figure S1: Simulated and observed (in the time-use survey) fraction of individuals in
different social settings at different times of a work day.

(b) the age of (possible) children, ac, in a household with a single adult, satisfies
max {0, ah − 40} ≤ ac ≤ ah − 20;

(c) the age of (possible) children, ac, in a household with two adults, satisfies
max {0, am} ≤ ac ≤ min {ah, as} − 20, where am = max {ah, as} − 40.

The observed distribution of household size, age structures by household size, age struc-
ture of the population are accurately reproduced by the model, thus supporting our choice
of neglecting non-private households or compositions such as families with aggregated mem-
bers. The comparison between simulated and observed data is shown in [3].

As regards schools and workplaces, an occupation is assigned to each individual that
either goes to school (as a student or teacher/school employee) or workplace, or remains
at home (for instance as a retired or family worker) on the basis of age–specifc data on
the employment rates. Every student is assigned to the correct school level, namely pre-
primary (day-care centers, kindergartens), primary, lower secondary, and upper secondary
schools, and higher education (post-secondary training, university, doctoral programs). We
build in the model a certain number of schools (of the appropriate level) and workplaces
such that all active individuals can be assigned to the appopriate school level or workplace.

3



Time of the day (hour)

0 3 6 9 12 18 24

H
o
u
s
e

S
c
h
o
o
l

W
o
rk

C
o
m

m
u
n
it
y

Time of the day (hour)

0 3 6 9 12 18 24

H
o
u
s
e

S
c
h
o
o
l

W
o
rk

C
o
m

m
u
n
it
y

Time of the day (hour)

0 3 6 9 12 18 24

H
o
u
s
e

S
c
h
o
o
l

W
o
rk

C
o
m

m
u
n
it
y

65+ years old19−64 years old6−18 years old
A B C

Figure S2: A Simulated behaviour of 10 (randomly chosen) individuals aged 6–18 years
during a work day. Lines of different colours show the location of the 10 simulated indi-
viduals at every time of the day. B as A, but choosing individuals aged 19-64 years. C as
A, but choosing individuals aged 65+ years.

School and workplace size are determined by sampling from the distribution of school and
workplace size, as reported by the Education, Audiovisual and Culture Executive Agency of
the European Commission and by the Italian National Institute of Statistics. The accuracy
of the model in reproducing the descriptive statistics about employment, and school and
workplace size is reported in [3].

1.2 Dynamic allocation of individuals in different settings

In the proposed model, each individual of the population is dynamically associated to a set
of settings that includes its own household, its own school or workplace (if any) and the
general community, which is assumed common to all individuals. At each time step of the
simulation (representing a time interval of 10 minutes), each individual i is associated to a
specific location and can have contacts only with individuals who are in the same location
during the same time slot. The dynamic clustering of individuals over time is modelled
according to the observed time-use data for the Italian population, collected over the
period 2002-2003 [4]. In particular, time-use data were used to compute the probability
of spending time at home, school, work or in the general community for individuals of
different age and employment type (e.g. students vs workers) at different times of the day.

More in detail, let N be the overall number of simulated unemployed individuals of age
between 61 and 80 years. We indicate with NH(t) the number of simulated unemployed
individuals of age between 61 and 80 that are at home at time t and with NC(t) the number
of simulated unemployed individuals of age between 61 and 80 that are in the general
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Figure S3: Cumulative time spent in the four modelled social settings during work days
(Monday-Friday) for different age groups.

community at time t. Finally, let pH(t) and pC(t) be the fractions (with pH(t) +pC(t) = 1)
of individuals of age between 61 and 80 respectively at home and in the general community
at time t according to the time-use survey.

Let us now consider a simulated unemployed individual i of age between 61 and 80.
Individual i may switch between two settings, namely household and general community.

At the beginning of the simulation (midnight of the first simulated day), the probability
distribution of being at home or in the general community is B(pH(0)) where B is the
Bernoulli distribution. Basically, we generate a random number from B(pH(0)). If we get
a success individual i is located at home, otherwise individual i is located in the general
community. It follows that the average number of simulated individuals of age between 61
and 80 at home at time t = 0 is NH(0) = NpH(0) and thus the resulting fraction is pH(0).
Similarly, the fraction of individuals of age between 61 and 80 in the general community
at time t = 0 is pC(0).

