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S1. Proof of Theorem 1
Theprocedure thatdeclaresas replicatedall featureswith rvalues≤  q
is equivalent to the procedure in Variations in the main text, where
the choice of emphasis between the studies is discussed, as proved
in Lemma S1.1. We show that our proposal, in its most general form
[i.e., with c2 ∈ ð0; 1Þ], controls the FDR at a level at most

f00c1ðqÞc2q2 + f01c1ðqÞq+E
� j I10∩R1j
max

�jR1j; 1
��c2q [S1]

under the conditions of Theorem 1, where f0j = jI0jj=m; j∈ f0; 1g,
and f10 = jI10j=m.
Before proving the above upper bound on the FDR, we show

that if the above upper bound holds and l00 ≤ f00, Theorem 1
follows. Note that if the constants ðl00; c2Þ satisfy the inequality

f00c1ðqÞc2q+ f01c1ðqÞ+ c2 ≤ 1;

then the FDR for replicability analysis is controlled at level at
most q. This inequality holds for any choice of ðl00; c2Þ that sat-
isfies the relationship

l00 ≤
1− f01 − f00c2q

1− c2q
:

Unfortunately, f00 and f01 are not known. If the guess for l00 is
indeed conservative, i.e., l00 ≤ f00, then the above inequality holds
because f00 ≤ 1− f01. Thus, for any value l00 ≤ f00 and c2 ∈ ð0; 1Þ,
the FDR for replicability analysis is controlled at level at most q.

Proof for the Upper Bound in [S1]. Let Rj be the indicator of whether
feature j was declared replicated for j= 1; . . . ;m, and R=

Pm
j=1Rj.

The FDR for replicability analysis is

FDR=E

 X
j∈I00

Rj

maxðR; 1Þ

!
+E

 X
j∈I01

Rj

maxðR; 1Þ

!

+E

 X
j∈I10

Rj

maxðR; 1Þ

!
:

[S2]

For items i–iii in Theorem 1, we find an upper bound for each of
the three expectations in [S2]; specifically we show the following
inequalities [S3]–[S5]:

E

 X
j∈I01

Rj

maxðR; 1Þ

!
≤ jI01j c1ðqÞqm

= f01c1ðqÞq; [S3]

E

 X
j∈I10

Rj

maxðR; 1Þ

!
≤E
� jI10∩R1j
maxðjR1j; 1Þ

�
c2q; [S4]

E

 X
j∈I00

Rj

maxðR; 1Þ

!
≤ f00c1ðqÞc2q2: [S5]

Obviously the upper bounds in [S3]–[S5] and the equality in [S2]
complete the proof for the upper bound in [S1]. The upper
bounds in [S3] and [S4] follow directly from ref. 1. The key
difference from ref. 1 is the fact that we consider a tighter upper
bound for EðPj∈I00Rj=maxðR; 1ÞÞ given in [S5]. We proceed to
prove inequality [S5] for items i–iii in Theorem 1.

In all the derivations we refer to from ref. 1, we replace q1 in ref. 1
with c1q, q − q1 in ref. 1 with c2q, and jI0j in ref. 1 with jI01j, unless
stated otherwise. We start with the proof of item i of Theorem 1 for
the case where the P values within the follow-up study are jointly
independent. Inequality [S3] follows from the derivations leading to
[A.3] in ref. 1. Inequality [S4] follows from the derivations leading
to [A.7] in ref. 1, and by taking the expectation of the expression in
[A.7] over the primary study P values. We now prove inequality
[S5]. We recall the following definitions from ref. 1. Let PðjÞ

1 and
PðjÞ
2 denote the vectors P1 = ðP11; . . . ;P1mÞ and P2 = ðP21; . . . ;P2mÞ

with, respectively, P1j and P2j excluded. For j∈ f1; . . . ;mg arbi-
trarily fixed, let RðjÞ

1 ðPðjÞ
1 Þ⊆ f1; . . . ; j− 1; j+ 1; . . . ;mg be the sub-

set of indexes selected along with index j. Note that because the
selection rule is stable, this subset is fixed as long as P1j is such
that j is selected based on ðPðjÞ

1 ;P1jÞ. For any j∈ f1; . . . ;mg and
given PðjÞ

1 , for i∈ f1; . . . ; j− 1; j+ 1; . . . ;mg

eðjÞi =

8>>><
>>>:

max

0
@P1i

c1
;

����RðjÞ
1

�
PðjÞ
1

����+ 1
�
P2i

mc2

1
A if   i∈RðjÞ

1

�
PðjÞ
1

�
;

∞ otherwise:

Let eðjÞð1Þ ≤ . . . ≤ eðjÞðm−1Þ be the sorted eðjÞi s, and eðjÞð0Þ = 0. [The e
values are closely related to T values defined in appendix A
of ref. 1. Specifically, eðjÞi =Tiq=m for j∈ f1; . . . ;mg and i∈
f1; . . . ; j− 1; j+ 1; . . . ;mg.] For r= 1; . . . ;m, we define CðjÞ

r as the
event in which if j∈ I00 ∪ I01 ∪ I10 is declared replicated, r hypothe-
ses are declared replicated including j, which amounts to

CðjÞ
r =

	�
PðjÞ
1 ;PðjÞ

2

�
: eðjÞðr−1Þ ≤

rq
m
; eðjÞðrÞ >

ðr+ 1Þq
m

; eðjÞðr+1Þ

>
ðr+ 2Þq

m
; . . . ;   eðjÞðm−1Þ > q



:

Note that given P1; for r> jR1j, CðjÞ
r =∅, because exactly jR1j− 1

eðjÞi s are finite. Obviously, CðjÞ
r and CðjÞ

r′ are disjoint events for any
r≠ r′, and ∪m

r=1C
ðjÞ
r is the entire space of ðPðjÞ

1 ;PðjÞ
2 Þ. Therefore,Pm

r=1PrðCðjÞ
r Þ= 1.

