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SI Text

Interaction with Constant NGB Fields
Here we prove the formula Hi(;t) =—[in"Q,, Ho] for constant NG
fields #z“. More precisely, we prove the Lagrangian version,
Ll(rllz =—[iz"Qq4, Lo]. (Here, commutation relations with Q, and
the Lagrangian density means the symmetry transformation of
the fields contained in the Lagrangian, as we explain below.)
They are equivalent as long as symmetry generators Q; commute
with the total Hamiltonian of the system.

In general, we can decompose the total Lagrangian density
Ly into three pieces, La(y', 0", w, dp), Lng(7*,d,7%), and
Lini(w", 00", w, 0, 7, 9,n%). We define L) and Ly by

(1) _ OLint
int ()ﬂa

a aLint
=0 00,7"

0", [S1]
=0

Lo=Le1 +Lin| [S2]

7=0"
For constant z“, we can drop the second term of Ll(:n)

Internal Symmetries. Let us start with a general symmetry-breaking
pattern G —» H of internal symmetries. We introduce a NG
field z* for each broken generator Q, (¢ €{1,2,...,dim G/H})
to describe low-energy fluctuations of the order parameter.
Under the symmetry transformation U =¢'“%, NG fields trans-
form as

(7)) =Uen" U =2 + €h(n) + O(€?), [S3]
and its infinitesimal form is
Gin" = (n") — 2" =[iQ;, n" ] =h (%). [S4]

In the standard parameterization introduced by refs. 1 and 2,
hj(w) =8, +O(x) for broken generators Q and hy(z)=0(r)
for unbroken generators Q,. Namely, a broken generator Q,
shifts z* by a constant and an unbroken generator Q, does not
shift any NG fields by a constant amount.

Each component of the Lagrangian density is invariant under
the symmetry transformation (up to total derivatives). Namely,
UL Ul =Ly (A€ {el,NG,int}). Hence,

0= [iQmLint]
. aLint . aLint ¥ . aLint
Z[IQIHW} dy/ + [lthaﬂW} 03,41// + (WHW ) + [lQa7”b] ()ﬂ'b
oL;
. b int
+ [lQa,()Mﬂ' } 30,
[S5]
We set z* =0 after using the relation [iQp, 7] =&, + O(x):
OLint . OLin¢ . OLint +
=— — [iQ4, 0
o | LR (iQu, 0] oo+ (wev') »
[S6]

The right-hand side is nothing but —[iQ,, Lin|,—y]. Hence, by
multiplying z to both hand sides, we get
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aLint
on® |,

' =-r I:inleim |ﬂ:0} ’ [S7]

Because L. commutes with Q,, we can add it to inside of the

commutator. Therefore, for constant 7%, we get Ligt) =—[in"Q,, Lo
As the simplest example, let us discuss the spin-spin interaction

in ferromagnets,

9w’

2m ’

Le=iy" oy — Lin=Jii -5, [S8]
where 7 is the normalized ferromagnetic order parameter, v is
an electron field with the spin degree of freedom, §=y'(3/2)y is
the electron spin, and & is the Pauli matrix.

We introduce fluctuation 7, (¥,7) as i = (z;, — 7., 1)" + O(x},).
By expanding the interaction to the linear order in fluctuation,
we find

= 2
Vvl

Lo=iy oy — 5y S [S9]

LW =J (myse — mesy).

int =

[S10]

Using the commutation relation [s;(¥),s;(¥')] =iegis (¥)67 (% = %),
it can be readily shown that

LY =20y, Lo] - #' [iQy, Lo] [S11]
for O= [ dx(5+mi).
Equivalently, in terms of the Hamiltonian,
Ho=Z s, O =—J (w5, — 7)) [S12]
0=5 =8 i ySx = TSy ),
and it is straightforward to check
HY) = —x.[iQ:, H) — m, [iQy, Hy . [S13]

Translation. Now we move on to space-time symmetries. As we will

see, the above derivation applies with only some minor changes.
Let us discuss translation X’ =X +a as the easiest example. The

displacement field (¥, ) obeys the transformation rule,

[S14]
Sl (%,0) =u' (%,0) —u' (¥,1) = [in,ui (%, t)] =6]’: —ou'.  [S15]

