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Model Details. Our model includes state fixed effects (Si in Eq. 1)
to account for time-invariant differences across the region (e.g.,
soil type), and state-specific linear and quadratic time trends
[f(t)] to account for divergent evolution of policies, infrastructure,
and management over time between states. We do not explicitly
include any technology or management variables (e.g., fertilizer
application rates, use of high-yielding varieties, irrigation cover-
age, and so forth) in any of the models because these changes are
captured to some extent in the state-specific time trends. The
inclusion of the linear time term effectively detrends the data so
that we are not simply correlating increasing quantities (yield,
temperature, emissions, and so forth). The inclusion of the qua-
dratic term allows for the possibility that other nonclimate,
nonpollution factors may contribute to a leveling-off of yields.
Because the dependent variable (Yit) is logged, we can interpret
results in terms of percent changes in yield.
Our model includes both climate and pollution variables: T and

P, the average growing season temperature and precipitation, as
well as T2 and P2, the average growing season temperature-
squared and precipitation-squared. Inclusion of these squared
terms to some degree accounts for extreme temperature and
precipitation events and also ensures that our model accounts
for weather variations across sites, and not just within sites (1).
We standardize T and P by subtracting their means and dividing
by their standard deviations (SDs). This approach allows us to
interpret the regression coefficients in terms of SDs [i.e., a +1 SD
change in T results in a ðβT + 2  p  βT2Þ  p  100% change in Y]. The
other variables used are: ln(SO2), average sulfur dioxide emissions
(kg m−2 s−1); ln(BC), the average BC emissions (kg m−2 s−1);
ln(NMVOC), the average emissions of nonmethane volatile or-
ganic compounds (kg m−2 s−1); ln(NOx), the average emissions
of nitrogen oxides (kg m−2 s−1); and the ratio ln(NMVOC):
ln(NOx). The use of logged emissions variables allows for the
interpretation of regression coefficients in terms of elasticities;
that is, a 1% change in sulfur dioxide emissions leads to a βSO2

%
change in yield, and so forth. The physical meaning of the pol-
lution variables (including physical rationale for the logged form)
is discussed in greater detail below; sources for all of the above-
mentioned data can be found in Materials and Methods. As de-
scribed in Materials and Methods, emissions are aggregated over
crop area and growing season (for either wheat or rice) to the
state-year from monthly gridded datasets.
To calculate the impacts of climate and pollution on yields, we

calculated the percent change between predicted values from our
main model and predicted values from a baseline scenario. (RYC
is calculated using average 2006–2010 values for both model and
baseline to avoid influence of fluctuations.) The baseline sce-
nario is counterfactual: it includes only historical technology
trends and effectively holds T, P, and aerosol and ozone pre-
cursor emissions at 1980 levels (average 1980–1981 levels, to
avoid having results influenced by endpoints). These results are
presented in Fig. 3. Error bars (90% confidence) are constructed
by bootstrap resampling the model 1,000 times and selecting the
5th–95th percentile range. To calculate overall impacts, we
summed the state-wide percent changes weighted by area (e.g.,
totals in Fig. 3) or production (numbers given in main text).

Emissions Variables, Aerosols, and Tropospheric Ozone Chemistry.
Aerosols. Our models give a more complete accounting than
previous work (2, 3) of the impacts of short-lived climate forcers
on surface radiation by including gridded emissions of sulfur

dioxide (SO2) and black carbon (BC) as markers for surface
radiation changes. We include SO2 as a proxy for sulfate aero-
sols, because it is the main anthropogenic precursor to sulfates
(atmospheric sulfate ions are formed by photochemical oxida-
tion of SO2 followed by gas-to-particle conversion). BC is a by-
product of biomass and fossil fuel combustion (especially diesel);
it can be found in the atmosphere in pure (BC) form or in
various mixtures with organic carbon (OC) compounds and
sulfates. We do not include OC here as it usually appears as
Brown Carbon (BrC), the radiative properties of which vary (4).
Ozone precursors. Tropospheric ozone (O3) forms when ozone
precursor compounds react in the presence of sunlight. Forma-
tion is highly localized and depends on the presence of both
volatile organic compounds (VOCs) or carbon monoxide (CO)
and nitrogen oxides (NOx = NO + NO2). (We use VOCs for the
remainder of this discussion, although as noted CO can sub-
stitute for a VOC in the initial reaction. See below for alternate
ozone specifications.) Formation is triggered when a VOC reacts
with OH in the atmosphere to form a peroxy radical. These
radicals (the hydroxyl, HO2, is the simplest of the family, rep-
resented in general by RO2) then combine with NO to produce
NO2. At lower NOx concentrations, in the presence of sunlight,
NO2 is photolyzed, providing the extra O that combines with O2
to form ozone. At high NOx concentrations, NO conversely ti-
trates ozone out of the atmosphere, pulling overall concen-
trations down. The determinant of these two NOx regimes is the
ratio of summed VOCs (weighted by reactivity) to NOx (5).
Our model attempts to account for the potential existence of