Note that from the equivalent procedure in Variations in the
main text, the following equality follows,
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!
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[S6]

≤ c2q
c1ðqÞq
m

X
j∈I00

Xm
r=1

Pr
�
CðjÞ
r

�
= jI00jc2q c1ðqÞqm

= f00c1ðqÞc2q2;

[S7]

where the inequality in [S6] follows from the fact that for any
given realization of jR1j and value of r such that r> jR1j,
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CðjÞ
r =∅; the inequality in [S7] follows from the independence

of the P values and the fact that P1j and P2j are null-hypothesis
P values, and the first equality in [S7] follows from the fact
that

Pm
r=1PrðCðjÞ

r Þ= 1, thus completing the proof of item 1 for
the case where the P values within the follow-up study are
independent.
We now prove item i of Theorem 1 for the case where the

P values within the follow-up study have property PRDS. The
inequalities [S3] and [S4] for this case follow from the results in
the supplementary material of ref. 1. Specifically, inequality
[S3] follows from the proof of theorem S3.1 in ref. 1 and in-
equality [S4] follows from the proof of item 2 in lemma S2.1 in
ref. 1. For j∈ I00 and an arbitrary fixed p1 = ðp11; . . . ; p1mÞ such
that jR1ðp1Þj> 0,
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�
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m
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×
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[S8]

≤
c2q

jR1ðp1Þj I
�
p1j ≤

jR1ðp1Þjc1ðqÞq
m

; j∈R1ðp1Þ
�
; [S9]

where inequality [S8] follows from the independence of the
P values across the studies and the fact that P2j is a null-
hypothesis P value. We now show that inequality [S9] holds.
It follows from item 1 of lemma S2.1 in the supplementary
material of ref. 1 that

XjR1ðp1Þj

r=1

Pr
�
CðjÞ

r jP2j ≤
rc2q

jR1ðp1Þj;P1 = p1

�
≤ 1

for any p1 = ðp11; . . . ; p1mÞ and j∈ I10∩R1ðp1Þ. It is straightfor-
ward to verify that this result holds for j∈ I00∩R1ðp1Þ as well,
yielding inequality [S9]. It follows that for j∈ I00,

E
�

Rj

maxðR; 1Þ
�
≤ c2qE
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I
�
P1j ≤

��R1ðP1Þ
��c1ðqÞq�m; j∈R1ðP1Þ

�
max
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#
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[S10]

Note that for j∈ I00
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≤
Xm
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1
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Pr
�
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1

�
PðjÞ
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�

[S12]

≤
c1ðqÞq
m

Xm
r=1

Pr
����RðjÞ

1

�
PðjÞ
1

����= r− 1
�
=
c1ðqÞq
m

: [S13]

The inequality in [S13] follows from the independence of the
P values within the primary study and the fact that P1j is a null-
hypothesis P value. The equality in [S13] follows from the fact
that ∪m

r=1fjRðjÞ
1 ðPðjÞ

1 Þj= r− 1g is the entire space of PðjÞ
1 ; repre-

sented as a union of disjoint events. Combining [S10] with
[S13], we obtain for j∈ I00

E
�

Rj

maxðR; 1Þ
�
≤ c2q

c1ðqÞq
m

: [S14]

Summing this upper bound over all j∈ I00, we obtain the upper
bound in [S5], thus completing the proof of item i of Theorem
1 for the case where the set of P values within the follow-up
study has property PRDS.
We now prove item ii of Theorem 1. Inequalities [S3] and [S4]

follow from the results in the supplementary material of ref. 1.
Specifically, inequality [S3] follows from the derivations leading
to [S2.8] in ref. 1 and inequality [S4] follows from the proof of
item 2 and item 3 of Lemma S2.1 in ref. 1. We now prove in-
equality [S5]. Both for the case where the P values within the
follow-up study are independent and for the case where the P
values within the follow-up study have property PRDS, the
derivations leading to [S10] and [S12] remain valid when m is
replaced with mp in the denominators of the fractions appearing
in those derivations and in the terms defining CðjÞ

r . Therefore

X
j∈I00

E

"
I
�
P1j ≤

��R1ðP1Þ
��c1ðqÞq�mp; j∈R1ðP1Þ

�
max

���R1ðP1
���; 1�

#

≤
X
j∈I00

Xm
r=1

1
r
Pr
�
P1j ≤

rc1ðqÞq
mp

;

����RðjÞ
1

�
PðjÞ
1

�����= r− 1
�
:

[S15]

It follows from the derivations leading from [S2.3] to [S2.8] in the
supplementary material of ref. 1, replacing I0 with I00, q1 with
c1ðqÞq, and the event CðjÞ

r with the event
���RðjÞ

1 ðPðjÞ
1 Þ
���= r− 1 both

in the derivations and in the definition of pjrl, that

X
j∈I00

Xm
r=1

1
r
Pr
�
P1j ≤

rc1ðqÞq
mp

;

����RðjÞ
1

�
PðjÞ
1

�����= r− 1
�
≤
��I00�� c1ðqÞqm

:

[S16]

Combining [S10] withm replaced bymp, [S15], and [S16], we obtain
inequality [S5], which completes the proof of item ii of Theorem 1.
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We now prove item iii of Theorem 1. If we replace ~q1 with
~c1ðqÞq and jI0j with jI01j in the derivations leading to [S2.18] in
the supplementary material in ref. 1, we obtain

E

 X
j∈I01

Rj

maxðR; 1Þ

!
≤
��I01��~c1ðqÞqm

= f01~c1ðqÞq: [S17]

It follows from the definition of ~c1ðxÞ that ~c1ðxÞ≤ c1ðxÞ for all
x∈ ð0; 1Þ, in particular ~c1ðqÞ≤ c1ðqÞ. Inequality [S3] follows im-
mediately from this inequality and inequality [S17]. Inequality
[S4] is obtained using the derivations from the main text and the
supplementary material of ref. 1, as detailed in the proof of in-
equality [S4] for item i of Theorem 1. For this item q1 is replaced
with ~c1ðqÞq in those derivations, and to obtain inequality [S4] we
use the fact that ~c1ðqÞ≤ c1ðqÞ. We now prove inequality [S5].
Both for the case where the P values within the follow-up study
are independent and for the case where the P values within the
follow-up study have property PRDS, the derivations leading to
[S10] and [S11] remain valid when c1ðqÞ is replaced with ~c1ðqÞ in
those derivations and in the terms defining CðjÞ

r . Therefore

X
j∈I00

E
�

Rj

maxðR; 1Þ
�
≤ c2q

X
j∈I00

Xm
r=1

1
r
Pr

�
P1j ≤

r~c1ðqÞq
m

; j∈R1ðP1Þ;
����RðjÞ

1

�
PðjÞ
1

�����= r− 1
�
:

[S18]

It follows from the derivations leading from [S2.9] to [S2.18] in
the supplementary material of ref. 1, replacing I0 with I00, ~q1
with ~c1ðqÞq, and the event CðjÞ

r with the event jRðjÞ
1 ðPðjÞ

1 Þj= r− 1
both in the derivations and in the definition of ~pjrl, that

X
j∈I00

Xm
r=1

1
r
Pr
�
P1j ≤

r~c1ðqÞq
m

; j∈R1ðP1Þ;
���RðjÞ

1

�
PðjÞ
1

����= r− 1
�

≤ jI00j
~c1ðqÞq
m

:

[S19]

Combining [S18] with [S19], and using the fact that ~c1ðqÞ≤ c1ðqÞ,
we obtain inequality [S5], which completes the proof of item iii
of Theorem 1.