Computing 6Lin = [iP,Lim] in the same way as in Eq. S5,
we have

- oL;
OLini = [iPy] S0

pw [S16]

Using Eq. S15 first and then setting i =0, we get a relation
between SLiy and 0Ly /0k. The only difference from the pre-
vious case is that Ly (¥, £) does not exactly vanish but changes by
a surface term —V Liy (¥,7). Hence we get
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aLint
ou

-

A=l [iP Li

] —-V Lin
ii=0 =0

[S17]

u=0

Adding 0= —ii - [if’,Lel] —ii-V Lg to the right-hand side, we get

(1) _ OLint
Lint - oii

ﬁz_[lﬂﬂQﬂaLO:I

ii=0

-V - (iLy) [S18]

for a constant NG field #. The last term is just a total derivative
and can be dropped.

This derivation does not change at all even for the magnetic
translation, because the displacement field is real and its trans-
formation rule does not involve phase rotation. All characteristic
features of the magnetic transformation are hidden in the com-
mutation relation [lP ).

Rotation. In the case of the spatial rotation ¥’ = R.X, where

COS€e —sSine
Re= < sine  cose, ) ’ [519]
the NG field 0 transforms as
0 (¥,1) =€ 0(%,1)e " =0(R_Z,1) +e€ [S20]

80(%,1)=0'(¥,1) ~0(F,1) = [iL, 0(F,1) | =1 - (v0, —ya,)0(%.1).
[S21]
In this case, the change of the Lagrangian density is 6L 4 (¥,t) =

—0y(xL4) +0c(yL4). Hence, in exactly the same way as above,
we get

aLint
90 6=0

0=-0[iL.,Lo] — d,(6xLg) + 00, (6yLy). [S22]

Again, the second and third terms can be dropped.

The most general case should now be obvious. The keys are
the transformation rule 8,2°(¥,t) = [iQ,,n"®,1)] =8, + -+ and
the fact that the Lagrangian density can change only by total
derivatives.

Singularities in the Matrix Element
Here we demonstrate the divergence of the matrix element
(k'|Qq|K), using several examples.

When an operator Q, does not commute with P _it does not
commute with the lattice translation either, [Q,,e ’P @140, By
further assuming that (k|[Q,, e e @]|k) # 0 (here we omit the band
index n), which is generically true except for some high-symmetry
points in the Brillouin zone, the expectation value (k'|Qq k) is
inversely proportional to (k'; —k;).

Using commutation relations [x;,p;] =i&y;, [¢,pi] =ie;p;, and
[P;, Pj| = —i€;eB, one can show

[f.e7 0] = e, [S23]
[zz,e" ‘71] = —3.d;xpera, [S24]
[13, e '@} = —eBixa et [S25]

Evaluating the matrix element of both hand sides, using the def-
inition e? % |k) eik-ai |k> one finds
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[S26]

[S27]

ik a;

—ﬂieBZ X(l 07, 7
eik-a, etk -d; k' k

= 7(;6.‘63;()01'# 5;,51; +0 ((E —]_C‘/)O) .
— K -d;

[S28]

Comoving Frame of NGBs

In the main text, we explained how to make derivatives in the
electron-magnon coupling obvious, using local SU(2) trans-
formation. Here we show that the same argument can be applied
to the electron—phonon interaction in the absence of the mag-
netic field, although it fails for space—time symmetries that do
not commute with momentum.

Phonons in Crystals. The electron—phonon interaction in Hiy =
V(% —i)y' (% )y ) does not contain derivatives acting on
the displacement field (¥, ¢). Their vertex still vanishes in the
limit of small energy-momentum transfer, as can be argued in
the same way as in the main text. To see the vanishing vertex
more explicitly, we convert the nonderivative coupling V' (X —if)
into derivative ones by going to the comoving frame of the
crystal lattice. That is, we change the integration variable of
the Lagrangian from ¥ to X' =X—i and redefine the electron
field by w'(x',f) =y (X,t). Then the potential V(¥ —u)=V(x")
can no longer fluctuate. Instead, all of the electron—-phonon
interactions come from rewriting the volume element and
derivatives:

dxdr=ddr (14 V') +0 ((aﬁ)z) , [S29]

[S30]

O =0p— ()0t +0 ((aa’)z) :

It is now clear that all electron-phonon interactions vanish for
a constant i.

