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Summary

Political ideologies summarize dimensions of life that

define how a person organizes their public and pri-
vate behavior, including their attitudes associated with

sex, family, education, and personal autonomy [1, 2].
Despite the abstract nature of such sensibilities, funda-

mental features of political ideology have been found

to be deeply connected to basic biological mechanisms
[3–7] that may serve to defend against environmental

challenges like contamination and physical threat [8–12].
These results invite the provocative claim that neural

responses to nonpolitical stimuli (like contaminated
food or physical threats) should be highly predictive

of abstract political opinions (like attitudes toward gun
control and abortion) [13]. We applied a machine-

learning method to fMRI data to test the hypotheses that
brain responses to emotionally evocative images predict

individual scores on a standard political ideology assay.
Disgusting images, especially those related to animal-

reminder disgust (e.g., mutilated body), generate neural
responses that are highly predictive of political orientation

even though these neural predictors do not agree with
participants’ conscious rating of the stimuli. Images

from other affective categories do not support such
predictions. Remarkably, brain responses to a single

disgusting stimulus were sufficient to make accurate pre-
dictions about an individual subject’s political ideology.

These results provide strong support for the idea that
fundamental neural processing differences that emerge

under the challenge of emotionally evocative stimuli may
serve to structure political beliefs in ways formerly

unappreciated.
*Correspondence: read@vt.edu

This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/3.0/).
Results

We carried out a passive picture-viewing experiment to test
the hypothesis that nonpolitical but affectively evocative
images elicit brain responses that predict political ideology
as assessed by a standard political ideology measure. Healthy
volunteers (n = 83) were instructed to look at presented pic-
tures while lying in the scanner, and, to control for attentive-
ness, we instructed them to press a button when a fixation
cross appeared on the screen (Figure 1). Imageswere sampled
from the International Affective Pictures database [14] and
included disgusting, threatening, pleasant, and neutral images
(see Appendix S1 available online). Each emotional condition
had two subconditions (see the Supplemental Experimental
Procedures). After the fMRI session, participants completed
a behavioral rating session in which they rated all pictures
they had seen in the scanner (using a nine-point Likert scale)
as disgusting, threatening, or pleasant. Lastly, participants
filled out computer-based questionnaires assessing their
political attitudes, disgust sensitivity, and state/trait anxiety
level. See the Supplemental Experimental Procedures for de-
tails of the behavioral rating and survey sessions.
Political ideology was summed from several survey items

(Appendix S2), including ideological position, partisan affilia-
tion, and policy preferences (e.g., gun control and immigration,
presented in the well-known Wilson-Patterson format [15]).
Survey items on political ideology were normalized continu-
ously from 0 (extremely liberal) to 1 (extremely conservative)
(see the Supplemental Experimental Procedures). Figure 2A
shows its distribution across all participants. Political attitudes
and interest did not show a significant linear relationship
[r(81) = 20.148, p = 0.182], but instead showed a U-shaped
curve (Figure S1A), indicating that greater political interest is
associated with polarized political attitudes. When tested on
a subset of participants, our measure of political attitudes
shows excellent test-retest reliability (test-retest Pearson
correlation coefficient = 0.952; Figure 2B). To focus our ana-
lyses on polarized political groups, we divided participants
into three groups based on their political ideology scores
(Table S1): liberal (n = 28), moderate (n = 27), and conservative
(n = 28).
As seen in Figure 2C, groups did not significantly differ in

subjective ratings of disgusting, threatening, or pleasant pic-
tures (also see Table S2). Also, there were no significant group
differences on self-report measures except that the conserva-
tive group had marginally higher disgust sensitivity than the
liberal group [t(54) = 1.711, p = 0.093; Figure S1B and Table
S1]. Note that emotional states can be implicit or noncon-
scious under some conditions [16]. Self-report measures
may fail to detect some individual differences in disgust sensi-
tivity [17].
Having characterized liberal and conservative groups

behaviorally and confirmed blood-oxygen-level dependent
(BOLD) responses to affective pictures (Figure S2 and Table
S3), we used a machine-learning approach to predict individ-
ual differences in political orientation from the patterns of
whole-brain BOLD responses. Specifically, we applied a
penalized regression method called the elastic net [18] to
our fMRI data (Figures 2D and S3 and the Supplemental
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Figure 1. Time Course of the Experiment

Each subject first participated in an affective

picture-viewing task in the fMRI scanner, during

which they viewed 80 color pictures (20

disgusting, 20 threatening, 20 pleasant, and 20

neutral pictures). Occasionally, a fixation cross

appeared on the screen, and participants were

asked to press a button as soon as they saw the

cross. Each picture was presented for 4 s, and

the fixation crosswas presented until participants

pressed a button. The mean intertrial interval (ITI)

was 10 s. Next, participants completed a behav-

ioral rating session and several computerized

surveys (see the Supplemental Experimental Pro-

cedures). See also Figure S1.
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Experimental Procedures). The elastic net algorithm offers
several advantages for fMRI data, including automatic variable
selection (i.e., regression coefficients of unimportant variables
[voxels] shrink to zero) and model regularization, which in-
creases the interpretability of the findings. The elastic
net also enjoys a grouping effect, which clusters highly corre-
lated predictors into a set of groups. The grouping effect is
useful for fMRI data because they contain many correlated
predictors (voxels) due to its inherent nature (i.e., a brain region
may consist of many voxels) and spatial smoothing, which is
a commonly used preprocessing step. Previous studies
demonstrated that the elastic net performs better than least
absolute shrinkage and selection operator (LASSO), especially
when the number of predictors is much higher than the
number of observations [18]. The elastic net is beginning to
be applied to fMRI data [19, 20] and appears to be a promising
tool for developing predictive models from neuroimaging
(and other types of) data. Using the elastic net algorithm
(penalized logistic regression analysis) and contrast maps
([disgusting > neutral], [threatening > neutral], or [pleasant >
neutral]), we probed brain regions critical for cross-validated
classification accuracy (liberal versus conservative groups;
see the Supplemental Experimental Procedures).

Figure 3A shows a network of brain regions predicting con-
servative and liberal group membership revealed by the
machine-learning method with the [disgusting > neutral]
contrast. Separate tests for the out-of-sample performance
confirmed the robustness of the findings (Figure 3B and the
Supplemental Experimental Procedures). No voxel survived
cross-validations on other contrasts. Red-to-yellow and
blue-to-green regions indicate voxels predicting conservative
and liberal groups, respectively. As seen in Figure 3A, conser-
vative group membership was predicted by increases in the
basal ganglia (peak MNI = [16, 8, 28], k = 234)/thalamus
(peak MNI = [20, 218, 6])/periaqueductal gray (PAG; peak
MNI = [10, 224, 212]/hippocampus (peak MNI = [214, 24,
214])/amygdala (peakMNI = [218,24,214]), dorsolateral pre-
frontal cortex (DLPFC; peakMNI = [244, 4, 52], k = 26), middle/
superior temporal gyrus (MTG/STG; peak MNI = [260,244, 6],
k = 33), presupplementary motor area (pre-SMA; peak MNI =
[24, 8, 56], k = 56), fusiform gyrus (FFG; peak MNI = [242,
252, 210], k = 24 in the left side and [42, 260, 210], k = 16
in the right side), and inferior frontal gyrus (IFG; peak MNI =
[52, 28, 4], k = 15). The increase in the secondary somatosen-
sory cortex (S2)/posterior insula (peak MNI = [240, 226, 19])/
inferior parietal lobule (IPL; peak MNI = [248, 240, 36], k =
125 in the left side and [48, 252, 54], k = 17 in the right side),
frontal insula (MNI = [40, 16,212], k = 19), and precentral gyrus
(peak MNI = [238, 212, 50], k = 25 in the left sid and [40, 212,
52], k = 13 in the right side) predicted liberal group member-
ship. Note that the group differences using the traditional gen-
eral linear modeling (GLM) revealed similar findings with some
differences (Figure S2D, Table S4, and the Supplemental
Experimental Procedures). The mean area under the curve
(AUC) of the receiver-operating characteristic (ROC) curve
was 0.981 (SD = 0.043). See the Supplemental Experimental
Procedures and Figure S4 for more details and additional re-
sults using penalized linear regression across all participants.
When we examined the prediction accuracy of each disgust
subcondition (core/contamination and animal reminder), only
animal-reminder disgust (e.g., mutilated body) was a strong
predictor of political attitudes (Figure 3C; mean AUC = 0.998,
SD = 0.003 for animal reminder; mean AUC = 0.548, SD =
0.125 for core/contamination).
Recent work suggests that BOLD time-series data from a

single stimulus can categorically differentiate healthy individ-
uals from those diagnosed with autism spectrum disorder
(unpublished data). Lu et al. applied a machine-learning
approach to time-series data from a specific region of interest
and demonstrated that single-stimulus brain responses to a
specific kind of stimulus could be used to make accurate cat-
egorical predictions of disorder status. We tested the hypoth-
esis that a single-stimulus measurement combined with a
machine-learning approach may contain enough information
to predict liberal and conservative groupmembership per indi-
vidual participant. Following Lu et al., we extracted the entire
BOLD time-series response to the first disgusting picture.
Time-series data every 2 s were spatially averaged within
each of two types of patterns shown in Figure 3A: (+) voxels
(red-to-yellow regions predicting conservative group) and
(2) voxels (blue-to-green regions predicting liberal group)
(see the Supplemental Experimental Procedures).
As seen in Figure 4A, the single-stimulus presentation of the

disgusting pictures reliably differentiated the conservative and
liberal groups in the (+) voxels. The hemodynamic response of
the conservative group had a steeper slope and a higher peak
than that of the liberal group. The mean AUC of the ROC curve
using the single-stimulus presentation was 0.845 (SD = 0.009;
Figure 4B). When we used each region of interest within the (+)
voxels for the same analysis (Figure 4C), the thalamus (mean
AUC = 0.816, SD = 0.023) and the DLPFC (mean AUC =
0.807, SD = 0.018) were the strongest predictive regions,
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Figure 2. Behavioral Results and an Illustration of Workflow for Penalized Regression Analysis

(A) Distribution of political attitudes (orientation). Political attitudes are scaled from 0 (extremely liberal) to 1 (extremely conservative) (mean = 0.500, SD =

0.225). We divided participants (n = 83) into three groups (liberal [n = 28], moderate [n = 27], and conservative [n = 28]) based on their political attitudes. Red

dotted lines indicate tertiles (33.3% and 66.6%).