Lemma S1.1. For Steps i–iv in the computation of r values:

i) For feature i∈R1, if a solution ri ∈ ð0; 1Þ to fiðriÞ= ri exists, then
this solution is unique; i.e., the r value in step iv is well defined.

ii) Item i holds when the function fiðxÞ is computed with the
modification in item ii of Theorem 1.

iii) Declaring the features with r values at most q is equivalent to the
procedure given in Variations, second paragraph, in the main text.

iv) For r values computed with the modification in item ii of
Theorem 1, declaring the features with r values at most q is
equivalent to the procedure given in Variations, where m is
replaced by mp =m

Pm
i=11=i.

v) The function ~c1ðxÞ in item iii of Theorem 1 is well defined. For r
values computed with the modification in item iii of Theorem 1,
declaring the features with r values at most q is equivalent to the
procedure given in Variations, where c1ðqÞ is replaced by ~c1ðqÞ.

Proof of Lemma S1.1.
Proof of items i and ii of Lemma S1.1. Simple calculations show that
gðxÞ= xc1ðxÞ is a strictly increasing function of x for x> 0. Therefore,
for each feature j∈R1, ejðxÞ=x is a strictly decreasing function of
x. Despite the fact that ejðxÞ=½x · rankðejðxÞÞ� may not be mono-
tone decreasing functions for j∈R1, it is guaranteed that

fiðxÞ=x=minfj:ejðxÞ≥eiðxÞ;j∈R1gejðxÞ=½x · rankðejðxÞÞ� is a strictly de-
creasing function of x for each feature i∈R1. [The proof that
fiðxÞ=x is a strictly decreasing function is quite involved and is omit-
ted for brevity.] Therefore, if a solution ri ∈ ð0; 1Þ to fiðxÞ=x= 1
exists, then it is unique, because for all x< ri, fiðxÞ=x> 1 and for all
x> ri, fiðxÞ=x< 1. When the function fiðxÞ is computed with the
modification in item ii of Theorem 1, the proof remains the same,
because mp does not depend on x.
Proof of items iii–v of Lemma S1.1. It is easy to see that for the procedure
given in Variations, second paragraph, in the main text, R2 =
fi∈R1 : fiðqÞ≤ qg. The same result holds for the function fiðxÞ with
the modification of items ii and iii of Theorem 1 and the modified
procedures in items iv and v of Lemma S1.1, respectively. There-
fore, it is enough to prove that for i∈R1, fiðqÞ≤ q if and only if
ri ≤ q for items iii–v of Lemma S1.1.
Proof of item iii.Assume fiðqÞ≤ q. Note that fiðxÞ can be defined on
½0; 1Þ and fið0Þ> 0 because the P values are positive. It can be
shown that fiðxÞ is a continuous function on ½0; 1Þ and therefore
hiðxÞ= fiðxÞ− x is a continuous function as well. [It is easy to see
that fiðxÞ is continuous at each x0 where e values are unique. Note
that for each j∈R1 the numerator of ejðxÞm=rankðejðxÞÞ is con-
tinuous and there is a small neighborhood of x0 where rankðejðxÞÞ
does not change, yielding that ejðxÞm=rankðejðxÞÞ is continuous
at x0. Because the minimum of continuous functions is also con-
tinuous, fiðxÞ is a continuous function as well. For x0 where e
values are not unique, the proof is more involved. In these points
the functions ejðxÞm=rankðejðxÞÞ may be not continuous; how-
ever, fiðxÞ is continuous.] Using the facts that hið0Þ= fið0Þ− 0> 0
and hiðqÞ= fiðqÞ− q≤ 0, we obtain from the intermediate value
theorem that a value 0< xi ≤ q, satisfying fiðxiÞ= xi, exists. Us-
ing item i, we obtain that this solution is unique and ri = xi.
Thus, we have proved ri ≤ q. Let us now assume that ri ≤ q and
prove that fiðqÞ≤ q. Because ri ≤ q, ri ≠ 1, and therefore ri is
the unique solution in ð0; 1Þ to fiðxÞ= x. It follows from the fact
that fiðxÞ=x is monotone decreasing (see proof of item i) that
fiðqÞ=q≤ fiðriÞ=ri = 1, and therefore fiðqÞ≤ q.
Proof of item iv. We need to prove that when we replace m with
mp =m

Pm
i=11=i in the computation of fiðxÞ and ri for i∈R1, ri ≤ q

if and only if feature i is rejected by the procedure in Variations,
where m is replaced by m=mp. It is easy to see that for
this modified procedure, R2 = fi∈R1 : fiðqÞ≤ qg, where fiðqÞ is
computed with the modification above. It remains to prove that
fi∈R1 : fiðqÞ≤ qg= fi∈R1 : ri ≤ qg. Because fiðxÞ is continuous,
it is obvious that the modified function fiðxÞ is continuous as well.
Moreover, fiðxÞ=x is monotone decreasing in x; thus using argu-
ments similar to the proof of item iii, the result follows.
Proof of item v. The proof that the function ~c1ðxÞ is well defined, i.e.,
that for all x∈ ð0; 1Þ a solution a to a

