
Supporting Information

The supporting information is divided into the following sections:

1. An example of computing W1 and W2

2. Additional simulations for asymptotic convergence

3. Simulation details and additional results

4. Additional information and results for the yeast cell cycle data

5. Additional information and results for the Arabidopsis data

6. Proofs of the theorems

1 An Example of W1 and W2

Suppose x = (1, 3, 4, 2, 5), y = (1, 4, 5, 2, 3), and we are interested in computing W1 and W2 counts for
k = 3. For W1, there are three possible positions to start a contiguous subsequence of length 3, and only
the ones starting at position 1 and 2 have the same ranks in x and y. There are no pairs of contiguous
subsequences of length 3 with reverse ranks. Hence W1 = 2. To compute W2, first sort y in an ascending
order with permutation σ. Applying σ to x we have σ(x) = (1, 2, 5, 3, 4). The total number of increasing
subsequences of length 3 in σ(x) is 5, and there are no decreasing subsequences of length 3. Hence W2 = 5.

2 Asymptotic Convergence

Figure S1 shows the convergence of the empirical quantiles of T1 and T2 toward the theoretical standard
normal quantiles as n increases. Note due to the fact that T1 can only take n − k + 2 possible values,
it is easy to produce ties. To examine the asymptotic power of the two statistics under alternative
distributions described previously, we generated data that i) were partially coupled time series with the
length of dependence m = n/10; ii) followed an exact functional relationship with six monotonic pieces,
and computed the average power at 5% significance level over 500 iterations. The results for different k
and n are shown in Table S1. As predicted by the theoretical analysis, larger k results in better power
and T1 is more powerful than T2 on the time-course data. In all the cases, as n increases the power tends
to 1. The table also displays the average power for the corresponding null distributions of i) and ii) when
the two data vectors are independent. Some values are slightly larger than 0.05 due to the heavier tails
of the empirical distributions.

3 Simulations

The estimates for Hoeffding’s D, dCov, the Renyi correlation, MI and MIC were computed using rel-
evant R packages (Hmisc [1], energy [2], acepack [3], parmigene [4] and minerva [5]). We used the
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Figure S1: Empirical quantiles for the standardized counts (a) T1 and (b) T2 for n = 50, 500 and 1000,
k = 5, from 105 simulated random permutations.

k/n 100 200 300 400 500

3 0.332 0.562 0.690 0.812 0.902
4 0.636 0.976 1 1 1
5 1 1 1 1 1
6 1 1 1 1 1

(a) Power of T1

k/n 100 200 300 400 500

3 0.070 0.050 0.056 0.038 0.036
4 0.060 0.044 0.030 0.054 0.052
5 0.038 0.074 0.064 0.058 0.060
6 0.052 0.042 0.064 0.046 0.076

(b) Power of T1

k/n 100 200 300 400 500

3 0.302 0.504 0.658 0.796 0.848
4 0.340 0.568 0.726 0.844 0.908
5 0.360 0.650 0.798 0.892 0.952
6 0.392 0.734 0.882 0.924 0.982

(c) Power of T2

k/n 100 200 300 400 500

3 0.048 0.054 0.076 0.052 0.050
4 0.068 0.060 0.044 0.072 0.040
5 0.042 0.056 0.040 0.070 0.038
6 0.050 0.068 0.056 0.046 0.046

(d) Power of T2

k/n 100 200 300 400 500

3 0.516 0.784 0.884 0.952 0.972
4 0.710 0.952 0.996 1 1
5 0.866 0.992 1 1 1
6 0.946 1 1 1 1

(e) Power of T2

k/n 100 200 300 400 500

3 0.058 0.048 0.062 0.044 0.052
4 0.058 0.062 0.044 0.060 0.052
5 0.078 0.040 0.060 0.062 0.030
6 0.070 0.060 0.064 0.062 0.054

(f) Power of T2

Table S1: Power at 5% significance level for different choices of k and n when x and y are: (a), (c) two
independent AR(1) time series (with coefficients 0.1 and -0.2 respectively) but (x1, . . . , xm) = (y1, . . . , ym)

with m = n/10; (e) xi
iid∼ Unif(0, 1), yi = cos(6πxi). The right panel shows the power under the

corresponding null distributions: (b), (d) x and y are two independent AR(1) time series (with coefficients
0.1 and -0.2 respectively); (f) x and y are iid Unif(0, 1).
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standard ACE estimate ([6]) for approximating the Renyi correlation. The computation of some of the
measures involve tuning parameters. The MI estimates were computed using the kth nearest neighbor
(KNN) algorithm of [7]. A number of bandwidth parameters were tried (6, 10 and 20) and the results
corresponding to the one with the best power (20) are shown. The MIC estimates were computed using
the R package minerva with default parameter settings. For statistics with unknown asymptotic distri-
butions (dCov, ACE and MI), the p-values were calculated by a permutation procedure. For each dataset
generated the same statistics were calculated on a null dataset obtained by permuting the orders of yi.
The power was taken to be the fraction of datasets with a statistic value more significant than 95% of
the values produced by the permuted datasets. Pre-computed p-values of MIC were downloaded from
http://www.exploredata.net/Downloads/P-Value-Tables.