(B) Test-retest reliability of political attitudes. The Pearson correlation coefficient is 0.952, p < 2.23 10216, and the robust correlation coefficient is 0.986, p <

2.0 3 10216.

(C) Subjective ratings of emotional pictures for each group. Error bars indicate 61 SE.

(D) Schematic illustration of workflow for amachine-learning (penalized-regression) model. A 10-fold cross-validation is used to estimate two tuning param-

eters of the elastic net model. The survival rate was projected back into the brain space (see the Supplemental Experimental Procedures and Figure S3A).

See also Figure S3.
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followed by the basal ganglia (mean AUC = 0.789, SD = 0.005),
FFG (mean AUC = 0.764, SD = 0.047), pre-SMA (mean AUC =
0.733, SD = 0.044), amygdala/hippocampus (mean AUC =
0.721, SD = 0.079), PAG (mean AUC = 0.662, SD = 0.100),
andMTG/STG (mean AUC = 0.654, SD = 0.105). While increase
in the (2) voxels predicted liberal group membership with full
data, none of the BOLD time-series data from the (2) voxels
survived using the single-stimulus analysis.

Discussion

Neuroscience has started to provide rich information about the
neurophysiological processes underlying political behavior.
Our results have important implications for the links between
biology, emotions, political ideology, and human nature more
fundamentally. While previous studies using skin conductance
response [9–11], neuroimaging [21–24], and questionnaire [25,
26] measures suggested the role of emotions in political atti-
tudes, to our knowledge, this is the first fMRI study revealing
multivariate patterns of brain activity that differ between lib-
erals and conservatives during emotional processing of sen-
sory stimuli. Accumulating evidence suggests that cognition
and emotion are deeply intertwined [27], and a view of segre-
gating cognition and emotion is becoming obsolete [28].
People tend to think that their political views are purely cogni-
tive (i.e., rational). However, our results further support the
notion that emotional processes are tightly coupled to com-
plex and high-dimensional human belief systems [13], and
such emotional processes might play a much larger role than
we currently believe, possibly outside our awareness of its
influence [29]. Despite growing evidence from various fields,
including genetics, cognitive neuroscience, and psychology,
many political scientists remain skeptical of research connect-
ing biological factors with political ideology, arguing variously
that biology is irrelevant to central political questions [30], that
the theoretical basis for expecting biology to be relevant is
weak and murky [31], that acknowledging a role for biology
is reductionist [32], and that recognizing the relevance of
biology to human beliefs and behaviors is potentially
dangerous [33]. We hope some of this skepticism can be alle-
viated from our demonstration that fMRI data, even from a
single stimulus, can serve as a strong predictor of political
ideology.
Several groups have suggested that people are born with

certain dispositions and traits that influence the formation of
their political beliefs [3, 4]. Also, several studies have shown
that life history (e.g., [34]) and traumatic experiences [35] can
affect political views. Our results are consistent with the idea
that political beliefs are connected to neurobiological compo-
sition. But both genetics and life history play an important role
in establishing both connections between neuroanatomical re-
gions and the propensity for these regions to respond to envi-
ronmental stimuli. We have not isolated the distinct roles
played by genetics and life history in the development of the
brain responses that we measured.
A wide range of brain regions contributed to the prediction

of political ideology (Figure 3A), including those known from
past work to be involved in the processing and interoception
of disgust and other stimuli with negative affective valence,
but also those involved in more basic aspects of attentive
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Figure 3. Multivariate Patterns of Brain Activity that Predict Political Ideology

(A) Voxels predicting conservative (red-to-yellow) or liberal (blue-to-green) group membership from penalized logistic regression analysis (cluster size,

k R 10). Survival rate is closely related to voxel (regression) weights (see Figure S3B). DLPFC, dorsolateral prefrontal cortex; pre-SMA, presupplementary

motor area; Str, striatum; GP, globus pallidus; HIPP, hippocampus; AMYG, amygdala; MTG/STG,middle/superior temporal gyrus; IFG, inferior frontal gyrus;

S2, secondary somatosensory cortex; IPL, inferior parietal lobule; and FFG, fusiform gyrus. The color scale denotes the survival rate.

(B) Distribution of cross-validated area under the curve (AUC). We ran 1,000 iterations of 5-fold cross-validation procedure. For each iteration, we first found

the l that minimized the out-of-sample binomial deviance of four folds (80% of the data). Then, for each of the five folds, we computed the area under the

receiver-operating characteristic (ROC) curve using predictions from the model fit to the remaining data using the minimum l. This resulted in the 5,000

(1,000 iterations 3 5 AUCs per iteration) AUC calculations plotted in the histogram (mean = 0.757, median = 0.771, mode = 0.833, SD = 0.150). The inset

in the top-left corner shows out-of-sample prediction performance on the half of the data (test set) when the model is trained on the other half of the

data (training set) for penalized linear regression. The x and y axes show the Z scores of actual political attitudes and predicted political attitudes from

BOLD signals, respectively. Pearson correlation coefficient = 0.52, p = 0.0004; robust correlation coefficient = 0.44, p = 0.0024. See the Supplemental Exper-

imental Procedures for complete details.

(C) Voxels predicting conservative or liberal group membership from each subcondition of disgust (i.e., using contrast maps of [animal-reminder

disgust > neutral] or [core/contamination disgust > neutral]; see the Supplemental Experimental Procedures for the details of subconditions). The voxel sur-

vival criterion is the same as that for (A).

See also Figure S2.
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sensory processing: we found regions known to be involved in
disgust recognition [17, 36–38] (e.g., insula, basal ganglia, and
amygdala), perception of bodily signals [39] (e.g., insula), the
experience of physical/social pain [40] or observing others in
pain [41] (e.g., S2, insula, PAG, and thalamus), and emotion
regulation [42] (e.g., DLPFC, insula, amygdala, and pre-
SMA), along with regions involved in information integration
[43] (e.g., thalamus and amygdala), attention [43, 44] (e.g.,
amygdala, IPL, FFG, STG/MTG), memory retrieval [44, 45]
(e.g., hippocampus, amygdala, and IPL), and also inhibitory
control [46] (e.g., IFG, DLPFC, and pre-SMA), perhaps to sup-
press innate responses. Although our results suggest that
disgusting pictures evoke very different emotional processing
in conservatives and liberals, it will take a range of targeted
studies in the future to tease apart the separate contribution
of each brain circuit.
We proposed that conservatives, compared to liberals, have

greater negativity bias [13], which includes both disgusting
and threatening conditions in our study. Our finding that only
disgusting pictures, especially in the animal-reminder cate-
gory, differentiate conservatives from liberals might be
indicative of a primacy for disgust in the pantheon of human
aversions, but it is also possible that this result is due to the
fact that, compared to threat, disgust is much easier to evoke
with visual images on a computer screen.
Lastly, this study raises several important but unaddressed

questions. First, while political ideology has effects on many
forms of behavior (including, but not limited to, voting
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Figure 4. Single Presentation of a Disgusting

Stimulus Is Sufficient to Make Accurate Predic-

tions of Individual’s Political Orientation

(A) Hemodynamic response to the first disgusting

stimulus for the liberal and conservative groups,

extracted from the red-to-yellow voxels in Fig-

ure 3A. Shaded regions indicate 61 SE. Time-

series data were linearly interpolated every 1 s

for display purposes. ‘‘AUC’’ indicates the mean

AUC of ROC curves over 1,000 iterations.

(B) A representative ROC curve.

(C) Hemodynamic response to the first disgusting

stimulus, extracted from each predictive region,

as well as the mean AUCs of the corresponding

ROC curves. The x axis is time since stimulus pre-

sentation (s) and the y axis is the percent signal

change (percentage). Black inverse triangles indi-

cate the stimulus onset, the bottom of which is at

0.05% signal change. DLPFC, dorsolateral pre-

frontal cortex; pre-SMA, presupplementary motor

area; BG, basal ganglia; AMYG/HIPP, amygdala/

hippocampus; MTG/STG, middle/superior tem-

poral gyrus; FFG, fusiform gyrus; and PAG, peria-

queductal gray.