PØtm=ðaxÞ−1e
i=1 1=i= c1ðxÞ exists, is

technical and therefore is omitted. Similarly to the items above,
we need to prove that fi∈R1 : ~f iðqÞ≤ qg= fi∈R1 : ~ri ≤ qg, where
~f iðxÞ and ~ri are the modified functions and r values, respectively,
given in item iii of Theorem 1. We first show that if ~f iðqÞ≤ q, then
~ri =minfx : ~f iðxÞ≤ xg∈ ð0; 1Þ exists. It can be shown that ~c1ðxÞ is
right continuous, and therefore ~f iðxÞ is right continuous. [The proof
that ~c1ðxÞ is right continuous is based on the facts that Øtm=ðaxÞ− 1e
is a right continuous function of x and c1ðxÞ is a continuous func-
tion. Since the proof is technical, it is omitted.] If ~f iðqÞ≤ q, then
inffx : ~f iðxÞ≤ xg< 1. It remains to show that inffx : ~f iðxÞ≤ xg≠ 0,
because ~f iðxÞ is right continuous for all x∈ ð0; 1Þ; therefore if
inffx : ~f iðxÞ≤ xg∈ ð0; 1Þ, then inffx : ~f iðxÞ≤ xg=minfx : ~f iðxÞ≤ xg.
We now prove that inffx : ~f iðxÞ≤ xg≠ 0. Note that ~c1ðxÞ≤ c1ðxÞ for
all x∈ ð0; 1Þ, and therefore it can be shown that ~f iðxÞ≥ fiðxÞ for all
x∈ ð0; 1Þ. As we noted in the proof of item iii of Lemma S1.1, fiðxÞ
can be defined for x∈ ½0; 1Þ, it is a continuous function on ½0; 1Þ,
and fið0Þ> 0. Therefore, δ> 0 exists such that fiðxÞ> x for
x∈ ½0; δÞ. It follows that ~f iðxÞ> x for x∈ ð0; δÞ, and therefore
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inffx : ~f iðxÞ≤ xg≠ 0. Thus, we have proved that if ~f iðqÞ≤ q, then
~ri =minfx : ~f iðxÞ≤ xg∈ ð0; 1Þ exists. From the definition of ~ri we
obtain ~ri ≤ q. Assume now that ~ri ≤ q; i.e., minfx : ~f iðxÞ≤ xg≤ q. It
can be shown that ~f iðxÞ=x is a monotone decreasing function, and
therefore ~f iðqÞ=q≤~f iðriÞ=ri ≤ 1; i.e., ~f iðqÞ≤ q. [The proof that
~f iðxÞ=x is a monotone decreasing function is quite involved and is
omitted for brevity. It is based on the facts that ~c1ðxÞx is mono-
tone increasing, and therefore ejðxÞ=x is monotone decreasing for
all j∈R1.]

S2. GWAS Real Data Examples
Tables S1, S2, and S5 show the results of the replicability analysis
for the SNPs followed up based on the results of the primary study
(or studies). Columns 1–3 in Tables S1 and S2 and columns 1 and
2 in Table S5 contain the position of each SNP. Columns 4 and 5
in Tables S1 and S2 and columns 3 and 4 in Table S5 show the
primary and follow-up P values. Columns 6–8 in Tables S1 and
S2 and column 6 in Table S5 show the r values for different
choices of l00. Column 9 in Tables S1 and S2 and column 5 in
Table S5 show the metaanalysis P values, which are the un-
adjusted P values computed using the data from the primary and
follow-up studies for testing the global null hypothesis of no
association in any of the studies. In Tables S1 and S2 the rows
are sorted by the metaanalysis P values, and the handful of
findings with most significant metaanalysis P values that were
reported as interesting in the published works are marked with
an asterisk in the last column.

S3. Choice of Selection Rule for Replicability Analysis
Although any stable selection rule can be used, some selection
rules may be more efficient than others. For a given FDR level q,
the promising hypotheses for replicability analysis are the set of
hypotheses rejected with the BH procedure at level c1ðqÞq on the
primary study P values. Therefore, for the purpose of replica-
bility analysis, the set of hypotheses to be considered should be
only this set or a subset thereof. This means that if R1 hypotheses
are followed up, not all R1 features need to be selected for a
replicability analysis at a predetermined level q. The advantage
of selecting only the relevant subset is that the power of the
procedure will be greater because the problem of multiplicity
among the selected hypotheses will be smaller, without com-
promising any potential replicability claims. Specifically, for the
r value to be below q, only the subset of R1 hypotheses selected
for follow-up with primary study P values that are small enough
needs to be considered, where our requirement for small enough
is as follows: When applying the BH procedure at level c1ðqÞq
on p11; . . . ; p1m, these hypotheses will be among the rejected.
Computing the r values for the subset of R1 with small enough
primary study P values, we receive smaller r values than if all R1
SNPs are considered for replicability analysis.
For the example of GWAS of IgA nephropathy, for an FDR

level of 0.05, only 14 SNPs of the 61 followed up had primary study
P values small enough to be considered for replicability analysis.
The number of r values below 0.05 was still seven with this
modified selection rule, but these seven r values were smaller
than the r values for the 7 SNPs in Table 1 of the main text.
Specifically, with parameters ðl00; c2Þ= ð0:8; 0:5Þ for this superior
selection rule that selected 14 SNPs for follow-up, the r values
were 0.005, 0.008, 0.005, 0.008, 0.005, 0.041, and 0.017, whereas
the r values computed using all 61 SNPs selected were, re-
spectively, 0.007, 0.009, 0.006, 0.009, 0.009, 0.041, and 0.017.

S4. Power Comparison for Different Values of (l00; c2)
We conducted simulations to investigate how the power and FDR
of our proposal depend on c2 ∈ ð0; 1Þ and l00 ∈ f0; 0:5; 0:8; 0:9g
for q= 0:05. The P values were generated independently as fol-
lows. Let P1j and P2j be the P values in the primary and in the
follow-up study, respectively, for feature j. We set P1j = 1−ΦðX1jÞ

and P2j = 1−ΦðX2jÞ, where X1j ∼Nðμ1j; 1Þ, X2j ∼Nðμ2j; 1Þ. For
i∈ f1; 2g, we set μij = 0 if feature j comes from a true null hy-
pothesis in study i and μij = μi > 0 if feature j comes from a false
null hypothesis in study i. The values of μ1 and μ2 were set
according to the requirement that the power of the Bonferroni
procedure at level 0.05 in the primary study is π1 and that in
the follow-up study is π2, for π1 = 0:1 and π2 ∈ f0:2; 0:5; 0:8g.
Specifically, we set μ1 =Φ−1ð1− 0:05=mÞ−Φ−1ð1− π1Þ and
μ2 =Φ−1ð1− 0:05=R1Þ−Φ−1ð1− π2Þ, where Φ−1 is the inverse of
the cumulative distribution function of a standard normal
variable and R1 is the number of rejected hypotheses by the
BH procedure at level c1 × 0:05 applied on the primary study P
values. In addition, m= 1;000, f00 = 0:9; f01 = f10 = 0:025, and
f11 = 0:05.
The simulation results were based on 10,000 repetitions. The

FDR was estimated by averaging the false discovery proportion.
The average power was estimated by the average number of true
replicability claims, divided by mf11. We also estimated the
probability that our proposal makes at least one true replicability
claim (which we refer to as “power for at least one”) by the
proportion of repetitions in which at least one true replicability
claim was made. The SEs of the estimators were of the order of
10−3 or 10−4 for all of the sets of parameters.
A comparison of columns 8 and 9 with columns 3, 5, and 7 in