NGBs Originating from Rotation. If possible, we want to eliminate all
nonderivative couplings in the interacting Lagrangian

d d cos @ v T cos 6 g
/dxdt|n Vl//| —/d dt( ) (sin&) Vy
[S31]

by performing a local transformation as above. If we change the
integration variable from ¥ to X' =R.¥ (Eq. S19), we get

feca( o9 v (09 vy

[S32]
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for a constant angle . Therefore, this manipulation effectively
shifts 6 by —e. One may thus expect that setting e(X,7) =0(¥,1)
locally eliminates all & dependence without derivatives, but it

does not work for the followmg reason. If we define ¥’ = Ry ¥

and rewrite derivative V in terms of V we find

0,= (0)9f = i (Ro)}¥] 0 = (Ro Yoy + (AR 4*0j. 18331

Due to the second term of the last expression, the Lagrangian now
explicitly depends on the coordinate. This makes the Lagrangian
after the local rotation completely useless. Especially, we can-
not use the Fourier transformation (despite the fact that the
translation is not actually broken), and hence we cannot dis-
cuss the behavior of couplings in the limit of the small momen-
tum transfer in this frame.

Magnetic Translation. Finally we discuss the magnetic translation.
We want to remove & without derivatives in the Lagrangian,

(¥ —ied)y [

Latsim =iy oy ———————ylyV (¥-a).  [S34]

If we just change the integration variable to X' =X — (¥, ), then i
without derivatives appears in the vector potential,

. -y -y —uy
A=B| 0 | =B 0 [S35]
0 0

To absorb this new il dependence, one can further perform a lo-
cal gauge transformation, y’=e=“B*%y, When u, is a constant,
this procedure successfully removes all i, s from the Lagrangian.
However, for a generic u, (¥, t), we have

Viy' =e B (ﬁ"y] —ieBxuyy — ieBx’y/ﬁ’uy) . [S36]
Again the last term introduces an undesirable coordinate depen-
dence to the Lagrangian.

Landau Levels on a Torus

Here we summarize the wave function of Landau levels (fol-
lowing ref. 3) that simultaneously diagonalize Hamiltonian
and lattice translations,

_ (px+el~3y)2+py2

5 T, =P,

Yjv — ei (py+eBx)ay . [S37]

We assume a rectangular lattice with primitive lattice vectors a, = a,%
and d, =a,y and a flux quantum per unit cell eBa,ay, =2r. We work
in a torus a;N, XayN, (NX,N €Z) and impose the periodic
boundary condition TN T ”=1. The number of degeneracy
is precisely the number of lattlce points,

a.a,N;N,
= g =NN,, (=(eB) 12, [S38]
For each k= (2z/a:N,)i (i€{1,2,...,N;N,}), the function

. 2
H, (y/f +kt + (27r€/a)c)jNy>e"(1/2)(y/“k“r (2t/ac)iNy)

ak (X) =
ik () = IV
i (k+(2n/aiNy Jx
VaN;

[S39]
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represents a simultaneous eigenfunction of the Hamiltonian and
the lattice translation 7 with the eigenvalue (eB/m)(n+1/2)
and e respectively. To make it a simultaneous eigenfunction
of T, as well, we take a superposition
N,
lP (_')EZ V/nk+27r/a m()
m=1 \/

St gv Jet kot + (2t Jag)m)e=(1/0/+kt+ Catfagm)?

o 2nnl\/mt
ei(k;+(2n/a))m)x

U Vad,

e—zk aym

e—ik,,aym

[S40]

where k, = (2z/a,)iy (i, €{1,2,...,N,} and a € {x,y}). One can
check the validity of this wave function by an explicit calculation.

Cancelation of the Induced Mass of NGBs

For completeness, here we check the absence of mass terms of
NGBs [(1/2I1,(0)z°7"] generated by gapless electron bubbles.
Because we are interested in the O(z?) term, we have to include
the vertex to the same order. Although here we examine only a
few examples, their absence is ultimately due to the (broken)
symmetry and hence should be very general.