both high- and low-NOx emissions areas across the study region
and represent in a heuristic way some of the above chemistry by
including ln(NOx), ln(NMVOC), and the ratio of ln(NMVOC):
ln(NOx) (unweighted) in the regression. [Note: VOCs typically
include methane, a greenhouse gas that has increased tremen-
dously at global levels over the past decades, but is not usually
part of local/regional smog events. It has a fairly uniform global
distribution, a longer lifetime than many SLCPs, and is less re-
active than many other VOCs. Furthermore, methane is produced
during rice cultivation, making it endogenous. We therefore only
use NMVOCs (nonmethane VOCs) in this analysis.] At high NOx
concentrations, ozone formation is more sensitive to NMVOCs in
general (the reaction is NMVOC-limited, and increases in NOx
may result in net titration of O3); at lower NOx concentrations,
increases in either NOx or NMVOCs should lead to the formation
of ozone (and a decrease in yields). However, the NMVOC:NOx
ratio determines the limiting precursor at any given VOC and
NOx level. The likelihood of high-NOx regimes in the region is
indicated by modeling studies (6, 7), and we find evidence of both
NOx regimes in our analysis, as shown in Figs. 2 and 4 and dis-
cussed in the main text. (We also conducted the same analysis with
different ozone precursor specifications; see below.)
To further inform our model specification, we examined the

existing historical data on tropospheric ozone and ozone pre-
cursor concentrations in Europe (Fig. 2). Using the European
Environment Agency’s AirBase database (8), we found the sites
and years with valid annual concentration measurements of both
ozone and ozone precursors. We then examined the functional
relationship between ozone, NOx, total VOCs, and VOC:NOx
using this restricted dataset (n = 57 site years). The fit between
O3 and the logarithm of precursor concentrations (for both NOx
and VOCs independently, and for the ratio term) was much
better than the linear fit. Nevertheless, one can see that, for
these sites, an empirical NOx threshold for low- and high-NOx
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regimes can be determined (∼30 μg NO2/m
3): in the low-NOx

regime, O3 concentrations increase slightly or remain flat with
increasing NOx; in the high-NOx regime, O3 concentrations drop
dramatically with increasing NOx (ozone-titrating). We divided
the data into low and high NOx to examine the O3-NOx-VOC
relationship in these two regimes. [Note: Most of these sites are
urban and are therefore likely in the high NOx regime (i.e.,
ozone-titrating). This can be seen in the ratio of observations
above and below the high-NOx threshold.]
We looked at the equation: O3 ∼ ln(NOx) + ln(VOC) +

[ln(VOC):ln(NOx)] for high- and low-NOx regimes. At low-
NOx concentrations, both NOx and VOCs are statistically sig-
nificant predictors of ozone concentrations, and the coefficients
for ln(NOx) and the ln(VOC):ln(NOx) ratio are positive. For high
NOx concentrations, only NOx is a statistically significant pre-
dictor of ozone concentrations, with a negative coefficient. (For
the full sample, the coefficients mimic the high-NOx subsample,
but with a lower R2 value, which makes sense given the urban
location of most sites in the sample.)
In our analysis we used estimated emissions in lieu of con-

centrations, because no long-term records of ozone and ozone
precursor concentrations exist for India. This analysis therefore
assumes that concentrations are proportional to emissions; future
work should probe this relationship directly. We also consider
only total NMVOC emissions, without accounting for their rel-
ative reactivity.