Table S4 shows that the gain in power of using l00 > 0 over l00 = 0 can
be large. Fig. S1 shows the average power and the power for at least
one as a function of c2 ∈ f0:05; 0:1; . . . ; 0:95g for our proposal with
l00 ∈ f0; 0:5; 0:8; 0:9g and q= 0:05. As expected, both measures
of power increase as l00 increases. For fixed l00 and ðπ1; π2Þ, the
highest average power among all of the choices of c2 is close to the
average power when c2 = 0:5 (Fig. S1 A, C, and E), also shown in
Table S4. The power curve for at least one as a function of c2 is flat
around c2 = 0:5 (Fig. S1 B, D, and F), suggesting as well that
c2 = 0:5 is an appropriate choice.
Fig. S2 shows the FDRas a function of c2 ∈ f0:05; 0:1; . . . ; 0:95g,

for our proposal with l00 ∈ f0; 0:5; 0:8; 0:9g and q= 0:05. It can
be seen that the FDR is far below 0.05 for all of the sets of pa-
rameters considered. This follows from the fact that our data
generation may result in FDR much lower than the upper bound
given in [S1]. To see this, note that it follows from the proof of
Theorem 1 that the FDR of our proposal achieves the upper
bound in [S1] when the P values under the alternative are prac-
tically zero. In our simulation setting, this condition would hold
if μi for i∈ f1; 2g were always extremely large compared with
Nð0; 1Þ random variables; e.g., μi ≥ 4. Obviously this does not
hold for our data generation process. Therefore, we could get
higher FDR values for another data generation process; however,
we still would not expect to achieve 0.05 because of using con-
servative upper bounds for f01 and EðjI10 ∩R1j=ðmaxjR1j; 1ÞÞ in
expression [S1].

S5. GWAS Simulation Example
The goal of the simulation was threefold: first, to verify that the
FDR is controlled below the nominal level for realistic simu-
lations with GWAS-type dependency, even if hypotheses with
primary study P values above c1ðqÞq=m are followed up; second,
to compare the performance of our suggested proposal with the
BH procedure on maximum P values; and third, to examine the
effect of l00 on the power of the two procedures.
The information on l00 is incorporated into the BH procedure

on maximum P values, to make the comparison fair, by per-
forming the BH procedure at level q=ð1− l00Þ. It is straightfor-
ward to show that the FDR is controlled at level at most q for the
BH procedure on the maximum P values at level q=ð1− l00Þ,
when the P values within each study are independent.
We simulated two GWAS from the simulator HAPGEN2 (2).

The two studies were generated from two samples of the HapMap
project (3), a sample of 165 Utah residents with Northern
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and Western European ancestry (CEU) and a sample of 109
Chinese in Metropolitan Denver, Colorado (CHD). In the CEU
and CHD populations, respectively, 34 and 38 SNPs were set as
disease SNPs with an increased multiplicative relative risk of 1.2,
and 18 of the disease SNPs were common to both populations.
Each study contained 4,500 cases and 4,500 referents. The linkage
disequilibrium (LD) across SNPs, as measured for the samples in
the HapMap project, was retained. Due to LD, the number of
SNPs associated with the phenotype in each study was larger than
the number of disease SNPs. See ref. 1 for the details of this
simulation.
The CHD study was the primary study, and the CEU study was

the follow-up study. SNPs were selected for follow-up only if they
were discovered by the BH procedure at level c1ð0:05Þ× 0:05.
Table S3 presents the average number of replicated findings, as
well as the average false discovery proportion (FDP), for our
proposal with c2 = 0:5 and q= 0:05, and the BH procedure on
maximum P values at level 0:05=ð1− l00Þ, for different values of
l00. From columns 4 and 7 it is clear that the FDR is controlled
and that our proposal is actually conservative, for all values of
l00. From a comparison of columns 2 and 5 it is clear that our
proposal is more powerful than the BH procedure on maximum
P values. Finally, from comparisons of the rows it is clear that the
power increases as l00 increases.

S6. Procedure for FWER Control
Theorem S6.1. A procedure that declares findings with Bonferroni
r values at most α as replicated controls the FWER for replica-
bility analysis at level at most α if l00 ≤ f00 and the follow-up study
P values are independent of the primary study P values.

Proof of Theorem S6.1. It is easy to show that the procedure that
declares findings with Bonferroni r values at most α as repli-
cated is equivalent to that of declaring as replicated all fea-
tures with fBonfj ðαÞ≤ α. The equivalence follows from the facts
that fBonfj ðxÞ is a continuous function of x and fBonfj ðxÞ=x
is strictly monotone decreasing. We prove that the above pro-
cedure controls the FWER at a level that is smaller than or
equal to

c1c2 f00α2 + f01c1α+ c2αE
� ��R1∩ I10

��
maxð��R1

��; 1Þ
�
; [S20]

where c1 = ð1− c2Þ=ð1− l00ð1− c2αÞÞ. Note that this upper bound
is equal to the upper bound given in expression [S1] with q= α.
We showed in the proof of Theorem 1 that the expression in [S1]
is at most q if l00 ≤ f00. Therefore, if the upper bound in [S20]
holds and l00 ≤ f00, then Theorem S6.1 follows.
We now prove that the expression in [S20] is an upper bound

for the FWER for replicability analysis, which is PrðR00 +R10 +
R01 > 0Þ. Note that

PrðR00 +R10 +R01 > 0Þ≤EðR00 +R10 +R01Þ=
X

x∈f00;01;10g

X
j∈Ix

E
�
Rj
�
:

For the procedure that declares as replicated all features with
fBonfj ðαÞ≤ α, which is equivalent to the procedure that declares

findings with Bonferroni r values at most α as replicated (as
discussed above),

E
�
Rj
�
=Pr

�
j∈R1;P1j ≤

c1α
m

;P2j ≤
c2α

max
���R1

��; 1�
�
: [S21]

We give an upper bound for expression [S21] for j∈ I01, j∈ I10,
and j∈ I00. For j∈ I01,

Pr
�
j∈R1;P1j ≤

c1α
m

;P2j ≤
c2α

max
���R1

��; 1�
�
≤Pr

�
P1j ≤

c1α
m

�
≤
c1α
m

;

[S22]

where the last inequality follows from the fact that P1j is a null-
hypothesis P value.
For j∈ I00 ∪ I10 and an arbitrary fixed p1 = ðp11; . . . ; p1mÞ such

that jR1ðp1Þj> 0,

E
�
Rj

���P1 = p1
�
= I
�
p1j ≤

c1α
m

; j∈R1ðp1Þ
�
Pr
�
P2j ≤

c2α��R1ðp1Þ
��
����P1 = p1

�

≤
c2α��R1ðp1Þ

�� I
�
p1j ≤

c1α
m

; j∈R1ðp1Þ
�
;

