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SI Methods
Stimulus Design. Attractive and nonattractive syllables were cre-
ated as follows: The attractive syllable consisted of a 72-ms-long
noise pulse (5–40 kHz) of constant amplitude followed by 12 ms
of silence (Fig. 1B). This type of song subunit exhibits a syllable-
to-pause ratio that elicits female responses with high probability
(1). The nonattractive syllable was generated by modulating the
amplitude of the attractive pulse with Gaussian low-pass noise
(0–200 Hz) using a signal-to-noise ratio log10(σ
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noise) of

∼0.5. This noise modulation of the amplitude introduced gaps in
the syllables known to reduce female response probability (2, 3).
Songs consisted of mixed sequences of 33 attractive and

nonattractive syllables in which the proportion of attractive syl-
lables varied from 1 to 0 in various parts of the song (Fig. 1C
and Fig. S1). The duration of the song models was 2.8 s.

Playback Experiments. Female responses to these songs were
quantified in playback experiments. After the first copulation,
females of the species Chorthippus biguttulus resist multiple
matings for a long time, and do not respond to male calling songs.
Therefore, we used only virgin females that were placed in a
soundproof chamber. Stimulus playback and recording of female
responses was controlled by custom-written software (Labview 7;
National Instruments) (Matthias Hennig, Humboldt Universität
zu Berlin, Berlin, Germany). Each song was presented 18 times in
a randomized sequence (for details, see ref. 4).
Female response probability was taken as the fraction of trials

that elicited at least one female response song. To account for
different motivation levels, probabilities were normalized by the
response probability of the stimulus that was most frequently
responded to by that female. Females that responded more than
three times to 3 s of continuous noise were discarded as non-
selective (4/31). For all further analyses, we took the average
response probabilities from 27 individual females.

Drift-Diffusion Model. Integration of song was modeled using
a drift-diffusion model with sticky bounds:
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The subscript t marks the syllable number—integration is dis-
crete with each syllable corresponding to one time step. xt is
the integrated evidence up to the current syllable (initial value
x0 = 0). τ is the integration time constant of the leaky integrator
(in units of syllables). st is the syllable type and is 1 for attractive
and −1 for nonattractive syllables. w+ and w− are the weights for
each syllable type. ζt is zero mean, unit variance Gaussian noise
added at each time step, σ sets the SD of that noise. θ+ and θ−
are the sticky bounds: if the accumulated evidence xt reaches
either threshold, it will stay there and the animal commits to
a decision. If no threshold crossing occurs, the animal’s decision
is based on the sign of the integrated evidence at stimulus end.
We explored alternative formulations of the drift-diffusion

model, which lack a noise term or which include a bias term or
a time-dependent gain for the sensory evidence (5). Excluding
the noise term reduced model performance and led to un-

realistic, binary prediction values. Adding additional parameters
(bias term, time-dependent gain) did not improve performance
and strongly reduced the reproducibility of the parameter values
obtained over individual cross-validations. We therefore used
the standard model formulation for all analyses.
In drift-diffusion models, sensory information is provided by

dedicated feature detectors for positive and for negative evi-
dence; this is a sensible assumption in situations where an animal
is trained to discriminate between two alternatives, e.g., two
sound frequencies (6) or the left- or rightward object motion (7).
Though there may exist detectors for specific nonattractive fea-
tures in grasshopper song evaluation (8), explicit recognition of
all negative evidence in general is unrealistic. In communication
systems in which the majority of signals fail to elicit any response,
detecting such a large class of signals would require unfeasibly
many feature detectors. Because the integration of evidence in
the model is linear, a simple extension can solve this problem:
the output of neurons detecting attractive features is combined
into a single syllable score. This score is high for attractive syl-
lables and low (i.e., zero) for all nonattractive stimuli. This score
can then be mapped onto positive and negative evidence using
a negative bias term (Fig. S2).
For this study, we focus on how different types of sensory