To determine the location at time t = 1 we adopt the following algorithm:

• if individual i is located at home at time t = 0

– if pH(1) ≥ pH(0) individual i remains at home

– if pH(1) ≤ pH(0) individual i is located in the general community with prob-
ability 1 − pH(1)/pH(0); the probability distribution of moving to the general
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Figure S4: Percentage variation of cumulative time spent in the four modeled social set-
tings during weekends (Saturday and Sunday) with respect to that spent in working days
(Monday-Friday) for different age groups.

community or remaining at home is B(1− pH(1)/pH(0)).

• if individual i is located in the general community at time t = 0

– if pR(1) ≥ pR(0) individual i remains in the general community,

– if pR(1) ≤ pR(0) individual i is located at home with probability 1−pR(1)/pR(0);
the probability distribution of going home or remaining in the general commu-
nity is B(1− pR(1)/pR(0)).

It follows that if pH(1) ≥ pH(0) (and thus pR(1) ≤ pR(0)), the average number of
simulated individuals of age between 61 and 80 at home at time t = 1 will be

NH(1) = NH(0) +NR(0)(1− pR(1)/pR(0)) = N −NR(0)pR(1)/pR(0).

Consequently, the fraction of simulated individuals of age between 61 and 80 at home at
time t = 1 will be 1− pR(1) = pH(1).

Analogously, if pH(1) ≤ pH(0) it can be seen that

NH(1) = NH(0)−NH(0)(1− pH(1)/pH(0))
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and the fraction of simulated individuals of age between 61 and 80 at home at time t = 1
will be pH(1).

The procedure is iterated for all t ≥ 1 and this simple calculation shows that the
algorithm preserves fractions pH(t) and pR(t).

We used the above described procedure to dynamically locate in the different settings all
unemployed individuals. We considered the following age groups of unemployed individuals:
0-10, 11-20, 21-40, 41-60, 61-80, ≥ 81.

A similar procedure was used to dynamically locate students and workers in the dif-
ferent settings by considering that in this case 3 settings are involved in the computation
(household, general community, school/workplace). As for students, we considered the fol-
lowing age groups: 6-10, 11-13, 14-18, ≥ 19 in such a way to distinguish between students
attending primary, lower and upper secondary schools, and universities.

This simple heuristic has the advantage to preserve the average daily time spent by
individuals of different ages in the different settings (see Figure S1), avoiding unrealistic
turnovers of individuals. The procedure could be improved (e.g. in our model, individuals
are nor allowed to leave a setting if the probability of being in that setting, as resulting
from time-use data, is increasing) but this would require computing complicated conditional
probabilities, e.g. for conditioning the probability of leaving a certain setting to the time
currently spent in that setting. However, Fig. S2 shows that the use of the heuristic model
produces reasonable individual behaviours during the course of a day for individuals of
different age.

Model simulations account for the difference between work days and weekends in such
a way to follow a cyclic pattern composed by five simulated days where the probabilities
are derived from time-use data referring to work days (Monday-Friday), followed by two
simulated days where probabilities are derived from weekend days (Saturday and Sunday).
Figure S3 shows the average time spent in different setting for different age groups during
work days. Figure S4 shows, for different age groups, the variation of total amount of
time spent in each setting during a weekend day with respect to a work day; for instance,
individuals aged 11-20 years spend about 50% more time in the general community during
weekend days with respect to work days.

1.3 Calibration of the disease transmission model

Influenza transmission is modeled by following the classic susceptible-latent-infectious-
removed (SLIR) scheme. Susceptible individuals can get infected through contact with
infectious individuals who are sharing the same place at the same time. The mixing between
individuals sharing the same location at the same time is assumed to be homogeneous.