See also Figure S4.
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behavior), it is unknownwhether it does so thanks to the neural
differences in affective processing that wemeasured. Second,
and relatedly, it is important also to know how individual
differences in the capacity to regulate emotion [26], and the
neural bases of that capacity, are related to political ideology.
A third set of questions concerns the bearing of the present
study on the development of biological measures of political
ideology. While it is of use in a variety of settings to measure
political ideology (political polls, for instance, typically include
somemeasurement of it), it remains an open question whether
biological measures could become more accurate, or more
useful, than the tools (such as self-report measures) currently
employed. Determining the answer to that question would
require answering a host of others: How would a machine-
learning model based on data collected in one region (e.g.,
New York) support predictions of people’s political attitudes
in another region (e.g., Texas)? How fine-grained are the cate-
gories of affective response that are tied to political ideology?
Although our results show greater differentiation in political
ideology in cases of animal-reminder disgust than core/
contamination disgust, what are the links between political
ideology and other forms of disgust, such as moral disgust?
The more we learn about the sensitivity of political ideology
to subtle differences in affective response and their neural
bases, the more we will know about the feasibility of useful
and portable tools for ideology’s biological measurement.
This would then raise a further and difficult ethical question
about the circumstances, if any, in
which it is appropriate to use such
tools. And, finally, the present study
raises important questions about the
possibility of, and obstacles to, under-
standing and cooperation across divides
in political ideology. Would the recogni-
tion that those with different political
beliefs from our own also exhibit
different disgust responses from our
own help us or hinder us in our ability
to embrace them as coequals in
democratic governance? Future work will be necessary to
answer these important questions.

Experimental Procedures

Participants

Eighty-three healthy individuals (males/females = 41/42; age = 18–62; mean

[SD] = 29.0 [11.3] years) in Roanoke and Blacksburg, VA, areawere recruited

from a large database maintained by the Human Neuroimaging Laboratory

between September 2012 and September 2013. See the Supplemental

Experimental Procedures for inclusion/exclusion criteria for participants

and demographic data.

fMRI Task

Participants were informed that they would complete a simple visual

perception task. They were told to simply look at emotional pictures

when they were presented but to press a button when they saw a fixation

cross. Figure 1 depicts the time course of the fMRI experiment. It is a

passive picture-viewing task presenting a total of 20 disgusting, 20

threatening, 20 pleasant, and 20 neutral pictures, the order of which was

randomized for each participant. All the pictures were taken from the

International Affective Picture System (IAPS) [14]. See Appendix S1 for

IAPS picture numbers, description, and valence/arousal ratings of all

pictures. Table S2 summarizes the mean IAPS valence and arousal

ratings in each emotion condition. Each picture was presented for 4 s.

Ten button-press (fixation-cross) trials were pseudorandomly mixed

with emotional pictures to help participants stay fully awake and

pay attention to visual stimuli. The fixation cross stayed on the screen

until a button was pressed. Each trial was separated by a Poisson-

distributed variable interval (mean = 10 s, SD = 10 s, minimum = 6 s,

maximum = 17 s). The experiment took approximately 20 min in total.
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NEMO (http://labs.vtc.vt.edu/hnl/nemo/index.html) was used for stimuli

presentation and behavioral response collection.

MRI Data Acquisition and Analysis

The anatomical and functional imaging sessions were conducted on a 3.0

tesla Siemens Magnetom Trio scanner at VTCRI. We used SPM8 (http://

www.fil.ion.ucl.ac.uk/spm/software/spm8/) for preprocessing and stan-

dard GLM fMRI analyses. For the elastic net analysis, we used the glmnet

package for MATLAB (http://web.stanford.edu/whastie/glmnet_matlab/)

and R [47]. See the Supplemental Experimental Procedures for complete

details.

Supplemental Information

Supplemental Information includes Supplemental Experimental Proce-

dures, four figures, four tables, and two appendices and can be found

with this article online at http://dx.doi.org/10.1016/j.cub.2014.09.050.
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Supplemental Figure Legends  
 

Figure S1: Related to Figure 1. (A) The relationship between political attitudes and political 
interest. A dashed line is the linear regression fit (r = -0.148, p = 0.182) (B) Disgust Sensitivity 
(DS-R) and Anxiety Level (STAI Total) survey scores. The Liberal group reported marginally 
lower disgust sensitivity than the Conservative group. Error bars indicate ±1 S.E.  
 
Figure S2: Related to Figure 3. (A, B, C) The contrasts of [Disgusting > Neutral], [Threatening 
> Neutral], and [Pleasant > Neutral] stimuli using the standard General Linear Model (GLM) 
analysis across all participants (n=83). All maps are at p < 0.001, whole-brain family-wise error 
(FWE) corrected at the cluster level. (D) The comparison of Conservative and Liberal groups 
using standard General Linear Model (GLM) analysis for the [Disgusting > Neutral] contrast. All 
maps are at p < 0.005 (uncorrected, cluster size > 10). Regions with * marks survived the FWE 
cluster-level correction. AMYG, amygdala; HIPP, hippocampus; IFG, inferior frontal gyrus; 
MCC, middle cingulate cortex; DLPFC, dorsolateral prefrontal cortex; GP, globus pallidus; PCC, 
posterior cingulate cortex; vmPFC, ventromedial prefrontal cortex; dmPFC, dorsomedial 
prefrontal cortex; VLPFC, ventrolateral prefrontal cortex; STG/MTG, superior/middle temporal 
gyrus; Str, striatum; SN, substantia nigra; PAG, periaqueductal gray; ACC, anterior cingulate 
cortex; pre-SMA, pre-supplementary motor area; FFG, fusiform gyrus. Color scale denotes t-
scores.  
 
Figure S3: Related to Figure 2. (A) Preparation of data for the full-data penalized regression 
analysis. First, prepare a map of the contrast of interest (e.g., [Disgust > Neutral]) for each 
participant. Second, apply an a priori mask generated from the Neurosynth website 
(neurosynth.org). We used the union of activations from “Emotion” and “Attention” terms 
(including both forward and reverse inference maps). Third, generate a matrix (number of 
subjects x number of voxels) for a penalized (logistic or linear) regression analysis. (B) An 
illustration of the relationship between survival rates and regression coefficients. The plot shows 
that higher survival rates are associated with greater magnitudes of beta coefficients in penalized 
logistic regression analysis. Each dot indicates each voxel within the mask (total number of 
voxels = 7,471). (C) Preparation of data for the single-stimulus fMRI (penalized logistic 
regression) analysis. (A) In each participant, extract the raw time series data that are spatially 
averaged within the red-to-yellow voxels (Figure 3A) or a region of interest, and then apply a 
high pass filter to the data, which are then linearly interpolated every 1s. Extract an epoch of [-
2s, 16s] (indicated by red dashed lines) every 2s from the onset of the first disgusting picture (11 
time points for each participant). (B) Generate a matrix (number of participants x number of time 
points) for the single-stimulus fMRI analysis. Data are sorted by political attitudes for display 
purposes. Labels on the x-axis indicate time since stimulus presentation (sec). Color scale 
denotes percent signal change. 
 



Figure S4: Related to Figure 4. Voxels that are positively (red-to-yellow) or negatively (blue-
to-green) correlated with political attitudes (using the [Disgusting > Neutral] contrast). We used 
penalized linear regression and all participants for generating the maps. The numbers on axial 
slices indicate MNI Z-axis coordinates. (A) Using α (mixing parameter) value optimized for 
penalized logistic regression (α = 0.026). (B) Using α value optimized for penalized linear 
regression (α = 0.222). Scatter plots on the right side indicate correlation plots between actual 
political attitudes and predicted political attitudes from BOLD data across all participants. Color 
scale denotes survival rate. (C) Hemodynamic response to the first disgusting stimulus, extracted 
from an independent amygdala ROI from [S1]. Shaded regions indicate ±1 S.E. See 
Supplemental Experimental Procedure for complete details.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Table S1. Demographic/survey data and IAPS ratings of the first disgusting stimuli for the 
Liberal, Moderate, and Conservative groups. Values indicate means and standard deviations (in 
parentheses) except for Sex. C/A = Core/Contamination versus Animal Reminder (disgust). 
 

  Liberal (n=28) Moderate (n=27) Conservative (n=28) 

Age 32.7 (15.5) 27.6 (9.2) 26.8 (11.2) 

Sex (Male/Female) 17/11 13/14 11/17 

Political orientation 0.25 (0.08) 0.50 (0.08) 0.75 (0.09) 

Political interest 0.63 (0.18) 0.46 (0.22) 0.55 (0.16) 

DS-R Total 37.39 (13.41) 41.11 (13.51) 43.46 (13.14) 

STAI Total 68.64 (13.42) 68.33 (10.82) 71.29 (15.01) 

IAPS valence rating of the 
first disgusting stimuli 2.30 (0.81) 2.17 (0.67) 2.22 (0.79) 

IAPS arousal rating of the 
first disgusting stimuli 6.04 (1.20) 6.20 (0.93) 6.27 (0.76) 

Onset of the first 
disgusting stimuli (sec) 30.96 (36.87) 45.33 (60.90) 50.57 (40.64) 

Subcondition of the first 
disgusting stimuli  (C/A) 14/14 13/14 12/16 

 
 

 
 
 
 
 
 
 
 
 
 



Table S2. The mean and standard deviations (in parentheses) of IAPS valence and arousal ratings 
as well as behavioral ratings in each rating category. 
 