Descriptions of the parameters used for the four types of dependence relationships are given in Table

S2. 2000 datasets were generated for every scenario with i ∈ {1, . . . , 220}, ei
iid∼ N(0, 1) for the first three

relationships and ei
iid∼ N(0, 0.5) for the time-course relationship. Outliers were created by randomly

choosing a fraction of the data and replacing ei with ηi.

xi yi ηi

Linear xi
iid∼ N(0, 1) yi = xi + 2ei ηi

iid∼ N(0, 5)

Quadratic xi
iid∼ N(0, 1) yi = x2i + 2ei ηi

iid∼ N(0, 5)

Cross xi
iid∼ N(0, 1) yi =

{
1
2 + xi + ei with probability 1

2 ,
3
2 − xi + ei with probability 1

2 .
ηi

iid∼ N(0, 3)

Partially coupled
time series

xi ∼ AR(1)
with coefficient
0.1

yi =


xi + ei, i ∈ [1, 30]

−xi + ei, i ∈ [101, 120]

AR(1) with coefficient -0.2,

independent of xi, otherwise.

ηi
iid∼ N(0, 3)

Table S2: Parameters for generating the four types of relationships

Power curves for T1 and T2 with different choices of k are shown in Figure S2.
We additionally investigated the power loss on a linear relationship with increasing noise level but no

outliers. The results are plotted in Figure S3. The linear relationship was generated with y = x + βe,

where x
iid∼ N(0, 1), e

iid∼ N(0, 1) and β ∈ {1, 2, . . . , 10}. T+
2 remains the best performing statistic. As

expected, Pearson’s correlation shows better performance on data with no outliers and is now ranked the
second. T2 still demonstrates less power than Spearman’s correlation, dCov and Hoeffding’D, but remains
more powerful than Renyi’s correlation and MI.

We provide a power comparison between our statistics and the LIS-based statistics ([8]) computed
using their R package LIStest on simulated data in Figure S4. The four scenarios used the same param-
eters as described in Table S1, except with n = 200 — the largest n allowed by the R package. LIS Ln
represents the LIS; LIS JLn uses a jackknife version of LIS; and LIS JLMn uses the longest monotonic
subsequence (the maximum of LIS and the longest decreasing subsequence). Overall the power of this
class of statistics is not optimal, which can be explained by the relative non-robustness of the length of
LIS in the presence of noise and outliers. Furthermore, intuitively LIS-based statistics are better suited to
detect global monotonic relationships, which differs from our consideration of potentially changing local
dependence patterns. As Figure S4 confirms, their power values are lower for non-monotonic relationships
((b), (c) and (d)).
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Figure S2: The power of T1 and T2 for various k values rejecting at 5% significance level as level of
contamination by outliers increases when the bivariate data have (a) a linear relationship; (b) a quadratic
relationship; (c) a cross-shaped relationship; (d) are two partially coupled time series.
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a linear relationship.
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Figure S4: The power of T1 and T2 against LIS-based statistics rejecting at 5% significance level as level of
contamination by outliers increases when the bivariate data follow (a) a linear relationship; (b) a quadratic
relationship; (c) a cross-shaped relationship; (d) two partially coupled time series.
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4 Yeast Cell Cycle

The yeast expression data was accessed from http://genome-www.stanford.edu/cellcycle/ and contains
the expression levels of 6178 genes from four reasonably long time-course experiments: alpha factor release
(18 time points), cdc 15 (24 time points), cdc 28 (17 time points) and elutriation (14 time points). We
linearly interpolated some missing data if a point had the two adjacent time points belonging to the same
experiment with no missing values. We focused on the coexpression of 133 transcription factors (TFs)
with no missing data after interpolation. Since the data has a number of ties, we added small random
perturbations for the computation of T1 and T2 and took the final results as the maximum counts over
50 iterations.

Figure S5 shows two pairs of TFs (MOT3 and RPN4; PHO2 and SUT1) with genetic interaction
identified by T1 but missed by all the other methods.
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Figure S5: Expression levels of (a) MOT3 and RPN4; (b) PHO2 and SUT1 in four time-course experiments
(boundaries indicated by the dashed lines). The solid lines highlight regions contributing to the counts
in T1. Both have reported genetic interactions ([9, 10]), but received low rankings under methods other
than T1.