[S23]

where inequality [S23] follows from the independence of the
P values across the studies and the fact that P2j is a null-hypoth-
esis P value. Using [S23] we obtain the upper bounds on expres-
sion [S21] for j∈ I10 and for j∈ I00. For j∈ I10, it follows that

E
�
Rj
��P1 = p1

�
≤

c2α��R1ðp1Þ
�� I�j∈R1ðp1Þ

�
;

and therefore

E
�
Rj
�
≤ c2αE

�
Iðj∈R1Þ

max
���R1

��; 1�
�
: [S24]

For j∈ I00, it follows that

E
�
Rj
�
≤ c2αE

"
I
�
P1j ≤ c1α

�
m; j∈R1ðP1Þ

�
max

���R1ðP1Þ
��; 1�

#

≤ c2αE
h
I
�
P1j ≤

c1α
m

�i
≤ c2α

c1α
m

; [S25]

where the last inequality follows from the fact that P1j is a null-
hypothesis P value. From summing over the upper bounds [S22],
[S24], and [S25] it thus follows that

FWER≤EðR00 +R10 +R01Þ≤ c1c2f00α2 + f01c1α

+ c2αE
� jR1∩ I10j
maxðjR1j; 1Þ

�
:

1. Bogomolov M, Heller R (2013) Discovering findings that replicate from a primary study
of high dimension to a follow-up study. J Am Stat Assoc 108(504):1480–1492.

2. Su Z, Marchini J, Donnelly P (2011) HAPGEN2: Simulation of multiple disease SNPs.
Bioinformatics 27(16):2304–2305.
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Fig. S1. The estimated average power (A, C, and E) and the probability of at least one true replicability claim (power for at least one) (B, D, and F) of our
proposal with parameters ðl00,c2,0:05Þ as a function of c2 in a simulation where f00 = 0:9, f01 = f10 = 0:025, f11 = 0:05; the number of hypotheses examined in the

Legend continued on following page
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primary study is 1,000; and the signal-to-noise ratios for the primary study and the follow-up study, respectively, are taken according to the requirement that
the power of the Bonferroni procedure at level 0.05 in the primary study is π1 and that in the follow-up study is π2 for ðπ1,π2Þ= ð0:1,0:2Þ (A and B),
ðπ1,π2Þ= ð0:1,0:5Þ (C and D), ðπ1,π2Þ= ð0:1,0:8Þ (E and F). l00 = 0:9 (solid curve), l00 = 0:8 (dashed surve), l00 = 0:5 (dashed-dotted curve), and l00 = 0 (dotted curve).
The SEs of the estimators were of the order of 10−3 or 10−4 for all of the sets of parameters.
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Fig. S2. The estimated FDR of our proposal with parameters ðl00,c2,0:05Þ as a function of c2 in a simulation where f00 = 0:9, f01 = f10 = 0:025, f11 = 0:05; the
number of hypotheses examined in the primary study is 1,000; and the signal-to-noise ratios for the primary study and the follow-up study, μ1=σ1 and μ2=σ2,
respectively, are taken according to the requirement that the power of the Bonferroni procedure at level 0.05 in the primary study is π1 and that in the follow-
up study is π2 for ðπ1,π2Þ= ð0:1,0:2Þ (A), ðπ1,π2Þ= ð0:1,0:5Þ (B), and ðπ1,π2Þ= ð0:1,0:8Þ (C). l00 =0:9 (solid curve), l00 = 0:8 (dashed curve), l00 = 0:5 (dashed-dotted
curve), and l00 = 0 (dotted curve). The SEs were of the order of 10−3 or 10−4 for all of the sets of parameters.
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Table S1. Replicability analysis for the study of ref. 1