Alternative Model Specifications. Consequences of an emissions-based
approach. As discussed above, emissions are related—but not
equivalent—to concentrations, and it is concentrations of BC
and ozone that determine radiation changes and plant toxicity ex-
posure, respectively. Using emissions variables (which are them-
selves estimates constructed from bottom-up technology surveys) as
proxies for concentrations may result in either overestimation (by
not accounting for deposition, precipitation, and so forth) or un-
derestimation (because of undercounting in emissions inventories)
of impacts. Once a reasonable time series of ozone and precursor
concentrations exists, the relationship between SLCP emissions,
direct and diffuse radiation fractions, and ozone concentrations can
be more fully explored. Future research on crop yield impacts will
likely use a two-step process, whereby emissions are related to ra-
diation and ozone, which are then related to yields (e.g., a two-stage
least squares estimation, not a dose–response estimate).
Climate and pollution interconnectedness.One of the main difficulties
in using panel regression analysis to tease out the impacts of
SLCPs on yields is the interconnected nature of emissions and
climate variables. As mentioned in the main text, SLCPs have
their own independent impacts directly on plant growth (ozone)
and via surface radiation changes (aerosols); they also impact re-
gional and global climate, which is then in turn reflected in tem-
perature, precipitation, and radiation changes. Beyond the aerosol
indirect and semidirect effects, there are additional interactions
among the predictor variables that are not addressed in this study.
For example: the rate of formation of tropospheric ozone depends
on temperature and radiation, as well as the emission of ozone
precursors; the presence of tropospheric ozone also alters surface
radiation. For simplicity, and because of lack of degrees of freedom,
we do not include these secondary interaction terms.
Carbon monoxide and alternate ozone specifications.We conducted our
analysis with several variations on the ozone precursor specifi-
cations presented in the main text and this SI Text. For example,
we substituted carbon monoxide for NMVOCs (and an analogous
CO:NOx ratio). We also ran a variation using CO+NMVOC. Our
results are robust to such changes; the differences on all are within
several percentage points (some larger, some smaller). This find-
ing makes sense, as rising CO levels are linked to changes in
background ozone but are not thought to contribute as much to
the spatial heterogeneity of surface ozone documented over

this region. Future research can leverage the increasing network
of surface ozone measurements as well as remote sensing of
different species. The alternate ozone specifications presented
in Fig. S10 are:

i) ln(NOx) only → a simple model using only NOx emissions;
ii) ln(NMVOC) only → models with only NMVOC emissions;
iii) ln(NOx) + ln(NMVOC):ln(NOx) → only NOx and the ratio

of NMVOCs to NOx;
iv) ln(NMVOC):ln(NOx) + ln(BC):ln(SO2) → only the ratios of

ozone precursors and the ratio of absorbing to scattering
aerosols;

v) ln(NOx+NMVOC) + ln(NMVOC):ln(NOx) + ln(BC+SO2) +
ln(BC):ln(SO2) → grouped aerosols, grouped precursors,
and ratios;

vi) The main model presented in the paper, but with year fixed
effects as opposed to linear and quadratic time trends. As
expected, the addition of year fixed effects swallows much of
the interannual variation in climate.