Table S3 shows the number of known TF interactions among strongly coexpressed pairs as ranked by
each method. A number of k values were tried for T1, while for T2 only k = 7 was shown since the results
were quite stable over a range of k values. As T1 led to many ties, the cutoffs were chosen to include the
entire stretches of gene pairs with the same statistic values.
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k = 6 k = 7 k = 8 k = 9
Top rank 4 7 16 31 4 11 22 5 14 44 3 11 37

Pearson 0 2 2 3 0 2 2 1 2 6 0 2 4
Spearman 0 1 2 2 0 1 2 0 1 2 0 1 2
Hoeffding’s D 1 1 1 2 1 1 2 1 1 2 0 1 2
MI 0 1 1 1 0 1 1 1 1 1 0 1 1
MIC 1 1 1 1 1 1 1 1 1 2 1 1 2
dCov 1 1 1 2 1 1 1 1 1 2 1 1 2
Renyi 0 0 2 2 0 2 2 0 2 3 0 2 2
T1 0 1 3 3 1 3 4 1 3 6 0 1 5
T2 0 1 2 3 0 2 2 0 2 3 0 2 3

Table S3: Number of known interactions in highly ranked coexpression pairs by various statistics. A
range of k values were tested for T1, and k = 7 for T2.

5 Arabidopsis Microarrays

The original CEL files of the microarrays were downloaded from NCBI GEO (GSE 5623, 7636, 7639, 7641,
7642, 8787 and 30166), then normalized using the robust multi-array analysis (RMA) ([11]) function in
the Bioconductor package. After normalization, a small fraction of the data were tied. We added small
random perturbations for the computation of T1 and T2 and took the final results as the maximum count
over 20 iterations. We noted that this had negligible influence on all the final results. Asymptotic p-values
were computed for T1, T2, the Pearson correlation, the Spearman correlation and Hoeffding’s D. For dCov,
Renyi and MI, null statistic values were calculated by permuting the sample labels of each gene and used
as empirical quantiles for determining the significance level of the statistics. Pre-computed p-values for
MIC from http://www.exploredata.net/Downloads/P-Value-Tables were used.

Figure S7 shows two pairs of genes in the same pathway, where the bulk of the samples follow a linear
trend but they failed to be identified by MI at an unadjusted significance level of 5%. On the other
hand, both pairs were assigned significant p-values by T2 and other statistics including the Pearson and
Spearman correlations.

For each pathway, we ranked the coexpression between the pathway genes and all the genes available
and chose the top L pairs, where L is the number of total gene pairs in this pathway. We then counted
the number of gene pairs belonging to this pathway among the chosen pairs, and kept 20 pathways in
which at least one method achieved a significant enrichment of pathway genes using Fisher’s exact test.
Table S4 tallies the methods with the highest counts of same pathway pairs in these 20 pathways.

6 Proofs

6.1 Running time of the algorithms

Lemma 6.1. Computing W1 and W2 takes O(k(log k)n) and O(kn log n) time respectively.

Proof. Computing W1 involves ranking and comparing the elements of vectors of length k O(n) number
of times, thus the running time is O(k(log k)n).

W2 counts the total number of subsequences of length k with matching or reverse rank patterns. For
any pair of subsequences with matching rank patterns, permuting the two subsequences simultaneously
to sort one of them in an increasing order will also sort the other one in an increasing order. Using
this observation, let σ be the permutation that sorts y in an increasing order and z = σ(x) be that

7



0.
00

0.
05

0.
10

0.
15

0.
20

Number of top pairs (log)

P
ro

po
rt

io
n 

of
 p

ai
rs

 in
 th

e 
sa

m
e 

pa
th

w
ay

100 300 1000 3000 10000 90000

T2
T1

Hoeffd
Spearman
Pearson
MI
MIC
dCov
Renyi

Figure S6: Proportion of gene pairs in the same pathway as a function of the number of highly ranked
pairs chosen.
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Figure S7: Expression levels of two gene pairs in the same pathway showing a linear relationship with
outliers which were not identified as statistically significant by MI.

permutation applied to x. Then W2 is the number of increasing (and decreasing) subsequences of length
k in z. To compute W2, it suffices to consider counting the increasing subsequences. One obvious solution
is dynamic programing. Let dp[i,l] be the number of increasing subsequences of length l ending at
position i, then the matrix dp[i,l] can be updated as follows.