Chr. Position Gene p1 p2 l00 = 0 l00 = 0.5 l00 = 0.8 p_meta

6 32,685,358 HLA-DRB1 8.19e-08 8.57e-14 0.0243 0.0150 0.0074 4.13e-20*
8 6,810,195 DEFAs 2.04e-07 1.25e-07 0.0409 0.0207 0.0090 3.18e-14*
6 32,779,226 HLA-DQA/B 3.28e-08 3.57e-06 0.0224 0.0147 0.0059 3.43e-13*
22 28,753,460 MTMR3 2.30e-07 2.02e-05 0.0409 0.0207 0.0090 1.17e-11*
6 30,049,922 HLA-A 4.05e-09 3.68e-04 0.0224 0.0150 0.0090 1.74e-11*
17 7,403,693 TNFSF13 1.50e-06 2.52e-05 0.1907 0.1001 0.0413 9.40e-11*
17 7,431,901 MPDU1 5.52e-07 3.16e-04 0.0819 0.0418 0.0169 4.31e-10*
2 111,315,937 ACOXL 6.83e-05 3.41e-03 1 1 1 4.08e-07
16 31,255,249 x 6.67e-05 7.41e-03 1 1 1 4.64e-06
4 78,121,177 x 3.14e-10 8.16e-01 1 1 1 2.23e-05
11 113,369,319 x 1.82e-09 9.74e-01 1 1 1 5.42e-05
7 33,386,800 BBS9 2.75e-05 1.67e-01 1 1 1 1.17e-04
11 44,042,263 x 1.74e-05 2.72e-01 1 1 1 1.24e-04
4 40,144,579 x 9.95e-07 6.72e-01 1 1 1 1.85e-04
12 13,229,380 x 1.23e-05 4.41e-01 1 1 1 3.09e-04
14 69,116,920 x 4.60e-05 3.72e-01 1 1 1 3.71e-04
8 30,305,114 x 3.19e-05 4.73e-01 1 1 1 5.38e-04
12 129,587,780 x 4.59e-05 5.53e-01 1 1 1 6.84e-04
6 31,382,359 x 8.20e-08 9.53e-01 1 1 1 7.64e-04
16 77,632,003 WWOX 7.20e-05 4.57e-01 1 1 1 1.04e-03
8 97,393,458 PTDSS1 5.67e-05 6.12e-01 1 1 1 1.09e-03
6 26,384,629 x 4.32e-06 2.79e-01 1 1 1 1.25e-03
13 62,434,248 x 3.77e-05 5.39e-01 1 1 1 1.70e-03
11 109,836,841 FDX1 7.15e-05 7.19e-01 1 1 1 2.03e-03
18 35,923,102 x 4.35e-05 2.85e-01 1 1 1 2.32e-03
6 13,733,392 RANBP9 1.70e-05 8.45e-01 1 1 1 2.55e-03
9 78,162,069 PSAT1 5.98e-05 8.01e-01 1 1 1 2.71e-03
10 55,006,847 x 7.93e-05 6.87e-01 1 1 1 3.16e-03
6 33,163,516 x 1.46e-04 7.74e-01 1 1 1 4.56e-03
7 158,006,056 x 9.26e-05 7.50e-01 1 1 1 4.99e-03
6 106,231,017 x 6.19e-05 8.59e-01 1 1 1 6.41e-03
21 19,339,830 x 7.81e-05 5.34e-01 1 1 1 6.58e-03
12 19,488,937 AEBP2 4.95e-05 4.77e-01 1 1 1 6.92e-03
18 57,221,085 x 8.62e-06 5.48e-01 1 1 1 7.96e-03
10 76,538,473 DUSP13 7.84e-05 8.54e-01 1 1 1 9.18e-03
8 1,307,131 x 4.95e-05 7.52e-01 1 1 1 1.14e-02
16 72,315,398 x 4.92e-05 9.92e-01 1 1 1 1.24e-02
3 130,747,968 H1FOO 1.85e-05 8.90e-01 1 1 1 1.65e-02
12 39,245,441 x 1.21e-07 4.38e-01 1 1 1 1.66e-02
7 92,588,411 CCDC132 1.28e-07 4.09e-01 1 1 1 1.77e-02
1 110,389,963 x 1.46e-07 2.59e-01 1 1 1 1.99e-02
9 21,342,862 x 7.95e-05 9.45e-01 1 1 1 2.18e-02
2 46,170,592 PRKCE 1.78e-05 3.40e-01 1 1 1 2.21e-02
17 52,636,364 x 3.45e-05 5.20e-01 1 1 1 2.26e-02
1 82,547,439 x 5.51e-05 8.89e-01 1 1 1 2.72e-02
6 156,238,397 x 4.73e-05 1.43e-01 1 1 1 2.80e-02
11 61,956,393 x 2.16e-06 5.37e-01 1 1 1 4.10e-02
10 135,319,919 x 3.90e-05 6.76e-01 1 1 1 4.33e-02
12 66,026,196 x 2.57e-06 5.08e-01 1 1 1 4.42e-02
8 25,535,212 x 2.46e-05 3.44e-01 1 1 1 5.31e-02
15 88,817,746 IQGAP1 8.64e-05 2.22e-01 1 1 1 5.76e-02
6 13,707,282 SIRT5 3.98e-05 3.66e-01 1 1 1 6.84e-02
1 70,907,559 x 3.96e-05 4.71e-01 1 1 1 7.24e-02
1 176,696,794 CEP350 7.14e-05 4.50e-01 1 1 1 1.04e-01
12 8,955,888 x 7.85e-06 2.07e-01 1 1 1 1.10e-01
11 94,090,071 x 5.22e-05 3.08e-01 1 1 1 1.29e-01
2 4,641,380 x 9.57e-05 3.68e-01 1 1 1 1.39e-01
1 23,749,819 x 8.10e-05 2.08e-01 1 1 1 1.58e-01
7 105,466,371 x 4.61e-05 9.90e-02 1 1 1 2.32e-01
5 4,489,013 x 8.96e-05 3.83e-02 1 1 1 4.40e-01
1 215,993,345 x 2.67e-05 1.32e-02 1 1 1 4.90e-01

Chr., chromosome.

1. Yu XQ, et al. (2012) A genome-wide association study in Han Chinese identifies multiple susceptibility loci for IgA nephropathy. Nat Genet 44(2):178–182.
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Table S2. Replicability analysis for the study of ref. 1, with 635,547 SNPs in the primary study
and with 126 SNPs followed up

