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Details of Numerical Approach

Based on the Landau—de Gennes free energy (Eq. 1 in Materials
and Methods of the main text) we find that the isotropic-nematic
coexistence takes place at the value of reduced temperature
7=24a(T)c/b*=1 and that the degree of orientational order in
the nematic phase is given by
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We assume a(T) =ao(T —T"), where ag is a phenomenological
material-dependent parameter; 7™ is the supercoiling temper-
ature of the isotropic phase. We use ay=0.044x10° J/m3,
b=0.816x10° J/m?, ¢=0.45x10° J/m?, Li=6x10"'2 J/m,
and L,=12x10""2 J/m [typical values for pentylcyanobiphenyl
(5CB) (1) T* = 307 K]. The size of topological defect cores
is of the order of the bulk correlation length é=2(2c(3L; +
21,))"/?/b ~ 15 nm at the isotropic-nematic transition (2).

In Cartesian coordinates g = 1 surface is described by an im-
plicit equation S (x,y,z) =0, with

S1(x,y,2) = (R—\/x2+y2)a+z”’—r"‘7 [S2]
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where R and r are the major and the minor torus radius, respec-
tively, and the exponent a>2 determines the tube’s cross-sec-
tional shape. The g > 1 surfaces may be constructed as a union
of g (properly placed on a plane) [S2] surfaces. For example, we
define the g = 2 handlebody surface implicitly as S,(x,y,z) =0,
where

R- (x—R)2+y2) +2%—r% x>0
S2(x,y,2) = [S3]

( - (x+R)2+y2) +z%—r* x<0.

g > 2 surfaces may be described in an analogous way. We use the
Open Source Gmsh library (3) to triangulate g = 1 surface [S2],
and the Open Source GNU Triangulated Surface (GTS) library
(4) for triangulation of g > 1 surfaces [S3]. The volume discre-
tization is performed with the Quality Tetrahedral Mesh Gener-
ator (5). Linear triangular and tetrahedral elements are used in
2D and 3D, respectively. Generalized Gaussian quadrature rules
for multiple integrals (6) are used to evaluate integrals over
elements. In particular, for tetrahedra a fully symmetric cubature
rule with 11 points (7) is used, and integrations over triangles are
done by using a fully symmetric quadrature rule with 7 points (8).
The discretized Landau—de Gennes functional is then minimized
using the INRIA’s M1QN3 (9). More information on the numer-
ical procedures may be found in ref. 10.
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Fig. S1. Implementation of the laser-guided temperature quench which is used to generate a Hopf link (A-C) of two +1/2 disclination lines, and a trefoil knot
(D-F) of an s = +1/2 disclination line. In A and D, the red surfaces enclose regions with temperature above the nematic-isotropic transition: 7= 1.14 and = 1.62,
respectively, whereas the outer regions are at temperature z=0.16. Correspondingly, the blue surfaces in B and E enclose the “hot” isotropic locally melted
parts of the sample. (Insets) Cross-sectional views of the director configurations. The bars in these insets are color coded according to the local scalar order
parameter Q while the guiding laser is on. (C and F) After “turning off” the guiding laser beams, the nematic configurations relax as required by the free-
energy minimization, while preserving linking number or knottedness defined by the laser-guided temperature quench.

Fig. S2. Theoretical implementation of the laser-guided temperature quench used to select two different solitonic escaped configurations with different
defect loops and points at the intertori regions. Here one may control the direction of the escape in each handle of a 2-tori by combing it with a linearly
polarized laser light: the director escapes in the opposite (A, Insets) and in the same (B, Insets) directions defined by the orientation of linear polarization of the
combing laser light. Relaxed director configurations with an elementary hedgehog charge (A) and with two disclination loops with the same hedgehog charge
(B) correspond to the ones shown in Fig. 4 A and B of the main text. The loop in the lower junction of B carries no topological charge (m = 0).
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