Initialize dp[i,l] = 0; dp[i,1] = 1

for i = 2 to n

for j = 1 to i-1

if z[i] > z[j]

8



Individual pathways Tally
Renyi X 1
dcov 0
Hoeffd X X X 3
MI X X X X 4
MIC 0
Pearson X X X 3
Spearman X X X 3
T1 X X X X 4
T2 X X X X X X X X X X X X 12

Table S4: Methods with the highest counts of pathway genes pairs in 20 pathways with statistically
significant enrichment

for l = 2 to k

dp[i,l] += dp[j,l-1]

The final answer is obtained by summing dp[i,k] over i. It is easy to see this has a running time of
O(kn2). Note that in the second loop the only entries involved in the update are z[j] whose ranks are
smaller than that of z[i]. Therefore by first ranking the elements in z, a binary indexed tree structure
can be implemented to perform the sum and update efficiently, reducing the running time to O(kn log n)
([12]).

6.2 Asymptotic distributions of W1

Throughout the sections, C and Ci denote positive constants which may be different at each appearance.
Without loss of generality assume x satisfies the assumption that it has an exchangeable distribution.
Then the ranks of any subsequence of x can be treated as a random permutation. Denote

I+i = I(φ(xi, . . . , xi+k−1) = φ(yi, . . . , yi+k−1)),

I−i = I(φ(xi, . . . , xi+k−1) = φ(−yi, . . . ,−yi+k−1)),
Ii = I+i + I−i . (S1)

We have

E(I+i )

=
∑
w

P(φ(xi, . . . , xi+k−1) = w | φ(yi, . . . , yi+k−1) = w)P(φ(yi, . . . , yi+k−1) = w)

=
1

k!

∑
w

P(φ(yi, . . . , yi+k−1) = w)

=
1

k!
(S2)

by the independence assumption and the fact that there is only one way to arrange a list of numbers in
a given order. Clearly also E(I−i ) = 1/k!. In the next lemma, we characterize the behavior of the cross
terms E(I+i I

+
j ).

Lemma 6.2. 1. When |j − i| ≥ k, I+i and I+j are independent. So are (I+i , I
−
j ) and (I−i , I

−
j ).

9



2. When |j − i| = k − l with 1 ≤ l ≤ k − 1,

1

(2k − l)!
≤ E(I+i I

+
j ) ≤

(
2k−2l
k−l

)
(2k − l)!

. (S3)

The same conclusions hold for (I−i , I
−
j ), 1 ≤ |j − i| < k, and (I+i , I

−
j ), (I−i , I

+
j ), |i− j| = k − 1.

3. E(I+i I
−
j ) = E(I−i I

+
j ) = 0 for 1 ≤ |i− j| < k − 1.

Proof. Note that conditioning on the sequence y,

E(I+i I
+
j ) =

∑
w,v

P(φ(xi, . . . , xi+k−1) = w, φ(xj , . . . , xj+k−1) = v)

× P(φ(yi, . . . , yi+k−1) = w, φ(yj , . . . , yj+k−1) = v). (S4)

For |j − i| ≥ k, the subsequences (xi, . . . , xi+k−1) and (xj , . . . , xj+k−1) do not overlap. Thus their local
rank patterns are independent, each having probability 1/k! for a given order.

E(I+i I
+
j ) =

(
1

k!

)2∑
w,v

P (φ(yi, . . . , yi+k−1) = w, φ(yj , . . . , yj+k−1) = v)

=

(
1

k!

)2

= E(I+i )E(I+j ). (S5)

For j− i = k− l < k (assuming WLOG j > i), (xi, . . . , xi+k−1) and (xj , . . . , xj+k−1) form a contiguous
subsequence xi, . . . , xj , . . . , xj+k−1. Suppose φ(xi, . . . , xj+k−1) = (u1, . . . , u2k−l), then

φ(u1, . . . , uk) = (w1, . . . , wk),

φ(uk−l+1, . . . , u2k−l) = (v1, . . . , vk),

φ(uk−l+1, . . . , uk) = φ(wk−l+1, . . . , wk) = φ(v1, . . . , vl)

:= (o1, . . . , ol), say. (S6)

Focusing on the overlapping part (uk−l+s) for 1 ≤ s ≤ l, the numbers of elements smaller than uk−l+s in
the subsequences (u1, . . . , uk), (uk−l+1, . . . , u2k−l) and (uk−l+1, . . . , uk) are wk−l+s− 1, vs− 1, and os− 1,
respectively. Given the overall rank uk−l+s in the sequence (u1, . . . , uk−l+1, . . . , uk, . . . , u2k−l), we have

uk−l+s − 1 = (wk−l+s − 1) + (vs − 1)− (os − 1), (S7)

since the elements in the overlapping part are counted twice. In other words, the overlapping part (uk−l+s)
for 1 ≤ s ≤ l is fixed, and there are at most

(
2k−2l
k−l

)
ways of arranging the rest 2k − 2l numbers. Thus we

arrive at the upper bound in (S3). The lower bound is trivial. The same arguments hold for (I−i , I
−
j ),

1 ≤ |j − i| < k, and (I+i , I
−
j ), (I−i , I

+
j ), |i− j| = k − 1.