We assume the length of the latent period to be 1.5 days and the length of the infec-
tious period to be 1.2 days. The resulting length of the generation time (i.e., the duration
between the time of infection of a secondary case and the time of infection of its primary
infector) is 2.7 days [2, 5, 6]. Recovered individuals are assumed to be fully protected.
Initially immune individuals are randomly determined on the basis of age-specific seropos-
itive rates as observed before the 2009 H1N1 pandemic in Italy [7, 8]. Simulations are
initialized with 10 infected individuals and we do not consider importation of cases during
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Figure S5: MCMC output at each iteration for model HSWR. A Transmission rate β. B
Relative susceptibility of adults (19+ year-old) with respect to younger individuals ρ̄. C
Log-likelihood.

the course of the epidemic. Such a simplifying hypothesis can be considered a reasonable
approximation since, despite the importation of cases has a strong impact in determining
the timing and spatial spread of an influenza pandemic, it does affect neither the final
attack rate by age nor the proportion of cases by setting, which are the quantities of major
interest in this work. Another characteristics that has clearly arisen from the analysis of
the data on the 2009 H1N1 pandemic is a pattern of differential susceptibility by age (see
for instance [2, 7, 9, 10]). As in [2, 10], susceptibility to infection by age is modeled by
dividing the population in two age groups: individuals aged 0-18, who are assumed to
be fully susceptible to infection (to avoid over-parametrization) and adults (19+ years-old
individuals).

We used MCMC for estimation of the two free parameters of models HR, HSR and
HSWR, namely the transmission rate β and the relative susceptibility of adults ρ̄, specifi-
cally random-walk Metropolis sampling in the logarithmic scale. The chain was initialized
with β drawn form a uniform distribution U [0, 15] and ρ̄ drawn form a uniform distribution
U [0, 1]. For model HSWR, at each iteration, if the current value of the transmission rate
is β, a new value β? = β exp{δu} is generated, where δ = 0.2 (for good mixing) and u
is drawn from a normal distribution N (0, 1). The above described procedure was used
because classical Metropolis sampling with Gaussian jumping distribution is not suitable
when dealing with positive definite parameters - trivially, the transmission β? could as-
sume negative values by sampling from a Gaussian distribution. However, the adopted
procedure is equivalent to sampling the logarithm of the transmission rate from a gaussian
distribution, in fact log β? ∼ N (log β, δ2) (see for instance [11, 12]).

We performed 200,000 iterations. The first 5,000 were discarded as burn-in period. We
checked convergence by considering several different starting points and by visual inspection
(see for instance Fig. S5). To get a set of independent samples – thus avoiding auto-
correlation between adjacent samples – we considered one sample every 25 iterations. A
similar procedure (with δ = 0.2) was used to update ρ̄. We used the same procedure for
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Age group Seropositive (%)
(years) Pre-pandemic Post-pandemic

0− 5 - 40.5 (95%CI: 34.9-46.4)
6− 18 5.8 (95%CI: 2.1-12.1) 62.3 (95%CI: 53.7-70.4)
19− 64 2.6 (95%CI: 1.4-4.3) 12 (95%CI: 9.1-15.4)

65+ 15.7 (95%CI: 12.7-19.1) 17.3 (95%CI: 13.5-21.5)

Table S1: Percentage of seropositive individuals (HI titre ≥ 1 : 40) by age groups as
observed in the data collected before and after the 2009 H1N1 pandemic. 95% CI are
calculated by using exact binomial test. Data adapted from Merler et al. [7].

calibrating models HR and HSR but with slightly different values of δ.

1.4 Serological data

The level of immunity against H1N1pdm in pre and post pandemic sera is taken from [7]
and summarized in Tab. S1. Specifically, in that study the antibody titres were measured by
the haemagglutination inhibition (HI) assay. Here we assume individuals to be seropositive
when HI titre ≥ 40. In model simulations, the initial fraction of immune population in
the four age groups considered in this study is assumed to be equal to the fraction of
pre-pandemic seropositives as reported in Tab. S1.