  
IAPS 

valence 
rating 

IAPS 
arousal 
rating 

Disgusting 
rating 

Threatening 
rating 

Pleasant 
rating 

Disgusting stimuli 2.42 (0.82) 5.96 (0.99) 6.35 (1.39) 3.29 (1.90) 2.34 (0.62) 

Threatening stimuli 2.79 (0.62) 6.28 (0.59) 3.15 (1.81) 5.40 (1.72) 2.84 (0.85) 

Pleasant stimuli 7.87 (0.38) 4.62 (0.75) 1.08 (0.22) 1.11 (0.18) 7.42 (0.70) 

Neutral stimuli 5.10 (0.39) 3.01 (0.72) 1.12 (0.29) 1.17 (0.35) 5.18 (0.34) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



x y z
Dorsolateral prefrontal cortex L -46 4 26 8.46
Dorsolateral prefrontal cortex R 46 4 26 12.64
Middle occipital gyrus L -50 -76 -2 14.35
Middle occipital gyrus R 50 -72 -6 13.22
Fusiform gyrus L -42 -52 -18 13.31
Fusiform gyrus R 42 -52 -18 13.19
Middle temporal gyrus L -46 -76 10 8.37
Middle temporal gyrus R 46 -76 10 9.05
Supramarginal gyrus L -62 -28 34 7.92
Amygdala L -22 -8 -14 13.86
Amygdala R 22 -4 -14 12.12
Hippocampus L -22 -32 -2 7.63
Hippocampus R 33 -32 -2 8.69
Globus pallidus/caudate L -10 4 2 4.88
Globus pallidus/caudate R 10 4 2 5.47
Anterior insula L -34 24 2 5.53
Anterior insula R 38 28 -2 5.87
Posterior insula L -42 -4 -2 4.94
Posterior insula R 42 -4 -2 5.73
Inferior frontal gyrus L -50 32 18 5.71
Inferior frontal gyrus R 50 32 10 9.34
Thalamus L -6 -16 6 7.79
Thalamus R 6 -12 2 8.56
Midbrain (substantia 
nigra/periaqueductal gray) L -6 -28 -6 8.46

Midbrain (substantia 
nigra/periaqueductal gray) R 6 -28 -6 8.57

Middle cingulate cortex 59 L -2 0 30 7.20
Supramarginal gyrus 54 R 62 -24 34 6.23
Middle temporal gyrus L -46 -76 14 13.08
Middle temporal gyrus R 50 -68 2 19.41
Superior temporal gyrus R 54 -52 10 15.34
Fusiform gyrus L -42 -48 -18 12.69
Fusiform gyrus R 42 -48 -18 16.12

Peak T-score

Table S3. Regions from the [Disgusting > Neutral], [Threatening > Neutral], and [Pleasant > 
Neutral] contrasts (Figure S2). Whole-brain family-wise error (FWE) corrected at the cluster 
level (p < 0.05). Height threshold, t = 3.19; extent thresholds = 44, 40, and 43 voxels (4x4x4 
mm3). L: Left, R: Right.

Contrast Region Cluster 
size Side

MNI coordinates

1701

3445

Threatening 
> Neutral

Disgusting > 
Neutral

1394



Dorsolateral prefrontal 
cortex/Inferior frontal gyrus L -46 24 6 4.90
Dorsolateral prefrontal 
cortex/Inferior frontal gyrus R 54 24 14 8.90

Amygdala L -18 -8 -14 5.69
Amygdala R 22 -4 -14 7.25
Hippocampus L -22 -28 -6 4.53
Hippocampus R 26 -24 -10 4.14
Inferior frontal gyrus L -38 20 -18 7.42
Inferior frontal gyrus R 38 28 -14 7.89
Midbrain (substantia 
nigra/periaqueductal gray) L -6 -28 -6 6.66

Midbrain (substantia 
nigra/periaqueductal gray) R 6 -28 -6 6.95

Middle occipital gyrus L -46 -76 6 17.17
Middle occipital gyrus R 46 -76 2 15.09
Dorsomedial prefrontal cortex 475 L -2 48 34 9.52
Precuneus 245 R 2 -60 30 7.15
Ventromedial prefrontal cortex 110 R 2 40 -22 8.06
Cerebellum 60 L -18 -76 -38 6.24
Amygdala L -18 -8 -14 7.40
Amygdala R 22 -4 -14 8.15
Hippocampus L -26 -24 -10 4.80
Hippocampus R 26 -28 -6 4.95
Fusiform gyrus L -42 -52 -22 10.69
Fusiform gyrus R 42 -48 -18 13.09
Middle occipital gyrus L -46 -80 6 15.83
Middle occipital gyrus R 50 -76 -2 16.81
Middle/superior temporal gyrus L -46 -68 6 9.77
Middle/superior temporal gyrus R 50 -64 6 14.97
Thalamus L -6 -12 6 3.63
Precuneus L -2 -60 38 9.42
Dorsomedial prefrontal cortex L -6 56 6 7.31
Dorsomedial prefrontal cortex R 6 56 10 8.03
Ventromedial prefrontal cortex R 2 36 -22 6.62
Pre-supplmentary motor area 67 R 10 8 66 5.40
Precentral gyrus 44 R 50 -4 50 6.21

Pleasant > 
Neutral

3854

582

Threatening 
> Neutral

658

1266



Table S4. Conservative versus Liberal groups in the  [Disgusting > Neutral] contrast (Figure 
S2D). Height threshold, t = 2.67; extent threshold = 10 voxels (4x4x4 mm3). L: Left, R: Right. 
Activation with a * mark survives the whole-brain FWE correction at the cluster level (p < 0.05, 
k ≥ 109). 
 

Contrast Region Cluster 
size Side 

MNI coordinates 
Peak T-score 

x y z 

Conservative > 
Liberal 

Globus pallidus* 

591 

L -14 -4 6 4.72 
Globus pallidus* R 18 -8 -6 4.64 
Caudate* L -14 8 10 4.05 
Caudate* R 18 8 14 3.70 
Putamen* L -18 8 10 4.31 
Putamen* R 22 0 -2 3.12 
Amygdala/hippocampus* L -30 -4 -14 3.20 
Amygdala/hippocampus* R 22 -8 -10 3.66 
Thalamus* L -10 -16 14 3.97 
Thalamus* R 18 -12 2 4.17 
Middle/superior temporal gyrus* 

163 L -46 -68 14 3.99 
Fusiform gyrus* L -42 -52 -14 3.17 
Pre-supplementary motor area 79 L -6 12 66 3.75 
Cerebellum 52 L -22 -84 -42 3.79 
Cerebellum R 22 -76 -42 4.18 
Anterior cingulate cortex 29 R 10 44 10 3.48 
Dorsolateral prefrontal cortex 26 L -46 4 50 4.09 
Ventromedial prefrontal cortex 12 R 6 36 -22 3.03 
Inferior frontal gyrus 11 R 50 28 6 3.08 
Posterior cingulate cortex 10 L -6 -48 30 3.11 

 
 
 
 

 
 
 
 
 
 
 
 
 
 



Supplemental Experimental Procedures 
 
Inclusion/exclusion criteria for participants and demographic data 

Participants were required to be at least 18 years of age and to meet standard health and 
safety requirements for the MRI experiment. Additional twelve participants were excluded from 
all the analyses: 5 participants had more than 3mm of maximum movement; 2 participants had 
aberrant brain structure (e.g., extremely large ventricles); 1 participant fell asleep during the 
fMRI experiment and had extremely long reaction time (RT) for button-press trials; 2 
participants showed no or little activity in the visual cortex for the disgust > neutral contrast in 
the first level analysis (threshold p < 0.05, k = 10, uncorrected); 2 participants had signal 
dropout. Participants gave informed consent in accordance with the Institutional Review Board 
at Virginia Tech Carilion Research Institute (VTCRI), VA, USA. After filling out a screening 
form and a written consent, participants were given written and verbal instructions on the task. 
Participants were divided into three groups based on their political ideology score. Neither age 
(F(2,80)=2.331, p=0.104) nor sex (χ2(2)=2.597, p=0.273) was significantly different across 
groups. When we tested just Liberal and Conservative groups, the Liberal group was marginally 
older than the Conservative group (t(54)=1.857, p=0.069). There were more males in the Liberal 
group compared to the Conservative group, but the group difference on age was not significant 
(χ2(1)=1.786, p=0.181).  
 
Subconditions of emotional pictures used in the fMRI task 
 Each emotional condition, except the neutral condition, has two subconditions: 9 
core/contamination (e.g., a dirty toilet) and 11 animal reminder (e.g., mutilated body) pictures in 
the disgusting condition, 10 actual threat (threatening objects aimed at another individual) and 10 
no actual threat (e.g., a knife or a barking dog) pictures in the threatening condition, and 9 social 
pleasure (e.g., babies playing together) and 11 nonsocial pleasure (e.g., beautiful scenery) 
pictures in the pleasant condition. Also see Appendix S1 for more details.  
 