information—differentiated by the temporal pattern of a song
subunit—are integrated to yield the female decision and not on
how this integration is initiated. We therefore assume that in-
tegration starts at zero and is triggered by the occurrence of a
signal that is sufficiently loud against the background noise level
and has the adequate, broadband carrier spectrum (1). Focusing
on the temporal pattern and not on the carrier spectrum is well
justified, because the songs of different grasshopper species in
the Chorthippus group do not differ much in their carrier spec-
trum, but in the pattern of amplitude modulations (9, 10).
The model was fitted using a genetic algorithm (11, 12). Be-

cause the noisy integration is linear, parameters are determined
up to an offset and/or a common scaling factor. We therefore
fixed the positive weight to w+ = 1. Our conclusion of asym-
metrical integration of evidence is independent of this linear
transformation of the parameters. For fitting, the other pa-
rameter values were constrained to [−50 0] for w−, [0 250] for τ,
[0 200] for θ+, [−1,000 0] for θ−. These constraints were found
using exploratory trial runs and served to speed up the fitting
procedure. We ensured that none of the bounds affected the
fitting results.
Model performance was evaluated by leave-one-out cross-

validation; i.e., the model was fit using 31 of the 32 to stimuli to
find the optimal parameter values. Then, a prediction was made
for the left-out stimulus. Repeating this procedure such that each
stimulus is left out once yields a set of 32 models and one pre-
diction for the left-out stimulus. Model performance was taken as
Pearson’s coefficient of correlation r2 between the predicted and
measured responses.
Most model parameters were reproducible across the 32 cross-

validated models (see SDs in Table 1). Fits starting with different
initial parameter sets always converged to similar solutions, in-
dicating that a globally optimal solution was well defined and was
always found by the fitting algorithm.
To ensure that model parameters were well constrained by the

data, we quantified model performance for parameter values
around the optimal one found by the genetic algorithm—if the
found optimum lies in an error minimum, then the parameter is
well constrained (Fig. S3). All parameters except τ and θ− lay in
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a clearly defined minimum. The integration time constant τ and
the negative threshold θ− were defined only up to a minimal
value; as for τ, this was because integration was effectively per-
fect—hence, as long as τ was much longer than the stimulus
duration, model performance was optimal. A model with perfect
integration exhibited identical performance and highly similar
parameter values (Table 1). As for θ−, the strongly asymmetrical
integration made this parameter only semidetermined—as long
as θ− exceeded a value so that very early noise-induced threshold
crossings were improbable, the strong bias induced by the large
weight for negative evidence ensured that the model output re-
mained virtually identical. Thus, the fact that two parameters
were semidetermined does not reflect a lack of data but the
idiosyncrasies of the decision process being modeled.

We also extended this approach to pairs of parameter values to
ask whether there existed a degeneracy in the parameter space;
e.g., we simultaneously varied the values of two parameters around
their optima and determined the error surface around this opti-
mum with similar results.

Analysis of Model Parameters. Sensitivity to evidence was quantified
as the ratio of the threshold (θ+ or θ−) to weight (w+ or w−), e.g., for
the sensitivity of a positive decision on positive evidence: θ+/w+; this
corresponds to the amount of positive evidence needed to reach the
positive threshold in the absence of noise. Likewise, for the noise
sensitivity, we calculated the ratio of threshold (θ+ or θ–) and noise
(σ); this corresponds to the minimal number of noise steps of size σ
needed to reach the threshold in a purely noise-driven manner.
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Fig. S1. Stimulus set. Syllable sequences of all 32 songs. Each song consisted of 33 syllables that were either attractive (black) or nonattractive (gray) as shown
in (Fig. 1B). Song duration was ∼2.8 s.
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Fig. S2. General model schematic. The pattern of amplitude modulations of a syllable is processed by a bank of feature detectors, the combined output of
which yields a score that ranges between 0 (unattractive syllable) and 1 (very attractive syllable). A simple transformation (e.g., a negative offset) turns this
score into information with positive and negative values. The information is then accumulated using a noisy integrator and compared with a threshold for
a positive or negative response. The blue dot corresponds to a putative nonattractive, the red dot to an attractive syllable.
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Fig. S3. Model parameters are well constrained by the data. Dependence of model error (normalized mean squared error) on parameter values. The black
vertical line indicates the optimal parameter value found by the genetic algorithm. Because the model was stochastic, we estimated the error for 16 runs with
independent noise (gray traces) and averaged them (black traces).
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