1.5 Computation of reproduction numbers

An explicit equation to compute the basic reproduction number (R0, representing the av-
erage number of infections generated by a typical infected individuals in a fully susceptible
population) for individual based models is not available. Therefore, as already proposed
in the literature (see for instance [2, 5, 13, 14]), we infer R0 from the simulated epidemics.
Specifically, by starting from the estimate of the epidemic growth rate and assuming a
fixed (known) generation time, it is possible to estimate the basic reproduction number as

R0 = (1 + rTl) (1 + rTi)

where Tl is the average length of the latent period, Ti is the average length of the infectious
period, and r is the exponential rate of the epidemic. The exponential growth rate r can
be estimated by fitting a linear model to the logarithm of the incidence over time.

As described in [15], we apply the same technique to estimate the effective reproduction
number (Re), which is a measure of the transmission potential of a disease spreading in a
partailly immune population, as it has been the case of the 2009 H1N1 pandemic.

1.6 Computation of RindexRindexRindex and Rindex
eR
index
eR
index
e

Another way to measure the transmission potential of a disease is Rindex, which is defined
as the average number of individuals infected by the first infectious individual (the index
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Figure S6: Posterior distribution (mean, 50%CI and 95%CI) of influenza seroprevalence
by age group estimated with transmission model HSWR (calibrated by MCMC sampling
as in the main text) for different values of the simulated population size.

case) in a fully susceptible population [6, 16]. The effective Rindex, here denoted as Rindex
e , is

used as measure of the transmission potential when the population is not fully susceptible
to the infection. This is appropriate in the case of 2009 H1N1 pandemic, as a fraction
of the population is assumed to be fully immune to the infection at the beginning of the
pandemic, according to age-specifc seroprevalence rates as measured before the start of the
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2009 pandemic [8, 7].
The procedure for computing Rindex

e is the following:

• let (βi, ρ̄i) be the transmission rate and the relative susceptibility to infection at the
i-th step of the MCMC calibration procedure;

• let Rindex
e (βi, ρ̄i) be the resulting mean of the number of secondary infections gener-

ated by a randomly chosen (non-immune) index case in the population. Rindex
e (βi, ρ̄i)

is estimated by averaging over 100 individual estimates of Rindex
e (βi, ρ̄i) obtained

through the following procedure:

– randomly chose an individual among all non-immune individuals in the popula-
tion (he/she will be the index case);

– simulate the epidemic with parameters (βi, ρ̄i) initialized with one index case.

– compute the individual estimate of Rindex
e (βi, ρ̄i) as the number infections gen-

erated by the index case;

• Rindex
e is estimated by averaging Rindex

e (βi, ρ̄i) over all the instances of model param-
eters as resulting from the MCMC calibration procedure (burn-in period excluded,
and considering one parameter set every 25 iterations - see Sec. 1.3).

The above described procedure is used to obtain estimates of Rindex
e stratified by the

age of the index case and the setting where (secondary) infections are generated.
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Figure S8: A Hourly percentage (average, lines, and 95%CI,colored areas) of daily trans-
mission in a work day as estimated by model HSWR. Results refer to day 48 in a population
of 100,000 individuals. B As A but for weekends.

2 Additional results

2.1 Robustness of results

The model was parametrized by exploring by Monte Carlo sampling the likelihood of the
observed probability of being seropositive (HI titre ≥ 40) per age group at the end of the
epidemic. The post-pandemic seroprevalence per age group as estimated by the different
considered models is very stable with respect to the intrinsic stochasticity of the model.
Moreover, as shown in Fig. S6, estimates are stable also with respect to changes in the
size of the simulated population of individuals (for population size ≥ 10, 000 individuals).
Therefore, in order to guarantee both the required robustness of the results and a reason-
able computation time, all results presented in this manuscript are based on simulations
performed on a population of 100,000 individuals.

2.2 Estimated influenza transmission rate

Fig. S7 shows the estimated distribution of the transmission rate β. The estimated distri-
bution of β for model HSR (5.8 days−1, 95%CI: 4.8-6.6) is very similar to that for model
HSWR (5.7 days−1, 95%CI: 4.9-6.7). The distribution of β for model HR is statistically
different from that of models HSR and HSWR (12.9 days−1, 95%CI: 10.7-15.6). Such a
large average value of the transmission rate of model HR, together with the low estimated
value of susceptibility to infection of adults with respect to children (see main text), is
ascribable to the lack of schools contacts in model HR.