Behavioral rating session 

After the fMRI session, participants evaluated how disgusting, threatening, or pleasant 
were each of the 80 pictures according to a 9-point Likert scale. For the pleasant rating, 1 
indicates “extremely unpleasant”, 5 indicates “neutral” and 9 indicates “extremely pleasant”. For 
the disgusting and threatening ratings, 1 indicates “not at all”, 5 indicates “moderately”, and 9 
indicates “extremely”. Ratings for each condition of emotion were elicited in separate blocks. 
The order of blocks was counterbalanced across participants. Importantly, participants did not 
know they had to evaluate the pictures when participating in the fMRI session. The rating session 
took approximately 20-30 minutes. Table S2 summarizes the behavioral ratings of all pictures in 
each rating category, which are consistent with previously known IAPS valences and picture 
conditions.  
 



Survey session 
After the rating session, participants filled out three computer-based questionnaires. The 

first questionnaire (Appendix S2A) asked their political attitudes and involvement as well as 
their religiousness. Participants’ political orientations were based on three components: their 
ideological position (item#1), partisan affiliation (item#2), and their policy preferences on the 
Wilson-Patterson questionnaire (Wilson-Patterson Issue Battery). Each component was first 
converted to a normalized score such that its minimum score is 0 and maximum score is 1 (e.g., 
if a participant selects “2. moderate, leaning liberal” on item#1, its normalized score is (2-1)/4 = 
0.25). The political orientation (attitude) score was created by equally weighting the three 
components (min = 0 and max = 1). We also asked for whom they planned to vote (until 
November 6, 2012) or for whom they actually voted (after November 6, 2012). The second 
questionnaire (State-Trait Anxiety Inventory) assessed the state and trait anxiety [S2], and the 
third questionnaire (Disgust Scale-Revised) assessed the individual differences in disgust 
sensitivity (Appendix S2B) [S3, S4]. It took approximately 10-20 minutes to complete the survey 
session. Participants were debriefed and thanked for their participation after the survey session. 
 
Relationship of political attitudes with demographic and other variables 

We examined whether demographic data (age, sex) or other study variables (political 
interest, religiousness, trait anxiety, state anxiety, disgust sensitivity) are related to political 
attitudes. When we examined their relationships by simple correlations across all 83 participants, 
religiousness (r(81) = 0.284, p = 0.009), age (r(81) = -0.232, p = 0.035), and sex (r(81) = 0.221, p 
= 0.045) were significantly correlated with political attitudes at p < 0.05 (uncorrected). However, 
this type of uncorrected correlation analysis with multiple predictors is more likely to produce 
“false alarms”. Thus, we next conducted a hierarchical Bayesian multiple regression analysis 
[S5, S6], which assigns a higher-level distribution across the regression coefficients of multiple 
predictors. Specifically, regression coefficients are coming from a t-distribution and its 
parameters (mean, scale, and df) are estimated from data, modeling a typical scenario of 
regression analyses (i.e., regression coefficients of many predictors are nearly zero and only a 
few predictors have non-zero regression coefficients). Because of the hierarchical structure, we 
are much less likely to have falsely significant results. See [S5, S6] for more details and the code 
for hierarchical Bayesian multiple regression (“MultiLinRegressHyperJags.R”) is available at 
John K. Kruschke’s website 
(http://www.indiana.edu/%7Ekruschke/DoingBayesianDataAnalysis/Programs/).  
 The results with the hierarchical Bayesian multiple regression showed that neither age 
nor sex was credibly associated with political attitude. However, political attitude was associated 
with religiousness (mean beta coefficient = 0.07, 95% highest density interval (HDI) of its 
posterior distribution  = [0.019, 0.117]). Here, we used a heuristic Bayesian decision rule [S6]: a 
predictor is credibly associated with our independent variable if the 95% HDI of the predictor 
excludes zero. Note that the relationship between religiousness and conservatism has been well 
documented in previous literature (e.g., [S7, S8]).  



 We added age and sex as covariates in our standard General Linear Model (GLM) 
imaging analyses. For elastic net analysis (see below for the details), we used only fMRI data as 
predictors to test how accurately we can predict political attitudes with neural data alone. When 
we add age and sex as additional regressors to neural data for the elastic net analysis, both age 
and sex fail to survive at all (survival rate = 0.000), which means all the results using the elastic 
net approach remain unchanged even when we add the demographic variables.  
 
Test-retest reliability of political attitudes 
 For a subset of participants (n=32), we re-assessed their political attitudes after some 
interval (mean = 171.7 days, SD = 142.1 days). The test-retest correlation coefficient was very 
high (Pearson correlation: r(30) = 0.952, p < 2.2E-16; Robust correlation: r = 0.986, p < 2.0E-
16). The interval between the first and the second assessments was not significantly related to the 
difference of political attitudes between two assessments (r(30) = 0.080, p = 0.662). 
 
fMRI data analysis 
Image acquisition and preprocessing analysis: The anatomical and functional imaging sessions 
were conducted on a 3.0 tesla Siemens Magnetom Trio scanner at VTCRI. High-resolution T1-
weighted scans (1x1x1 mm3) were acquired using an MP-RAGE sequence (Siemens). Functional 
images were collected using echo-planar imaging with repetition time (TR) = 2,000ms and echo 
time (TE) = 25ms. 37 4mm slices (voxel size = 3.4 x 3.4 x 4mm3) were acquired after angled 30 
degrees with respect to the anteroposterior commissural line [S9].  

Functional data were first spike-corrected to reduce the impact of artifacts using AFNI’s 
3dDespike (http://afni.nimh.nih.gov/afni). Data were subsequently preprocessed with SPM8 
(http://www.fil.ion.ucl.ac.uk/spm/software/spm8/) for slice-timing correction using the first slice 
as the reference slice, motion correction, coregistration, gray/white matter segmentation, 
normalization to the Montreal Neurological Institute (MNI) template, and spatial smoothing 
using an 8mm full-width/half-maximum Gaussian kernel. Postprocessing voxels were 4 x 4 x 4 
mm3. 

 
General linear model for standard fMRI analyses: All standard imaging analyses were conducted 
using the General Linear Model (GLM) implemented in SPM8. All first level analyses included 
a temporal high-pass filter (128s) and order 1 temporal autocorrelation (AR(1)) was assumed. 
For the main effects of emotional processing, the first level GLM was specified for each 
participant. The onsets for each picture subcondition (core/contamination disgust, animal 
reminder disgust, actual threat, no actual threat, social pleasure, nonsocial pleasure) and fixation 
crosses were convolved with a canonical hemodynamic response function (with time and 
dispersion derivatives) using a delta function of zero duration (or reaction time (RT) for fixation 
crosses) in SPM8. Initially, we probed to examine the separate neural correlates of emotional 
subconditions, but we collapsed them within each emotional condition to simplify the analysis. 
Six head motion parameters were also included in the first level GLM as covariates. The 



random-effects analyses were conducted using the contrast images from the first level GLM. We 
separately examined the maps of [Disgusting - Neutral], [Threatening - Neutral], and [Pleasant - 
Neutral] contrasts (see Figure S2 for family-wise error (FWE) cluster-level corrected maps and 
also Table S3).  

To examine the neural correlates of political attitudes, for each contrast of [Disgusting - 
Neutral], [Threatening - Neutral], and [Pleasant - Neutral], we conducted independent t-tests 
comparing the Liberal and Conservative groups at the 2nd level GLM. Age and sex were added in 
the 2nd level analysis as covariates. To report clusters of voxels significantly related to political 
attitudes, we used a height threshold of p < 0.005 with extent threshold of k ≥ 10 voxels or FWE 
cluster-level correction (k ≥ 107) (Figure S2D), which was implemented in CorrClusTh by 
Thomas Nichols (http://go.warwick.ac.uk/tenichols/scripts/spm/spm8/CorrClusTh.m). 

 
fMRI results on individual differences using standard GLM analysis: The contrasts with 
threatening or pleasant pictures revealed no regions surviving multiple corrections. However, in 
the [Disgusting > Neutral] contrast, the Conservative group showed greater activity than the 
Liberal group in several regions (Figure S2D and Table S4), including striatum, globus pallidus, 
thalamus, periaqueductal gray, substantia nigra, hippocampus, amygdala, dorsolateral prefrontal 
cortex, anterior cingulate cortex, pre-supplementary motor area, fusiform gyrus, and 
middle/superior temporal gyrus. No regions survived correction for multiple comparisons for the 
[Liberal group > Conservative group] comparison.  
 
Preparation of data for penalized logistic regression analysis: For penalized logistic regression 
analysis, we prepared the data as described below (Figure S3A). First, we extracted a map of the 
[Disgust > Neutral] contrast for each participant. Then, we applied an a priori mask, which was 
generated from the Neurosynth website (www.neurosynth.org) [S10] containing a total of 7,471 
voxels (voxel size = 4 x 4 x 4 mm3); that is, we only used voxels inside the mask as predictors in 
the following analysis. We obtained the union of meta-analytic (positively correlated and both 
forward and reverse inference) maps of “Emotion” and “Attention” terms, thresholded at q < 
0.05 False Discovery Rate corrected. Then, we generated a matrix (matrix size = number of 
participants x number of voxels) by reshaping each participant’s contrast maps (three-
dimensional data) into one-dimensional vectors for penalized regression analysis. 