In addition, models using only NMVOCs, models using non-
logged versions of variables, models incorporating CO both in-
dividually and as part of the VOC:NOx ratio, and models in-
corporating organic carbon individually and as part of aerosol
totals show very similar results.
Alternative climate and emissions data.As a robustness check, we ran
our analysis with alternative climate and emissions datasets. First,
we used the temperature and precipitation data from the Climatic
ResearchUnit at East Anglia (half-degree data fromCRUTS3.21)
(9). Based on findings from previous analyses that showed dif-
ferent crop sensitivity to minimum and maximum temperatures,
we also ran our model with Tmin and Tmax (10). Finally, we used
a new aerosols inventory of BC, organic carbon, and sulfur di-
oxide (from ref. 11) to check inventory sensitivity. The Lu and
Streets inventory (Fig. S11) only begins in 1996; we merged these
data with Regional Emissions Inventory in Asia (REAS) data by
scaling so that values in 1996 were equal. As shown in Fig. S12,
our findings are not sensitive to different climate specifications;
the use of the Lu et al. (11) data reduce the magnitude of impacts
but maintains the same state-by-state pattern. The overall scale of
discrepancy between the inventories (e.g., statewide differences in
1996 data) may explain some of this change.
Carbon dioxide (CO2) fertilization. We do not explicitly include any
measures of CO2 fertilization in our model. Rather, these effects
are aliased into the time trends. Inclusion of CO2 fertilization
directly in our model would be problematic because CO2 is well-
mixed in the atmosphere: because this study uses exposure
metrics averaged over crop growing area and growing season,
exposure trends are similar over the entire growing area, and
effects on each crop should likewise be fairly constant. Never-
theless, it is possible to estimate the average CO2 impact. Free-air
CO2 enrichment experiments on C3 crops (including rice and
wheat) estimate a 14% increase in crop yields when ambient CO2
is increased from 367 ppm to 583 ppm, or 0.065% yield change
per 1-ppm increase in CO2 (1, 12). Over the course of this study,
average CO2 concentrations increased from 337 ppm to 390 ppm
(keelingcurve.ucsd.edu), which would correspond to a yield in-
crease of just under 3.5%. In certain states, this result offsets the
direct temperature and precipitation effects, but does not offset
the pollution impacts. Moreover, because CO2 is emitted in the
same combustion processes as aerosols (e.g., coal combustion)
and ozone precursor compounds (e.g., transportation), our study
points to the further complications in isolating CO2 impacts on
crop yields.
Alternative time controls. Several previous statistical panel studies of
climate impacts on yields include year fixed effects (FE), which
account for events (like economy-wide shocks) affecting the
entire study region in given years. We present results of our model
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with the inclusion of year FE in Fig. S10. The trends are similar,
but the overall magnitude of SLCP impacts is larger. When year
FE are included, climate impacts are predictably smaller given
that the year FE consume much of the variation in the climate
signal. As this reduction in signal-to-noise can magnify any
measurement or data errors, we choose to omit year FE in our
main analysis (13).
Kharif-only analysis. We group our analysis by crop under the as-
sumption (informed by chamber and field studies) that the re-
lationship between SLCPs and crop yields should be crop-specific.
(That is, even though we include both rabi rice and kharif rice states
in our rice analysis, the climate and pollution variables are aver-
aged over the particular state-crop season.) However, to verify that
the inclusion of the two main rabi-producing states is not driving
the rice results (e.g., because different cultivars are used in the two
seasons or because SLCP impacts are expected to be higher during
the dry season), we also present kharif-only analysis in Fig. S13.
Results are similar, though of a slightly smaller magnitude.

Model Limitations. Model training. To illustrate that our results are
not being driven by particular years or states, we ran our wheat
analysis with a subset of data (even years). We then applied those
coefficients to the rest of the data (odd years). The results are
shown in Fig. S14.
Explanatory power of different variables. The inclusion of state-
specific time trends in our model effectively detrends the data; our
model thus asks how much of the variation in year-to-year de-
meaned yields (e.g., Figs. S2 and S3) is explained by the fluctu-
ations in demeaned climate and emissions variables. The relative
importance of the time trends can be seen by first regressing the
yield, climate, and pollution variables on the state-specific time
trends (i.e., explicitly detrending them) and then regressing the
yield residuals on the climate and pollution residuals. The
coefficients for the explanatory variables will be identical (Frisch–
Waugh–Lovell theorem). By comparing these two regressions,
we find that the state-specific time trends explain most (about
89%) of the variation in yields. In addition, we can compare
a regression of the yield residuals on climate residuals (alone)

versus both climate and pollution residuals to compare whether
(and how much) the pollution variables add to the model ex-
planatory power. We found that the explanatory power of the full
climate-and-pollution model is better than a model with only
climate variables and no pollution variables. Table S2 summa-
rizes these results; the detrended relationship is also shown in the
inset of Fig. S14.
These results are not surprising. That is, the pollution variables

increase the power of the year-to-year predictions, but not by all
that much, in part because year-to-year fluctuations aren’t that
large in the emissions variables (as seen from the time series
plots of emissions in Figs. S5–S7). Put another way, the signal-to-
noise ratio for the pollution variables is low. This analysis illus-
trates the need for larger studies over more widely varying pol-
lution regimes or the leveraging of natural experiments that
produce greater year-to-year variation in emissions. In addition,
a finer-grained look at management practices may help gain le-
verage on the remaining variation.
Collinearity. In addition to low signal-to-noise for the emissions
variables, our analysis is limited because of multicollinearity, or
the strong linear correlation of independent variables in a re-
gression analysis (in this case, the emissions variables, which are
all fairly monotonically increasing over time) (Figs. S5–S7, S11,
and Table S3). The presence of multicollinearity does not un-
dermine the reliability of the model as a whole (e.g., results in
Fig. 3), but it affects our ability to distinguish with certainty the
individual impact of the correlated variables, as the variances are
inflated. It is for this reason that we are unable to quantify with
certainty the relative impacts of aerosols versus ozone within
SLCP impacts. In general, the antidote to multicollinearity is
more data, adding for example, other countries to a dataset or
undertaking analysis at a smaller unit of scale. The latter is only
a limited option in this case, as relating local emissions to local
yield changes would become invalid at a smaller scale (because
of shorter-range pollutant transport). However, expanding the
analysis to include other regions of the world (as data become
available) points to a promising future avenue of research.
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Fig. S1. Historic wheat and rice production in India, 1961–2012.
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Fig. S2. (Top) Wheat yields in the main wheat-producing states in India. (Bottom) Detrended wheat yields, showing deviation from fitted state-specific linear
trends. Data from IndiaStat.com (1).