2.3 Within-day transmission dynamics

As highlighted in Fig. S8A, influenza transmission is highly variable during the course of
a work day. In particular, a large fraction of daily cases occurs in the morning because
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Figure S9: Daily percentage (and 95% CI, shaded areas) over time of infections in different
social contexts as estimated by model HSWR in a population of 100,000 individuals.

of high rates of transmission in schools and, to a lesser extent, because of transmission in
workplaces. A second small increase in disease transmission occurs around 6pm, mainly
related to an increasing activity of individuals in the general community.

A different pattern of infection is predicted to occur during weekends, where the overall
transmission do not show any marked increase during the course of the day. As shown in
Fig. S8B, only two small increases in the transmission are predicted: the first one around
midday, which is mainly ascribable to contacts in the general community and at school –
in Italy the majority of schools are open on Saturday – and a second one around 7pm,
mainly ascribable to contacts occurring in the general community.

Both in work days and weekends, a remarkable fraction of transmission occurs during
the night, mainly determined by contacts between household members.

2.4 Influenza transmission by setting

Figure S9 shows the estimated transmission dynamics by setting during the course of an
epidemic. Simulations show a high variability of estimates over time, especially in the initial
phase of the epidemic and clearly highlight differences between work days and weekends.
The period of high variability could be even much longer in larger populations (e.g. at
country level). Moreover, a slightly larger fraction of transmission in schools is predicted
in the early phase of the epidemic (while fraction of cases in other settings does not change
much over time), supporting the idea that children tend to get infected earlier in the
course of an influenza epidemic than adults. Such a pattern is also confirmed by the ILI
data reported to the Italian surveillance system during the pandemic (see for instance [7]).

2.5 The role of weekend

To assess the role of weekends we assume weeks consisting of seven work days but the same
model parameters (namely the transmission rate β and the relative susceptibility of adults
ρ̄) as estimated for models with weekends. Figure S10A and B shows, respectively, the
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Figure S10: A Posterior distribution (mean, 50%CI and 95%CI) of the reproduction num-
ber estimated with transmission models HSR and HSWR. Dark colors refer to simulations
where individuals follow a weekly schedule composed by five work days followed by two
days of weekend; light colors refer to simulations where individuals follow a weekly schedule
composed by work days only. B Posterior distribution (mean, 50%CI and 95%CI) of the
proportion of influenza transmission in households, school, workplace and in the general
community estimated with transmission models HSR and HSWR. Dark colors refer to sim-
ulations where individuals follow a weekly schedule composed by five work days followed
by two days of weekend; light colors refer to simulations where individuals follow a weekly
schedule composed by work days only.

estimated values of the reproduction number and the estimated fraction of transmission
by setting, when weekends are considered or not. Results show that weekends (with more
time spent in the general community and much less at school and work) are responsible
for a reduction of R0 of 6.7% on average according to model HSR (without weekends R0

increases to 1.5, 95% CI 1.31-1.72), and a 8% reduction on average according to model
HSWR (without weekends R0 increases to 1.51, 95%1.33-1.73). We also found that the
fraction of cases in different settings is affected by weekends. According to model HSWR,
weekends are responsible for an increase in transmission in households of 3.5% on average
(without weekends the fraction of cases in households decreases to 40.2%, 95% CI 37.9 -
41.9), a decrease in transmission in schools of 19.3% on average (without weekends the
fraction of cases in schools increases to 33.1%, 95% CI 26.4-40), a decrease in transmission
in workplaces of 23.3% (without weekends the fraction of cases in workplaces increases to
4.3%, 95% CI 2.4-6.4), and also for an increase in transmission in the general community
of 26.8% on average (without weekends the fraction of cases in the general community
decreases to 22.4%, 95% CI 19.5-25.3). According to model HSR, we found that without
weekends the fraction of cases in households decreases to 41.2% (95% CI 38.7 - 43.4), the
fraction of cases in schools increases to 36.1% (95% CI 30.6-41.6) and the fraction of cases
in the general community decreases to 22.7% (95% CI 19.7-25.9).
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