 
Cross-validated penalized logistic regression analysis: We used the elastic net [S11], a penalized 
(logistic) regression technique, to make cross-validated predictions of political group 
membership and select voxels important for such predictions. Here, we first briefly explained the 
penalization technique and its relationship to the ordinary regression analysis. We used the 
continuous regression analysis as an example because of its relative easiness to understand. For 
more detailed reviews, see [S11-S14]. 
 In the usual multiple linear regression analysis, we have N observations (participants), p 
number of regressors (or predictors, ), and N number of responses ( ). For  xi = (xi1, xi2,…, xip ) yi



       
example, p is the number of voxels (p = 7,471),  are subjects’ beta coefficients of each voxel (
 = a matrix whose size is N x p), and  is an individual difference measure (e.g.,  are 

political ideology scores, a vector of length N). In ordinary multiple linear regression, the 

objective function ( ) to minimize is: f (θ ) =
i=1

N

∑(yi − β0 − xi
T ⋅β )2  where β0 is the intercept 

and β are regression coefficients (= a vector of length p). When there are too many predictors 
(i.e., ), it is well known that the ordinary multiple linear regression performs poorly in 
prediction accuracy (generalization) and interpretation [S11]. To improve the performance, 
several penalization methods have been proposed, which impose an L1 penalty, an L2 penalty, or 

both. The L1 penalty refers to when  (= sum of absolute values of coefficients) is 

constrained and the L2 penalty refers to when (= sum of squared values of 

coefficients) is constrained when estimating regression coefficients. The elastic net that we used 
in our work employs both L1 and L2 penalization. As suggested by previous works [S15-S18], 
the elastic net has several advantages for fMRI data compared to other machine learning 
techniques such as the conventional Support Vector Machine (SVM) [S19] or the least absolute 
shrinkage and selection operator (LASSO) [S12]. First, like other penalized regression 
techniques (c.f., ridge regression), it does continuous shrinkage and automatic selection of 
predictors (i.e., the regression coefficients of unimportant predictors shrink to zero) due to L1 
penalization. Thus, the elastic net automatically selects voxels that are critical for out-of-sample 
prediction accuracy (i.e., automatic variable selection), which increases the interpretability of the 
findings. Second, the elastic net enjoys a grouping effect, which clusters highly correlated 
predictors into a set of groups due to L2 penalization. Also, in fMRI studies, the number of 
predictors (p) is much greater than the number of subjects (N) (i.e., ) where the 
conventional LASSO is an inadequate choice (c.f., [S20, S21]).  

The elastic net regression has two tuning parameters (α and λ), which are selected by 
cross validation (CV) over two-dimensional surface (Figure 2D). In the elastic net regression, 
the objective function to minimize for the Gaussian family is:  

where the second term is called the elastic net penalty and  is the objective function for the 

ordinary multiple linear regression: . The tuning parameter λ         

( ) governs the overall complexity of the model (λ values close to zero approach the full 
(non-penalized) regression model), and α ( ) is the elastic-net mixing parameter, which 
compromises between the ridge (α = 0) and the LASSO (α = 1). For a penalized binomial logistic 
regression [S13], the objective function to minimize has the same form and the elastic net 
penalty: , but with different yi  (e.g., yi = 0 for the Liberal 

xi
xi yi yi

f (θ )

 p≫ N

β 1 =
j=1

p

∑ β j

β 2
2 =

j=1

p
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2

 p≫ N
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group and 1 for the Conservative group) and : 

.   

 
For the selection of tuning parameters and estimation of the elastic net penalized logistic 

regression model, we used the glmnet package for Matlab 
(http://www.stanford.edu/~hastie/glmnet_matlab/) and R [S14]. Regressors were standardized 
prior to fitting the model, which is a standard routine for a penalized logistic regression analysis. 
We also used a built-in Matlab function (cvglmnet.m) in the glmnet package for CV and another 
built-in function (glmnetPredict.m) for making predictions. Two authors (W.-Y.A. and T.L.) 
independently tested the penalized logistic regression procedure and verified the findings.  

For the selection of tuning parameters, we first estimated the elastic-net mixing parameter 
(α) and then the overall complexity parameter (λ). For the estimation of α, we conducted the 
following procedure over 1,000 grids of α (α = 0.001, 0.002, 0.003, … , 0.998, 0.999, 1.000):  

 
1.1. At each α value, first fits the elastic net (LASSO if α = 1) model paths to get the λ 

sequence.  
1.2. Divide data randomly into 10 partitions. 

1.2.1. Train the model based on 90% of the data (9 partitions = 50 subjects’ data) 
and compute the minimum binomial deviance (at the λ value that minimizes the 
binomial deviance) on the 10% of the data (1 partition = 6 subjects’ data). 

1.2.2. Repeat step 1.2.1 10 times and compute the average binomial deviance over 
the 10 repetitions. Calling cvglmnet.m (in Matlab) command runs both steps 
1.2.1 and 1.2.2. 

1.3. CV performance can vary slightly depending on how the data set is divided into K 
(=10) partitions. To get more reliable estimates, repeat the whole steps 1.1 and 1.2 
twenty times and compute the average binomial deviance over the 20 repetitions, 
which is in fact the average binomial deviance over 200 (=10*20) iterations at each 
α.  

 
As seen in Figure 2D (red dashed line in step 2), α value of 0.026 minimized the average 

binomial deviance. Setting α to 0.026, we estimated the second tuning parameter, overall 
complexity λ. While α is set to 0.026, we first estimated the trace plot of coefficient values for 
each λ value (Figure 2D, left figure in step 3). Then, we repeated the following procedure 1,000 
times:  

 
2.1. Run a 10-fold CV (similar to steps 1.2.1 and 1.2.2 but with setting α to 0.026) to find 

the λ value that minimizes the binomial deviance and one that is +1 S.E. from the 
minimum λ value (Figure 2D, two dashed lines in the right figure in step 3. The 
numbers on top of x-axis are the number of survived regressors for each λ value). 

f (θ )

f (θ ) = − 1
N i=1

N

∑yi ⋅(β0 + xi
Tβ )− log(1+ exp(β0 + xi

Tβ ))⎡
⎣⎢

⎤
⎦⎥



2.2. Extract β coefficients of all regressors (voxels) using the λ value that is +1 S.E. from 
the minimum (i.e., +1 S.E. λ). Using +1 S.E. λ is a heuristic strategy to produce a 
less complex and more conservative model [S22]. The β coefficients of many 
regressors would shrink to zero. Record whether each regressor (voxel) survived (β 
coefficient is non-zero) or not (β coefficient is zero) in the current iteration. 

2.3. Make predictions (fitted probabilities that range from 0 to 1) for the political group 
based on the β coefficients of the penalized logistic regression model. Then compute 
the area under the curve (AUC) of the receiver operating characteristic (ROC) curve. 
 

Calculating the “survival rate” of voxels: After finishing 1,000 CVs, we generated a matrix that 
indicates whether each voxel survived (1 if its β coefficient is non-zero, 0 if its β coefficient is 
zero) CV on each iteration (= a matrix size of 1,000 x 7,471, Figure 2D, step 4). We defined the 
‘survival rate’ as the proportion of each voxel surviving CV over 1,000 iterations (i.e., 0 
indicates that the voxel survived 0 times out of 1,000 iterations and 1 indicates that it survived all 
1,000 iterations). Survival rate is closely related to regression coefficients (Figure S3B). We also 
generated another matrix that contained the signs of mean β coefficients over 1,000 iterations. To 
separately visualize voxels that predict either the Conservative (β > 0) or the Liberal group (β < 
0), we projected the [survival rate x the sign of the mean β coefficient] of each voxel back into 
the brain (voxel) space (Figure 3A).   
 
Checking the validity of the elastic net model: To make sure our elastic net procedure is unbiased 
toward finding group differences, we tested if the penalized logistic regression can predict 
permuted outcome variable [S20]. In other words, we permuted (randomly sampled) our 
outcome variable (political ideology group membership), and let the elastic net model predict the 
permuted variable. If our elastic net model is valid and unbiased, AUC for permuted data should 
be 0.5 (at chance level). Indeed, mean AUC of the penalized logistic regression model was 0.50 
over 1,000 iterations, which confirms that our model is unbiased.  
 
Supplementary Information for Figure 3B, histogram of CV ROC AUCs: In order to more fully 
demonstrate the out-of-sample performance of the penalized logistic regression analysis, we did 
the following. First, following the main approach in the text, we categorized participants’ 
political attitudes by terciles, and then restricted our analysis to the low (Liberal group) and high 
(Conservative group) terciles. We then repeated 1,000 times 1) Run the CV procedure 
implemented by cvglmnet.m and find the value of λ and the beta coefficients of predictors that 
minimizes binomial deviance. Here we use 5-fold cross validation to have enough sample size 
for computing AUC. We set the mixing parameter (α) to 0.026; 2) for each iteration at the 
minimum λ, and for each of the five folds, use the stored fits on the data not including the fold 
(80% of the data) from the iteration’s CV model to predict the class probabilities for the data in 
the fold. Then use the MATLAB perfcurve function to compute the receiver operating 



characteristic curve (ROC), and the area under this curve. 5 AUCs are computed for each 
iteration, giving a total of 5,000 data points for the histogram. 
 