Lastly, for 1 ≤ |i− j| < k− 1, E(I+i I
−
j ) = E(I+i I

−
j ) = 0 since no such arrangements of the elements are

possible.

Let Ni denote the dependency neighborhood of Ii, the next lemma tries to bound a key quantity in
the variance calculation.

Lemma 6.3. For all k ≥ 3,

4(n− 2k + 2)

(
k−1∑
l=2

1

(2k − l)!
+

2

(2k − 1)!

)
≤

n−k+1∑
i=1

∑
j∈Ni\{i}

E(IiIj) ≤
C(n− k + 1)

(k + 1)!
(S8)

for some C > 0.
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Proof. First note that

n−k+1∑
i=1

∑
j∈Ni\{i}

E(IiIj) = 2
n−k+1∑
i=1

∑
j∈Ni\{i}

E(I+i I
+
j ) + 2

n−k+1∑
i=1

∑
|j−i|=k−1

E(I+i I
−
j )

≤ 8(n− k + 1)

k−1∑
l=1

γl (S9)

by (S3), where

γl =

(
2k−2l
k−l

)
(2k − l)!

. (S10)

It remains to bound
∑k−1

l=1 γl. Taking the ratio of successive terms,

rl =
γl+1

γl
=

(
2k−2l−2
k−l−1

)
(2k − l − 1)!

· (2k − l)!(
2k−2l
k−l

)
=

(k − l)2(2k − l)
(2k − 2l)(2k − 2l − 1)

=
(k − l)(2k − l)
2(2k − 2l − 1)

, l = 1, . . . , k − 2.

(S11)

For all k ≥ 3, there exists positive constant C1 and C2 (independent of k) such that

C1k ≤ rl ≤ C2k, l = 1, . . . , k − 2. (S12)

Therefore
∑k−1

l=1 γl is upper bounded by

k−1∑
l=1

γl ≤ γk−1
k−2∑
l=0

(
1

C1k

)l

= γk−1 ·
1−

(
1
C1k

)k−1
1− 1

C1k

≤ C

(k + 1)!
(S13)

for some C > 0. Equations (S13) and (S9) give the required upper bound.
For the lower bound, it is easy to see

n−k+1∑
i=1

∑
j∈Ni\{i}

E(IiIj) = 2
n−k+1∑
i=1

∑
j∈Ni\{i}

E(I+i I
+
j ) + 2

n−k+1∑
i=1

∑
|j−i|=k−1

E(I+i I
−
j )

≥ 2 [2(n− k + 1)− 2(k − 1)]

(
k−1∑
l=1

1

(2k − l)!
+

1

(2k − 1)!

)

≥ 4(n− 2k + 2)

(
k−1∑
l=2

1

(2k − l)!
+

2

(2k − 1)!

)
(S14)

by the lower bound in (S3).
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With the above bounds we can now prove Theorem 1.

Proof of Theorem 1. In order to use Stein’s method for normal approximation, we first give a lower bound
of the variance. Note that

σ21,n =
n−k+1∑
i=1

∑
j∈Ni

(E(IiIj)− (EIi)(EIj))

=
n−k+1∑
i=1

∑
j∈Ni\{i}

E(IiIj) +
2(n− k + 1)

k!
−
n−k+1∑
i=1

∑
j∈Ni

E(Ii)E(Ij)

≥ 4(n− 2k + 2)

(
k−1∑
l=2

1

(2k − l)!
+

2

(2k − 1)!

)
+

2(n− k + 1)

k!
− 4(n− k + 1)(2k − 1)

(k!)2
. (S15)

by (S8). For k such that k/n→ 0, when n is sufficiently large, σ21,n is lower bounded by the dominating
terms

σ21,n ≥ C1

(
4n

(
k−1∑
l=2

1

(2k − l)!
+

2

(2k − 1)!

)
+

2n

k!
− 4n(2k − 1)

(k!)2

)

=
2C1n

k!

(
2

(
1

k + 1
+

1

(k + 2)(k + 1)
+ · · ·+ 2

(2k − 1) · · · (k + 1)

)
+ 1− 2(2k − 1)

k!

