A relationship between the transient structure in the monomeric state and the aggregation propensities of α -synuclein and β -synuclein

Jane R. Allison,^{*,‡,§} Robert C. Rivers,^{‡,||} John C. Christodoulou,^{‡,⊥} Michele

Vendruscolo,*,[‡] and Christopher M. Dobson*,[‡]

Department of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW,

UK

E-mail: j.allison@massey.ac.nz; mv245@cam.ac.uk; cmd44@cam.ac.uk

Running header

aggregation propensities of α -synuclein and β -synuclein

^{*}To whom correspondence should be addressed

[‡]Cambridge University

[§]Current address: Centre for Theoretical Chemistry and Physics, Institute of Natural and Mathematical Sciences, Massey University, Albany Highway, Auckland 0632, New Zealand

^{||}Current address: Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA

[⊥]Current address: Institute of Structural and Molecular Biology, University College London and Birkbeck College, Gower Street, London WC1E 6BT, UK

Residue Number

Figure 1: A) Overlay of the ¹H-¹⁵N HSCQ spectra measured for S64C β S with the attached MTSL spin label in its oxidized (blue) and reduced (black) state. B) Change in the ¹⁵N (blue) and ¹H (red) chemical shifts measured for each residue of S64C β S when the attached MTSL spin label is in its oxidized and reduced forms.

Residue Number

Figure 2: A) Overlay of the ¹H-¹⁵N HSCQ spectra measured for S64C β S_{HC} with the attached MTSL spin label in its oxidized (blue) and reduced (black) state. B) Change in the ¹⁵N (blue) and ¹H (red) chemical shifts measured for each residue of S64C β S_{HC} when the attached MTSL spin label is in its oxidized and reduced forms.

Figure 3: ¹H-¹⁵N HSCQ spectrum of βS_{HC} overlaid with that of (A) βS and (B) αS . Amino acids from the 11 residue segment of αS that were added to βS to form βS_{HC} are labeled. (C) Complete ¹H-¹⁵N HSCQ spectrum of βS_{HC} .