Penalized linear regression analysis: Figure 3A shows the voxels critical for cross-validated 
classification accuracy for predicting Liberal and Conservative group membership. In Figure S4, 
we used panelized linear regression, predicting political attitudes in a continuous fashion across 
all participants (n=83). The procedure is identical to cross-validated penalized logistic regression 
analysis reported above except the following: First, we used penalized linear regression, which 
has a different objective function to minimize for the Gaussian family as described above. 
Second, we re-estimated α (mixing parameter) value that is optimized for penalized linear 
regression across all participants. The estimated α value optimized for penalized linear regression 
was 0.222, but we report the results with both of the α values (for Figure S4A, we used 0.026, 
which was optimized for penalized logistic regression and for Figure S4B, we used 0.222). 
Third, we used a correlation coefficient as a measure of predictive accuracy. In each of 1,000 
iterations, we first computed each participant’s predicted political attitude. After 1,000 iterations, 
we computed each participant’s mean predicted political attitudes over 1,000 iterations. Then, we 
calculated the correlation coefficient between actual political attitudes and the averaged 
predicted political attitudes. As seen in Figures 3A, S4A, and S4B, regions predicting 
continuous political attitudes substantially overlap with regions predicting Liberal and 
Conservative group membership. Right panels in Figures S4A and S4B show the correlations 
between actual political attitudes and predicted political attitudes from the BOLD data, with each 
of the two α values.  
 
Out-of-sample prediction using the split half approach: Figures S4A and S4B show the voxels 
critical for predicting individual differences in political ideology using data from all the 
participants (n=83). Alternatively, we tested if our machine learning procedure can make 
accurate predictions on the half of the data (test set) when the model is trained on the other half 
of the data (training set). To test it, participants were first sorted based on their political ideology 
scores (i.e., sorted participant#1 is the most liberal participant, and sorted participant#83 is the 
most conservative participant). Then, participants #1, #3, #5, …, #81, #83 were used as the test 
set, and participants #2, #4, #6, …, #80, #82 were used as the training set. We used this 
procedure to ensure that training and test sets are widely and evenly distributed across the whole 
spectrum of political ideology scores.  
 We used the identical procedure reported for the penalized linear regression analysis 
except the following: First, we only used the training set (n=41) to fit the machine learning 
(elastic net) model (i.e., estimation of λ and the beta coefficients of predictors). Second, the 
predictions were made only on the test set (n=42) based on the model estimated only with the 
training set. Third, we used the minimum λ (instead of +1 S.E. λ) when making the predictions 
on the test set to achieve best accuracy. We found that many regions (e.g., striatum, thalamus, 
inferior parietal lobule) overlap substantially with what we found from using all participants 



(Figure S4). The out-of-sample prediction performance (correlation coefficient between actual 
and predicted political attitudes) on the test set was 0.52 (Figure 3B (figure inset), p = 0.0004, 
robust r = 0.44, robust p = 0.0024). The correlation value is lower than when we computed cross-
validated predictive accuracy across all participants (e.g., Figures S4A and S4B), but we should 
keep in mind that we used only 41 participant’ data for the training of the elastic net model, and 
performance of a machine learning model crucially depends on the amount of data we can use 
for the training. Also note that model performance can vary depending on how we divide the 
data into test and training sets. We found that the out-of-sample prediction performance 
(correlation coefficient) varied between 0.40 and 0.52 when we divided the data in different 
ways (e.g., using the one third (33%) of the data as the test set and two thirds (67%) of the data 
as the training set). The correlation coefficients were always highly significant (p < 0.003).  
 
Single-stimulus fMRI analysis: The elastic net analysis described above used the whole brain 
[Disgusting > Neutral] contrast map (the number of predictors = 7,741), collected approximately 
for 20 minutes. Here, we used the BOLD time series data of the first disgusting stimulus only (20 
seconds), which was spatial averaged from all the (+) voxels (Figure 3A red-to-yellow regions).  
 Figure S3C illustrates how we prepared the data for the single-stimulus fMRI analysis. 
In each participant, we extracted raw BOLD time series during the whole experiment that are 
spatially averaged within each of two types of regions (i.e., (+) voxels or (-) voxels). Each voxel 
was equally weighted in each mask. After applying a high pass filter and linearly interpolating 
time series data every 1s, we captured the data for the period 2 seconds prior to the first 
disgusting stimulus presentation to 16 seconds post-stimulus onset (a total of 20 seconds) every 
TR (= 2s). Thus, each subject had 11 time points or predictors. BOLD signals were converted to 
percentage signal change after correcting the baseline activity using the mean baseline value (2 
seconds prior to 0 seconds post stimulus). Then, we combined all participants’ data into a single 
matrix (matrix size = number of participants x number of time points) (Figure S3C, right side). 
When conducting the single-trial fMRI analysis on each region of interest (ROI), we extracted 
averaged raw time series from each region only (Figures 4C).  

The remaining steps for penalized logistic regression analysis remained the same: We 
estimated a tuning parameter (λ) and the beta coefficients of predictors using CV and computed 
the survival rate and the AUC of the ROC curve. We used the α value (= 0.026) estimated from 
the full-data analysis, but for the single-stimulus fMRI analysis when p < n, AUC values did not 
depend much on α value.  
 
Single-stimulus fMRI analysis on independent ROIs: We used two ROIs (amygdala and 
posterior insula) from a previous study [S1] for a single-stimulus analysis. To our knowledge, 
Schreiber et al. (2013) is the only study that found neural correlates of political orientation using 
non-political stimuli. For each ROI, we first generated a 8mm sphere centered on its peak 
coordinates (Amygdala=[20, -6, -10], posterior insula=[-36, -40, 18] in Talairach coordinates, 
which were converted to MNI coordinates using http://noodle.med.yale.edu/~papad/mni2tal/). 



Then we conducted single-stimulus analysis as we described above. We found that mean AUC of 
the amygdala ROI (Figure S4C) was 0.565 (SD = 0.098) when we used +1 S.E. λ. With 
minimum λ that maximizes predictive accuracy, mean AUC was 0.745 (SD = 0.025). AUC of 
posterior insula was 0.500 (= at chance level) with either +1 S.E. or minimum λ, which is 
consistent with what we found in our own peak ROI of posterior insula. Although AUC with the 
amygdala ROI from [S1] is worse than AUC with our peak amygdala/hippocampus ROI (mean 
AUC = 0.721 with +1 S.E. λ), we should keep in mind that [S1] used a risky decision-making 
paradigm, which is very different from our passive-viewing paradigm using emotionally 
evocative images.  
 
Group comparisons on the characteristics of the first disgusting pictures: We checked IAPS 
valence ratings, IAPS arousal ratings, and onsets of the first disgusting pictures in each political 
group (Table S1). None of IAPS ratings were significantly different between Liberal and 
Conservative groups (IAPS valence, t(54) = 0.336, p = 0.738; IAPS arousal, t(54) = 0.891, p = 
0.377). The conservative group had marginally longer onset time than the Liberal group (t(54) = 
1.891, p = 0.064). Group difference on subconditions of the first disgusting stimuli was not 
significant between the Liberal and Conservative groups (χ2(1)=0.072, p=0.789). 
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Appendix S1. IAPS valence and arousal ratings of stimuli in each (sub)condition 
 
 

IAPS picture 
number Condition Subcondition Valence Arousal Description 

1111 disgusting core/contamination 3.25 5.20 Snakes 
1274 disgusting core/contamination 3.17 5.39 Roaches 
7360 disgusting core/contamination 3.59 5.11 FliesOnPie 
7380 disgusting core/contamination 2.46 5.88 RoachOnPizza 
9008 disgusting core/contamination 3.47 4.45 Needle 
9290 disgusting core/contamination 2.88 4.40 Garbage 
9300 disgusting core/contamination 2.26 6.00 Dirty 
9320 disgusting core/contamination 2.65 4.93 Vomit 
9390 disgusting core/contamination 3.67 4.14 Dishes 
9570 disgusting animal reminder 1.68 6.14 Dog 
3010 disgusting animal reminder 1.79 7.26 Mutilation 
3030 disgusting animal reminder 1.91 6.76 Mutilation 
3060 disgusting animal reminder 1.79 7.12 Mutilation 
3102 disgusting animal reminder 1.40 6.58 Burn victim 
3130 disgusting animal reminder 1.58 6.97 Mutilation 
3150 disgusting animal reminder 2.26 6.55 Mutilation 
3170 disgusting animal reminder 1.46 7.21 Baby tumor 
3250 disgusting animal reminder 3.78 6.29 OpenChest 
3266 disgusting animal reminder 1.56 6.79 Injury 
9405 disgusting animal reminder 1.83 6.08 Sliced hand 
2485 neutral neutral 5.69 3.74 Man 
2514 neutral neutral 5.19 3.50 Woman 
7004 neutral neutral 5.04 2.00 Spoon 
7010 neutral neutral 4.94 1.76 Basket 
7035 neutral neutral 4.98 2.66 Mug 
7095 neutral neutral 5.99 4.21 Headlight 
7100 neutral neutral 5.24 2.89 Fire hydrant 
7140 neutral neutral 5.50 2.92 Bus 
7150 neutral neutral 4.72 2.61 Umbrella 
7170 neutral neutral 5.14 3.21 Light Bulb 
7175 neutral neutral 4.87 1.72 Lamp 
7180 neutral neutral 4.73 3.43 NeonBuilding 
7190 neutral neutral 5.55 3.84 Clock 
7224 neutral neutral 4.45 2.81 File cabinets 
7233 neutral neutral 5.09 2.77 Plate 
7235 neutral neutral 4.96 2.83 Chair 