Rotation. Let us start with the example of the spatial rotation
discussed in the main text. For a constant 6, we have

Hiy =ﬁ [(kx cos 8 +k, sin 0)2 —k?] Wi

=L {ekxky +%02 (& -#2) +0(03)} vive

[S41]
1
= [—064%6,2 + 3 9205);5]; +0 (03)} y/,ty/k,
where ke'?i =k, + ik, and €; is the electron dispersion,
(L4 )k} +k;
= S42
€ o )2 [S42]

Note that the vertex with a single NGB field is proportlonal to
dy.€; and the one with two NGB fields is proportional to aq,,ek
This relation is dictated by the broken rotation symmetry.

The boson self-energy I at §=0 and v =0 receives two con-
tributions at the one-loop level,

1) = / ‘Z‘Jg“’{(ad, &Gk, w)) v e (lé,w)}. [S43]

The first and second terms represent the diagrams in Fig. S1 4
and B, respectively. To show their cancelatlon we use the re-

lation of the electron Green function G~ (k ) =0 - €
2
VG (k)= [G(k, w)] V e [S44]
By integration by part, we get
d’kdw - -
IT0)= / —— [a¢kek 04, G (k) + & e G(k,a))] -
(2n)°
[S45]

Magnetic Translation. Next, for the electron—phonon problem
under a magnetic field, we have
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Hing=-Vx [COS <kyay - ;ﬁ ux) —cos (kyay)}
X

-V, {cos (kxax +== 2 y) —cos (kxax):|
ay

2 v
N K ﬂuy) D (zm )akyu,e,;}
1| (27u, 2y
+§ |:( ay ) akaX ( ax ) ak}a} :|

to the order O(u?). Again, the couphn% to the linear (quadratic)
order in uy is proportional to d,4€; (9 Therefore follow-
ing exactly the same argument, we get H,](E) (i,je {x y})-

[S46]

Bosonic Self-Energy Correction

Here we discuss the boson self-energy correction for a general §

and v. At the leading order in ¢, the contribution of the diagram
in Fig. S14 is given by (we drop the band index n for brevity)

)= [ Sh%0 v

ab (2 )d+1 kk+q k+qk

/ e, @) f o)
= (2 )d kk+q k+qky+i5_<elz+zj_6/€>

G(k a))G(l_c‘+q’,(o+v>

[S47]
d’k . b q-Vie
~ /—2 da(flz)vlalzvl;lz i ]i k
(27) T v/q+is—q-V e,
As discussed in the previous section, the constant term
d’k . b
I;I 0)=- / (zﬂ)d‘s(fn;z)vlz,;z";z,/z [S48]
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(a)

Fig. S1.
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is exactly canceled by the diamagnetic term (Fig. S1B). The
imaginary part is therefore given by

im 1 (,9)=

v [ d%k L
—7[5 / (277,')d 6(512)‘}%]-('1}%]-(‘5 (I//q -q- Vv EE”E)

d'k . -
~ —71'—/ 6(6,;)v];£v§]€6(q-vlze,;).

Electronic Bandwidth Under a Magnetic Field
Here we show a simple numerical result on the bandwidth of the
electron band structure under a uniform magnetic field, to
support the claim

(band width) e/ [S50]
Here ¢= (eB)_l/ % is the magnetic length and a is the lattice con-
stant of the tight-binding model. In the continuum limit a — 0,
the Landau levels are completely flat. For a finite a, the lattice

potential produces nonzero dispersions.
By denoting the number of the flux per unit cell by ¢,

e 11
Thus, Eq. S50 suggests that
log(band width) = (const.) — C¢p™". [S52]

In Fig. S2, we show the numerical result for the lowest Landau
levels in the tight-binding model on the square lattice with
the nearest neighbor hopping. The logarithm of the bandwidth
is indeed proportional to ¢~'. This result holds for other
Landau levels as well, as long as the van Hove singularity energy
is avoided.

3. Haldane FDM, Rezayi EH (1985) Periodic Laughlin-Jastrow wave functions for the
fractional quantized Hall effect. Phys Rev B Condens Matter 31(4):2529-2531.

(b)

(A and B) One-loop diagrams for boson self-energy corrections.
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Fig. S2. The bandwidth of the lowest Landau level in the tight-binding model as a function of the inverse flux ¢~'.
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