)
≥ C2n

k!
(S16)

for some C1, C2 > 0 and all k ≥ 3. One version of Stein’s method gives the following error bound for
normal approximation ([13]),

dW (T1, Y ) ≤ D2

σ31,n

n−k+1∑
i=1

E|Ii − 2/k!|3 +

√
26D3/2

√
πσ21,n

√√√√n−k+1∑
i=1

E|Ii − 2/k!|4 (S17)

where dW is the Wasserstein metric, Y ∼ N(0, 1) and D = maxiNi = 2k−1. This can be further bounded
by

C1 ·
D2µ1,n
σ31,n

+ C2 ·
D3/2µ

1/2
1,n

σ21,n

≤C · D
2µ1,n
σ31,n

≤C · k
2
√
k!√
n
→ 0 (S18)

using (S16) for k/(log n)α → 0, α < 1.
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The Chen-Stein method yields the following error bound for Poisson approximation,

dTV (W1, Z) ≤ min{1, µ−11,n}

n−k+1∑
i=1

∑
j∈Ni

E(Ii)E(Ij) +
n−k+1∑
i=1

∑
j∈Ni\{i}

E(IiIj)


≤

n−k+1∑
i=1

∑
j∈Ni

E(Ii)E(Ij) +
n−k+1∑
i=1

∑
j∈Ni\{i}

E(IiIj)

≤ 4(n− k + 1)(2k − 1)

(k!)2
+
C(n− k + 1)

(k + 1)!

≤ C(n− k + 1)

(k + 1)!
(S19)

for some C > 0 and k sufficiently large. For k growing fast enough such that µ1,n = O(1), the above
bound goes to 0. In particular, using Stirling’s approximation one can show in the regime log n/k = O(1)
this condition is satisfied.

6.3 Asymptotic distribution of W2

Assuming x has an exchangeable distribution, the permuted sequence σ(x) also has an exchangeable
distribution, and its ranks can be treated as a random permutation. For notational simplicity, take z as
a random permutation of {1, . . . , n}. For integers {i1, . . . , ik} satisfying 1 ≤ i1 < · · · < ik ≤ n, define
indicators I+i1,...,ik(z) such that

I+i1,...,ik(z) =

{
1 (i1, . . . , ik) is a subsequence of z,

0 otherwise.
(S20)

Similarly define

I−i1,...,ik(z) =

{
1 (ik, . . . , i1) is a subsequence of z,

0 otherwise.
(S21)

Then W2 can be written as the sum of

W2 =
∑

1≤i1<···<ik≤n
Ii1,...,ik(z), (S22)

where
Ii1,...,ik(z) = I+i1,...,ik(z) + I−i1,...,ik(z). (S23)

It is easy to see that if {i1, . . . , ik} ∩ {j1, . . . , jk} = ∅, Ii1,...,ik(z) and Ij1,...,jk(z) are independent. The
variance of W2 becomes

Var(W2)

=
∑

{i1,...,ik}∩{j1,...,jk}6=∅

{E(Ii1,...,ik(z)Ij1,...,jk(z))− E(Ii1,...,ik(z))E(Ij1,...,jk(z))}

=2
∑

{i1,...,ik}∩{j1,...,jk}6=∅

E(I+i1,...,ik(z)I+j1,...,jk(z))

+ 2
∑

{i1,...,ik}∩{j1,...,jk}6=∅

E(I+i1,...,ik(z)I−j1,...,jk(z))−
4D
(
n
k

)
(k!)2

, (S24)
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since E(I+(zi1 , . . . , zik)) = 1/k!. Here D is the size of the dependency neighborhood and equals
(
n
k

)
−
(
n−k
k

)
.

The sum of the first cross terms can be written as (Proposition 2 in [14])∑
{i1,...,ik}∩{j1,...,jk}6=∅

E(I+i1,...,ik(z)I+j1,...,jk(z))

=

k∑
j=1

(
n

2k − j

)
1

(2k − j)!
A(k − j, j), (S25)

where

A(N, j) =
∑

∑j
r=0 lr=N∑j
r=0mr=N

j∏
r=0

(
(lr +mr)!

lr!mr!

)2

. (S26)

We will be using the following fact about the constants A(N, j) from Lemma 3 in [14].

Fact 6.4. For sufficiently large k, there exists C > 0 such that

A(k − 1, 1) ≥ Ck1/2
(

2k − 2

k − 1

)2

. (S27)

It is easy to see for all k ≥ 2, A(k − 1, 1) >
(
2k−2
k−1

)2
.