7491 neutral neutral 4.82 2.39 Building 
7500 neutral neutral 5.33 3.26 Building 
7550 neutral neutral 5.27 3.95 Office 
7595 neutral neutral 4.55 3.77 Traffic 
1440 pleasant nonsocial 8.19 4.61 Seal 
1460 pleasant nonsocial 8.21 4.31 Kitten 
1710 pleasant nonsocial 8.34 5.41 Puppies 
1750 pleasant nonsocial 8.28 4.10 Bunnies 
1920 pleasant nonsocial 7.90 4.27 Porpoise 
2040 pleasant nonsocial 8.17 4.64 Baby 
2070 pleasant nonsocial 8.17 4.51 Baby 
5760 pleasant nonsocial 8.05 3.22 Nature 
5849 pleasant nonsocial 6.65 4.89 Flowers 
7502 pleasant nonsocial 7.75 5.91 Castle 
8190 pleasant nonsocial 8.10 6.28 Skier 
2080 pleasant social 8.09 4.70 Babies 
2091 pleasant social 7.68 4.51 Girls  
2165 pleasant social 7.63 4.55 Father 
2360 pleasant social 7.70 3.66 Family 
2530 pleasant social 7.80 3.99 Couple 
2540 pleasant social 7.63 3.97 Mother 
2550 pleasant social 7.77 4.68 Couple 
5831 pleasant social 7.63 4.43 Seagulls 
8496 pleasant social 7.58 5.79 Water slide 
3500 threatening actual threat 2.21 6.99 Attack 
6350 threatening actual threat 1.90 7.29 Attack 
6550 threatening actual threat 2.73 7.09 Attack 
6821 threatening actual threat 2.38 6.29 Gang 
6838 threatening actual threat 2.45 5.80 Police 
9050 threatening actual threat 2.43 6.36 Plane Crash 
9622 threatening actual threat 3.10 6.26 Jet 
9910 threatening actual threat 2.06 6.20 Auto accident 
9911 threatening actual threat 2.30 5.76 Car accident 
9920 threatening actual threat 2.50 5.76 Auto accident 
1120 threatening no actual threat 3.79 6.93 Snake 
1302 threatening no actual threat 4.21 6.00 Dog 
2120 threatening no actual threat 3.34 5.18 AngryFace 
5972 threatening no actual threat 3.85 6.34 Tornado 
6200 threatening no actual threat 3.20 5.82 AimedGun 
6242 threatening no actual threat 2.69 5.43 Gang 
6260 threatening no actual threat 2.44 6.93 AimedGun 



6510 threatening no actual threat 2.46 6.96 Attack 
6830 threatening no actual threat 2.82 6.21 Guns 
9630 threatening no actual threat 2.96 6.06 Bomb 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix S2: Survey Instrument 
 
All participants completed the computer-based survey questionnaires. The questions and their 
coding scales for political ideology and disgust sensitivity are reproduced below. 
 
A. Political (items 1-8) and religious (items 9 and 10) questions  

 
1.  Labels are often misleading, but in general do you consider yourself liberal, conservative, or 
something in between 
 1. liberal 
 2. moderate, leaning liberal 
 3. moderate 
 4. moderate, leaning conservative 
 5. conservative 
 
2.  In general, do your consider yourself a Democrat, a Republican, or an Independent? 
 1. strong Democrat 
 2. weak Democrat 
 3. Independent, leaning Democrat 
 4. Independent 
 5. Independent, leaning Republican 
 6. weak Republican 
 7. strong Republican 
 8. other 

 
3. (Until November 6, 2012) If the 2012 presidential election were held today, whom would you 
vote for? (After November 6, 2012) Who did you vote for President in 2012?  
   (answer order was randomized for each participant) 
 1. Barack Obama 
 2. Mitt Romney 
 3. Other 
 4. Not voting 
 5. Not sure 
 
4.  How interested are you in politics and public affairs? 
            1. very interested 
            2. somewhat interested 
            3. not very interested 
            4. not at all interested 
  



5. How strongly would you say you feel about political issues?  Imagine a scale of feelings 
ranging from 1-10 with 1 representing no feelings at all and 10 representing intense feelings, and 
place yourself on this scale. 
            1. 1—no feelings at all on political issues 
            2. 2 
            3. 3 
            4. 4 
            5. 5—moderately strong feelings about political issues 
            6. 6 
            7. 7 
            8. 8 
            9. 9 
            10. 10—intense feelings about political issues 
  
6.  For each of the following, note whether it is something you have ever done. 
            a. attended a political meeting or rally 
            b. worked in a political campaign in any capacity (even for no pay) 
            c. contributed money to a political cause, party, or candidate 
            d. held any governmental office no matter how minor 
            e. communicated your thoughts or requests to a governmental official 
                        1. yes 
                        2. no 
  
7.  How would you describe your voting behavior? 
            1. I vote in nearly every election. 
            2. I vote in most elections. 
            3. I rarely vote. 
            4. I never vote. 
            5. I am ineligible to vote. 
  
8.  How often do you have discussions about politics with others? 
            1. very often 
            2. somewhat often 
            3. rarely 
            4. never 
  
9. How often do you attend religious services? 

      a. Never or very rarely 
      b. Occasionally 
      c. Once per week 



 

      d. More than once per week 
  
10.  Do you regularly say grace before meals? 
            a. Always 
            b. Usually 
            c. Occasionally 
            d. Never 
 
Wilson-Patterson Issue Battery 
 
Here is a list of various topics.  Please indicate how you feel about each topic. 
 
1. strongly agree 
2. agree 
3. uncertain 
4. disagree 
5. strongly disagree 

a. School prayer 
b. Pacifism 
c. Stop immigration 
d. Death penalty 
e. Government-arranged healthcare 
f. Premarital sex 
g. Gay marriage 
h. Abortion rights 
i. Evolution 
j. Biblical truth 
k. Increase welfare spending 
l. Protect gun rights 
m. Increase military spending 
n. Government regulation of business 
o. Small government 
p. Foreign aide 
q. Lower taxes 
r. Stem cell research 
s. Abstinence-only sex education 
t. Allow torture of terrorism suspects 
 
 



B. Disgust Scale – Revised (http://people.stern.nyu.edu/jhaidt/Dscale-R.doc) 
Please indicate how much you agree with each of the following statements, or how true it is 
about you. Please write a number (0-4) to indicate your answer:  
     0 = Strongly disagree (very untrue about me) 
             1 = Mildly disagree (somewhat untrue about me) 
                     2 = Neither agree nor disagree 
                             3 = Mildly agree (somewhat true about me) 
                                     4 = Strongly agree (very true about me) 

____1. I might be willing to try eating monkey meat, under some circumstances.  
____2. It would bother me to be in a science class, and to see a human hand preserved in a jar.  
____3. It bothers me to hear someone clear a throat full of mucous.  
____4. I never let any part of my body touch the toilet seat in public restrooms.  
____5. I would go out of my way to avoid walking through a graveyard.  
____6. Seeing a cockroach in someone else's house doesn't bother me.  
____7. It would bother me tremendously to touch a dead body.  
____8. If I see someone vomit, it makes me sick to my stomach.  
____9. I probably would not go to my favorite restaurant if I found out that the cook had a cold.  
____10. It would not upset me at all to watch a person with a glass eye take the eye  

out of the socket.   
____11. It would bother me to see a rat run across my path in a park.  
____12. I would rather eat a piece of fruit than a piece of paper  
____13. Even if I was hungry, I would not drink a bowl of my favorite soup if it had been 

stirred by a used but thoroughly washed flyswatter.  
____14. It would bother me to sleep in a nice hotel room if I knew that a man had died of a 

heart attack in that room the night before.  
 

How disgusting would you find each of the following experiences? Please write a  
number (0-4) to indicate your answer:   
     0 = Not disgusting at all 
             1 = Slightly disgusting      
                     2 = Moderately disgusting    
                             3 = Very disgusting 
             4 = Extremely disgusting      

____15. You see maggots on a piece of meat in an outdoor garbage pail.  
____16. You see a person eating an apple with a knife and fork 
____17. While you are walking through a tunnel under a railroad track, you smell urine.  
____18. You take a sip of soda, and then realize that you drank from the glass that an 
   acquaintance of yours had been drinking from.  
____19. Your friend's pet cat dies, and you have to pick up the dead body with your bare hands.   
____20. You see someone put ketchup on vanilla ice cream, and eat it.  



____21. You see a man with his intestines exposed after an accident.  
____22. You discover that a friend of yours changes underwear only once a week.  
____23. A friend offers you a piece of chocolate shaped like dog-doo.  
____24. You accidentally touch the ashes of a person who has been cremated.  
____25. You are about to drink a glass of milk when you smell that it is spoiled.  
____26. As part of a sex education class, you are required to inflate a new unlubricated 
  condom, using your mouth.  
____27. You are walking barefoot on concrete, and you step on an earthworm. 
 
 

 
 
 
 
 
 


	Nonpolitical Images Evoke Neural Predictors of Political Ideology
	Results
	Discussion
	Experimental Procedures
	Participants
	fMRI Task
	MRI Data Acquisition and Analysis

	Supplemental Information
	Author Contributions�
	Acknowledgments
	References