1. Datanet India, IndiaStat. Available at www.indiastat.com. Accessed July 17, 2012.
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Fig. S3. (Top) Rice yields in the main rice-producing states in India. (Bottom) Detrended rice yields, showing deviation from fitted state-specific linear trends.
Data from IndiaStat.com (1).

1. Datanet India, IndiaStat. Available at www.indiastat.com. Accessed July 17, 2012.
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Fig. S4. Growing season temperature and precipitation trends for major rice- and wheat-producing states in India, 1980–2010.
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Fig. S5. (Top) Trends in total average daily surface radiation over the kharif rice growing season, by state. State-specific linear dimming trends (fitted slopes)
shown in the legend. Data from the World Radiation Data Centre (1). (Bottom) Emissions of (Left) SO2 and (Right) BC by state over the season, with state-
specific linear emissions trends (fitted slopes) shown in the legend. Data from the REAS emissions inventory (2).

1. World Radiation Data Center (WRDC), Global Radiation Data. Available at wrdc.mgo.rssi.ru. Accessed June 9, 2011.
2. Ohara T, et al. (2007) An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmos Chem Phys 7:4419–4444.
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Wheat Aerosol Emissions and Radiation Trends
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Fig. S6. (Top) Trends in total average daily surface radiation over the wheat growing season, by state. State-specific linear dimming trends (fitted slopes)
shown in the legend. Data from the World Radiation Data Centre (1). (Bottom) Emissions of (Left) SO2 and (Right) BC by state over the season, with state-
specific linear emissions trends (fitted slopes) shown in the legend. Data from the REAS emissions inventory (2).

1. World Radiation Data Center (WRDC), Global Radiation Data. Available at wrdc.mgo.rssi.ru. Accessed June 9, 2011.
2. Ohara T, et al. (2007) An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmos Chem Phys 7:4419–4444.
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Fig. S7. Trends in NOx and NMVOC emissions for major wheat- and rice-producing states in India, 1980–2010. Data from REAS emissions inventory (1).

1. Ohara T, et al. (2007) An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmos Chem Phys 7:4419–4444.
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Fig. S8. Average wheat growing season emissions of SO2, BC, NMVOC, and NOx in 2008. Data from the REAS emissions inventory (1).

1. Ohara T, et al. (2007) An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmos Chem Phys 7:4419–4444.
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Fig. S9. State-by-state breakdown of impacts of technology/time trends, climate, and pollution for wheat-producing states.
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(b) NOx and NMVOC(a) NOx Only

(c) NOx and Ratio (d) Both Ratios

(e) Grouped Aerosols and Precursors (f) Main Model with Year Fixed Effects

Fig. S10. Alternative model specifications for wheat. These models use different specifications for ozone precursor and aerosol emissions, as shown in the
figure legend. Models are described in more detail in SI Text.
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Black Carbon

Fig. S11. Emissions trends from Lu and Streets aerosols inventory (1). The inventory begins in 1996; we merged these data with REAS data by scaling so that
values in 1996 were equal.

1. Lu Z, Zhang Q, Streets DG (2011) Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996–2010. Atmos Chem Phys 11:9839–9864.
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(b) CRU Tmin and Tmax (REAS Emissions)

(a) CRU (REAS Emissions)

(c) UDel Climate and Streets Emissions

Fig. S12. Analysis with alternative climate and emissions datasets. CRU data are from the Climatic Research Unit at East Anglia; we used half-degree data from
CRUTS3.21 (1). The first specification (A) replicates the main model presented in the paper, but with CRU data replacing University of Delaware data. The second
specification (B) uses Tmin and Tmax, as recent research has shown that crops are sensitive in different ways to these two quantities (2). The third specification (C)
uses a different, higher-resolution (0.1° × 0.1°) emissions inventory for the aerosols portion of the model. The Streets inventory of black carbon, organic carbon,
and sulfur dioxide (3) begins in 1996; we merged these data with REAS data by scaling so that values in 1996 were equal.