The sum of the second cross terms reduces to∑
|{i1,...,ik}∩{j1,...,jk}|=1

E(I+i1,...,ik(z)I−j1,...,jk(z)),

since when the size of the intersection is greater than one, it is impossible to find a permutation z satisfying
both conditions specified by the indicators. Using arguments similar to the proof of Proposition 2 in [14],
we can show ∑

|{i1,...,ik}∩{j1,...,jk}|=1

E(I+i1,...,ik(z)I−j1,...,jk(z)) =

(
n

2k − 1

)
1

(2k − 1)!
B(k), (S28)

where

B(k) =
∑

l0+l1=k−1
m0+m1=k−1

(
l0 +m0

l0

)(
l1 +m1

l1

)(
l0 +m1

l0

)(
l1 +m0

l1

)
(S29)

Now we can obtain a lower bound on the variance and use the Stein method to prove Theorem 2.

Proof of Theorem 2. From equations (S24), (S25) and (S28), we have

σ22,n
µ22,n

≥
(

n
2k−1

)
(k!)2

2
(
n
k

)2
(2k − 1)!

(A(k − 1, 1) +B(k))− D(
n
k

)
≥ k2

2n
·
(

1− k − 1

n− k + 1

)k−1(2k − 1

k − 1

)−2
(A(k − 1, 1) +B(k))− D(

n
k

) .
(S30)
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For k →∞ and k = o(n1/2), it is easy to check D/
(
n
k

)
= O(k2/n). Applying Fact 6.4,

σ22,n
µ22,n

≥ C · k
5/2

2n

(
1− k − 1

n− k + 1

)k−1 [ (2k − 2) · · · k
(2k − 1) · · · (k + 1)

]2
+O(k2/n)

= C · k
5/2

2n
(1 +O(k2/n))

(
k

2k − 1

)2

+O(k2/n)

≥ C · k
5/2

n
(S31)

for some C > 0 and sufficiently large k and n. Applying the bound from the Stein method as in equation
(S17), we have

dW (T2, Y ) ≤ C1 ·
D2µ2,n
σ32,n

+ C2 ·
D3/2µ

1/2
2,n

σ22,n

≤ C1 ·
k1/4(k!)2

n1/2
+ C2 ·

k1/2(k!)3/2

n1/2
→ 0 (S32)

for k/(log n)α → 0.
For k fixed, D/

(
n
k

)
≤ k2/(n− k + 1) + o(1/n). (S30) becomes

σ22,n
µ22,n

≥ k2

2n
(1 +O(1/n))

(
2k − 1

k − 1

)−2
(A(k − 1, 1) +B(k))− k2

n− k + 1
+ o(1/n)

=

{
1

2
(A(k − 1, 1) +B(k))

(
2k − 1

k − 1

)−2
− 1

}
k2

n
+ o(1/n)

:= C(k) · k
2

n
+ o(1/n), say. (S33)

When k = 3, we can check that C(3) > 0 and thus σ22,n/µ
2
2,n ≥ C/n. For other fixed k, the same order

lower bound holds. Applying (S17),

dW (T2, Y ) ≤ O(n−1/2)→ 0. (S34)

6.4 Power analysis

First we prove a lemma upper bounding the variances of T1 and T2.

Lemma 6.5. • σ21,n = O(n) for fixed k; σ21,n = O(n/k!) for k →∞ and k/(log n)α → 0.

• σ22,n = O(n2k−1) for fixed k; σ22,n = O(µ22,nk
5/2/n) for k →∞ and k/(log n)α → 0.

Proof. By the upper bound in (S8),

σ21,n =

n−k+1∑
i=1

∑
j∈Ni\{i}

E(IiIj) +
2(n− k + 1)

k!
−
n−k+1∑
i=1

∑
j∈Ni

E(Ii)E(Ij)

≤ C(n− k + 1)

(k + 1)!
+

2(n− k + 1)

k!

=

{
O(n) for fixed k;

O(n/k!) for k →∞, k/(log n)α → 0.
(S35)
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To bound σ22,n, first note that B(k) ≤ A(k − 1, 1) for all k ≥ 2. This holds because for every pair of
(l0, l1) and (m0,m1) such that l0 + l1 = k − 1 and m0 +m1 = k − 1, we have(

l0 +m0

l0

)2(l1 +m1

l1

)2

+

(
l0 +m1

l0

)2(l1 +m0

l1

)2

≥ 2

(
l0 +m0

l0

)(
l1 +m1

l1

)(
l0 +m1

l0

)(
l1 +m0

l1

)
.

By equations (S24), (S25) and (S28),

σ22,n = 2
k∑
j=1

(
n

2k − j

)
1

(2k − j)!
A(k − j, j) + 2

(
n

2k − 1

)
1

(2k − 1)!
B(k)−

4D
(
n
k

)
(k!)2

≤ 4
k∑
j=1

(
n

2k − j

)
1

(2k − j)!
A(k − j, j)−

4D
(
n
k

)
(k!)2

= O

(
µ22,nk

5/2

n

)
(S36)

by Theorem 1 in [14]. The first part of the lemma holds since µ2,n = O(nk) for k fixed.