1. Climatic Research Unit, High-Resolution Gridded Climate Datasets (CRU TS3.21). Available at www.cru.uea.ac.uk/cru/data/hrg. Accessed May 5, 2014.
2. Welch JR, et al. (2010) Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum andmaximum temperatures. Proc Natl Acad Sci USA 107(33):14562–14567.
3. Lu Z, Zhang Q, Streets DG (2011) Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996–2010. Atmos Chem Phys 11:9839–9864.
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Fig. S13. Main model with only kharif (rainy season) rice.

0 1000 2000 3000 4000

0

1000

2000

3000

4000

Actual Yields [kg/ha]

P
re

di
ct

ed
 Y

ie
ld

s 
[k

g/
ha

]

Even Years, Modelled on Even Year Data
Odd Years, Coefficients from Even Year Model

ln(Y) ~ T + T2 +P +P2 + ln(SO2) + ln(BC) + ln(NMVOC) + ln(NOx) + ln(NMVOC) : ln(NOx) + state + state y + state y2

Full Model (with time controls)

-0.10 -0.05 0.00 0.05 0.10

-0.2

-0.1

0.0

0.1

0.2

Corr:  0.35

Detrended

Fig. S14. Even-odd analysis. Main plot shows predicted versus actual wheat yields for model fit to even-year data (black), and predictions (from even-year fit)
to odd-year data. Inset shows fits from residuals of detrended variables.
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Table S1. Regression coefficients for wheat and rice (Eq. 1)

Variables

Wheat Rice

ln(Yield) ln(Yield)

T −0.051** (0.021) −0.552 (0.601)
T2 −0.000 (0.005) −0.130 (0.492)
P −0.015 (0.015) −0.040 (0.026)
P2 0.002 (0.006) 0.007 (0.017)
ln(BC) 0.247 (0.182) 0.193 (0.332)
ln(SO2) −0.756*** (0.238) −0.562 (0.532)
ln(NOx) −7.228** (3.511) 0.483 (7.875)
ln(NMVOC) 7.111** (3.294) 0.328 (7.403)
ln(NOx): ln(NMVOC) 162.145** (76.157) −5.462 (170.982)
Year 0.035*** (0.009) 0.021 (0.016)
Year2 −0.002*** (0.000) −0.000 (0.001)
Constant −168.392** (81.200) 25.634 (185.259)
Observations 186 341
R2 0.9999 0.9998
rmse 0.0704 0.128

SEs in parentheses; ***P < 0.01, **P < 0.05, *P < 0.1. State-specific inter-
cepts and linear and quadratic time coefficients not shown for brevity. Co-
efficients for T and T2, P and P2, and ozone precursors must be interpreted
collectively. For wheat, temperature is statistically significant at 90% (P =
0.051), aerosols are significant at 99% (P = 0.003), and ozone precursors are
significant at 90% (P = 0.056). For rice, temperature is statistically significant
at 95% (P = 0.016), aerosols are not statistically significant, and ozone pre-
cursors are significant at 99% (P = 0.005).

Table S2. Explanatory power of time trend, climate, and
pollution variables

Model Adjusted R2 rmse

Full model 0.9687 0.0704
Detrended model (climate and

pollution variables)
0.0746 0.0669

Detrended climate-only model 0.0346 0.0683

Table S3. Correlations between state-level variables for wheat analysis

Year Temperature Precipitation ln(SO2) ln(BC) ln(NOx) ln(NMVOC)

Year 1.0000
Temperature 0.1110 1.0000
Precipitation −0.0970 −0.1952 1.0000
ln(SO2) 0.4667 0.2996 0.5766 1.0000
ln(BC) 0.2485 0.2066 0.4268 0.8532 1.0000
ln(NOx) 0.4560 0.2285 0.6026 0.9848 0.8256 1.0000
ln(NMVOC) 0.1407 −0.0536 0.5734 0.7781 0.9054 0.7990 1.0000
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