Proof of Theorem 3. It is easy to see the count W1 is bounded below by m− k + 1. By the first part of
Lemma 6.5,

T1 ≥
m− k + 1− µ1,n

σ1,n

≥ C
√
n

(
m

n
− 2

k!

)
, (S37)

for some C > 0, fixed k and m, n sufficiently large. In this case, m has to grow at the same rate as n,
that is m ∼ a1n and a1 > 2/k!. It follows then T1 = Ω(

√
n).

When k →∞ and k/(log n)α → 0, for n large enough,

T1 ≥ C
√
n

k!

(
k!(m− k + 1)

n− k + 1
− 2

)
≥ C

√
n

k!

(
a2n− k! · k + k!

n− k + 1
− 2

)
= Ω

(√
n

k!

)
(S38)

for m ≥ a2n/k!, a2 > 2. If m grows at the rate of a3n, a3 ∈ (0, 1],

T1 ≥ C
√
nk!

(
m− k + 1

n− k + 1
− 2

k!

)
≥ C
√
nk!a3 = Ω(

√
nk!). (S39)

Similarly, the count W2 is lower bounded by
(
m
k

)
, using the second part of Lemma 6.5, for fixed k,

T2 ≥ C ·
(
m
k

)
− 2
(
n
k

)
/k!

nk−1/2

= C
√
n

(
m · · · (m− k + 1)

n · · · (n− k + 1)
− 2

k!

)
≥ C
√
n

((m
n

)k
− 2

k!

)
(S40)
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for sufficiently large m and n. m has to grow at the rate of b1n for the lower bound to go to infinity, and
bk1 > 2/k!. We have T2 = Ω(

√
n).

When k →∞ and k/(log n)α → 0, again by Lemma 6.5,

T2 ≥ C
√

n

k5/2

(
k!
m · · · (m− k + 1)

n · · · (n− k + 1)
− 2

)
≥ C

√
n

k5/2

(
k!
(m
n

)k
− 2

)
≥ C

√
n

k3/2
, (S41)

for m ≥ en/k. When m ∼ b2n, b2 ∈ (0, 1],

T2 ≥ C
√

n

k5/2

(
k!
(m
n

)k
− 2

)
≥ Cbk2k!

√
n

k5/2
. (S42)

Proof of Theorem 4. Let n1, . . . , nd denote the number of points in (x,y) falling on to each monotonic
piece, then W2 is lower bounded by

∑d
t=1

(
nt

k

)
. For fixed d and k, ,∑d

t=1 nt · · · (nt − k + 1)

n · · · (n− k + 1)

P−→
d∑
t=1

`kt (S43)

Since by Lemma 6.5,

T2 ≥ C
√
n

(∑d
t=1 nt · · · (nt − k + 1)

n · · · (n− k + 1)
− 2

k!

)
(S44)

for some C > 0, it follows

P
(
T2 ≥ C

√
n(d−(k−1) − 2/k!)

)
→ 1 (S45)

using Hölder’s inequality and the fact
∑d

t=1 `t = 1. Thus T2 is lower bounded by C
√
n with probability

tending to 1 when dk−1 < k!/2.
When k →∞ and k/(log n)α → 0, it is easy to check

nt · · · (nt − k + 1)

n · · · (n− k + 1)
·
(
n

nt

)k
P−→ 1. (S46)

Also,

P

(∣∣∣∣∣
(
nt
n`t

)k
− 1

∣∣∣∣∣ ≥ ε
)

≤P
(
nt
n`t
− 1 ≥ (1 + ε)1/k − 1

)
+ P

(
nt
n`t
− 1 ≤ (1− ε)1/k − 1

)
≤ exp(−2n`2t ((1 + ε)1/k − 1)2) + exp(−2n`2t ((1− ε)1/k − 1)2)→ 0 (S47)
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by Hoeffding’s inequality. It follows then

d∑
t=1

nt · · · (nt − k + 1)

n · · · (n− k + 1)
·

(
d∑
t=1

`kt

)−1
P−→ 1. (S48)

Now noting that

T2 ≥ C
√

n

k5/2

(
k!

∑d
t=1 nt · · · (nt − k + 1)

n · · · (n− k + 1)
− 2

)
, (S49)

we have

P
(
T2 ≥ C

k!

dk−1

√
n

k5/2

)
→ 1 (S50)

again by Hölder’s inequality.
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