Row no. Chr. Position p1 p2 l00 = 0 l00 =0:5 l00 =0:8 p_meta

1 1 67,417,979 3.19e-34 1.50e-36 4.05e-28 2.03e-28 8.11e-29 2.15e-68
2 1 67,414,547 5.05e-36 3.10e-29 3.91e-27 3.91e-27 3.91e-27 3.33e-63*
3 1 67,387,537 1.35e-24 5.62e-17 4.72e-15 4.72e-15 4.72e-15 1.82e-39
4 2 233,962,410 5.66e-21 7.67e-14 4.83e-12 4.83e-12 4.83e-12 1.18e-32*
5 5 40,428,485 2.51e-22 2.79e-08 1.34e-06 1.14e-06 1.14e-06 3.09e-27*
6 5 40,437,266 2.26e-22 3.18e-08 1.34e-06 1.14e-06 1.14e-06 3.41e-27
7 2 233,965,368 1.28e-21 3.66e-05 5.76e-04 5.76e-04 5.76e-04 4.61e-25
8 10 64,108,492 9.51e-12 1.61e-10 1.73e-06 1.14e-06 4.84e-07 2.23e-20*
9 5 131,798,704 2.29e-09 3.52e-11 2.08e-04 1.04e-04 4.16e-05 1.16e-18*
10 18 12,769,947 5.95e-12 2.41e-07 7.20e-06 6.48e-06 6.48e-06 2.55e-17*
11 10 101,281,583 8.53e-11 1.69e-07 1.05e-05 6.48e-06 5.32e-06 1.53e-16*
12 5 150,239,060 3.18e-11 2.57e-07 7.20e-06 6.48e-06 6.48e-06 1.70e-16*
13 10 101,282,445 9.09e-11 3.10e-07 1.05e-05 7.10e-06 7.10e-06 3.05e-16
14 18 12,799,340 3.27e-11 1.23e-06 2.38e-05 2.38e-05 2.38e-05 7.05e-16
15 5 150,203,580 4.09e-11 7.47e-07 1.57e-05 1.57e-05 1.57e-05 7.33e-16
16 13 43,355,925 8.04e-08 1.33e-07 5.68e-03 2.84e-03 1.21e-03 1.04e-13*
17 5 158,747,111 4.40e-09 3.66e-06 3.73e-04 1.86e-04 7.46e-05 1.93e-13*
18 6 167,408,399 1.65e-07 3.26e-07 8.74e-03 4.57e-03 1.91e-03 5.22e-13*
19 3 49,696,536 1.08e-07 5.64e-07 6.54e-03 3.27e-03 1.38e-03 5.76e-13*
20 17 37,767,727 2.97e-06 9.15e-08 8.58e-02 4.60e-02 2.07e-02 3.41e-12*
21 3 49,676,987 9.47e-08 2.24e-06 6.02e-03 3.01e-03 1.27e-03 3.55e-12
22 1 197,667,523 3.41e-07 2.34e-06 1.44e-02 7.50e-03 3.36e-03 7.17e-12*
23 12 39,104,262 8.95e-08 6.55e-05 5.99e-03 3.00e-03 1.27e-03 6.36e-11
24 6 106,541,962 1.85e-06 7.70e-06 6.03e-02 3.23e-02 1.42e-02 1.22e-10*
25 9 114,645,994 1.96e-07 6.58e-05 9.46e-03 4.93e-03 2.18e-03 1.30e-10*
26 12 38,888,207 6.64e-08 1.65e-04 4.96e-03 2.49e-03 1.91e-03 1.54e-10*
27 6 20,836,710 1.26e-07 2.78e-04 7.28e-03 3.65e-03 2.92e-03 4.48e-10*
28 11 75,978,964 7.16e-08 7.32e-04 8.02e-03 6.83e-03 6.36e-03 6.60e-10*
29 21 44,439,989 5.41e-06 1.59e-05 1.32e-01 7.27e-02 3.18e-02 7.04e-10*
30 1 157,665,119 1.75e-07 4.81e-04 8.90e-03 4.93e-03 4.33e-03 7.30e-10*
31 1 169,593,891 2.01e-07 3.21e-04 9.46e-03 4.93e-03 3.24e-03 7.66e-10*
32 1 197,691,964 9.69e-07 1.00e-04 3.52e-02 1.94e-02 8.07e-03 8.10e-10
33 10 35,327,656 4.24e-06 2.53e-05 1.10e-01 6.03e-02 2.64e-02 8.93e-10*
34 19 1,074,378 5.80e-09 3.47e-03 2.82e-02 2.57e-02 2.19e-02 1.06e-09
35 19 1,075,031 6.48e-09 2.10e-02 1.10e-01 9.80e-02 8.97e-02 1.18e-09
36 20 61,798,026 7.60e-07 1.38e-04 2.93e-02 1.57e-02 6.52e-03 1.30e-09
37 7 50,081,722 1.58e-05 9.41e-06 2.73e-01 1.67e-01 8.20e-02 1.39e-09
38 6 167,405,736 1.65e-07 1.21e-03 1.09e-02 1.02e-02 9.24e-03 1.58e-09
39 9 4,971,602 3.40e-07 4.30e-04 1.44e-02 7.50e-03 4.01e-03 1.73e-09*
40 6 32,789,255 1.53e-08 3.82e-03 2.93e-02 2.75e-02 2.35e-02 2.17e-09
41 8 126,609,233 2.45e-06 1.09e-04 7.41e-02 3.87e-02 1.74e-02 2.25e-09*
42 7 50,046,933 2.46e-05 1.10e-05 3.68e-01 2.36e-01 1.24e-01 2.30e-09*
43 17 35,294,289 1.06e-06 2.92e-04 3.74e-02 2.06e-02 8.57e-03 2.50e-09*
44 6 32,484,449 7.23e-09 6.02e-03 4.10e-02 3.79e-02 3.23e-02 2.60e-09
45 8 126,603,853 1.90e-06 1.82e-04 6.04e-02 3.23e-02 1.42e-02 2.78e-09
46 9 114,648,320 1.31e-07 4.22e-03 3.13e-02 2.95e-02 2.53e-02 3.67e-09
47 21 15,727,091 1.03e-05 4.58e-05 2.02e-01 1.16e-01 5.37e-02 3.70e-09*
48 1 114,015,850 7.75e-06 8.25e-05 1.67e-01 9.75e-02 4.28e-02 4.95e-09
49 1 114,089,610 9.05e-06 1.01e-04 1.89e-01 1.10e-01 4.85e-02 7.30e-09*
50 10 35,589,263 6.05e-06 1.76e-04 1.40e-01 8.00e-02 3.42e-02 8.04e-09
51 21 44,436,378 5.21e-06 3.61e-04 1.30e-01 7.14e-02 3.16e-02 1.43e-08
52 21 15,734,423 1.00e-05 4.44e-04 2.02e-01 1.16e-01 5.31e-02 3.36e-08
53 3 49,499,240 2.42e-08 1.94e-01 5.28e-01 5.28e-01 5.28e-01 3.56e-08
54 9 4,978,761 1.96e-06 1.62e-03 6.08e-02 3.25e-02 1.42e-02 4.34e-08
55 2 61,129,193 3.07e-06 2.80e-03 8.67e-02 4.64e-02 2.08e-02 6.36e-08
56 1 169,594,596 1.90e-07 2.60e-02 1.30e-01 1.16e-01 1.09e-01 9.01e-08
57 3 49,425,868 2.84e-08 1.07e-01 3.28e-01 3.16e-01 3.16e-01 1.20e-07
58 13 43,497,789 6.90e-07 8.82e-03 5.85e-02 5.05e-02 4.36e-02 1.44e-07
59 2 61,098,480 3.82e-06 5.65e-03 1.03e-01 5.54e-02 3.16e-02 1.57e-07
60 6 20,797,924 1.83e-07 2.88e-02 1.34e-01 1.19e-01 1.17e-01 1.64e-07
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61 6 5,096,246 3.54e-07 1.92e-02 1.03e-01 9.49e-02 8.34e-02 3.48e-07
62 1 157,691,986 2.98e-07 2.77e-02 1.32e-01 1.16e-01 1.14e-01 3.82e-07
63 17 29,611,838 2.01e-06 1.35e-02 7.91e-02 7.14e-02 6.19e-02 5.34e-07
64 17 37,824,128 7.42e-06 7.40e-03 1.65e-01 9.50e-02 4.17e-02 7.10e-07
65 19 18,300,383 5.43e-08 5.26e-02 2.02e-01 1.92e-01 1.84e-01 7.54e-07
66 2 27,652,888 3.62e-05 3.81e-03 5.06e-01 3.16e-01 1.75e-01 1.15e-06
67 6 3,378,317 1.04e-06 3.91e-02 1.67e-01 1.54e-01 1.49e-01 1.37e-06
68 2 102,521,887 1.02e-05 1.60e-02 2.02e-01 1.16e-01 7.20e-02 1.45e-06
69 2 27,642,591 3.44e-05 1.08e-02 4.86e-01 3.14e-01 1.70e-01 2.30e-06
70 2 230,934,834 7.59e-06 5.44e-02 2.02e-01 1.93e-01 1.85e-01 2.48e-06
71 20 61,820,069 2.04e-07 3.30e-01 7.58e-01 7.58e-01 7.58e-01 2.66e-06
72 6 3,379,241 1.15e-06 5.82e-02 2.13e-01 2.04e-01 1.96e-01 2.83e-06
73 10 75,302,766 1.23e-05 3.14e-02 2.23e-01 1.32e-01 1.24e-01 3.03e-06
74 1 7,840,274 1.47e-06 5.41e-02 2.02e-01 1.93e-01 1.85e-01 3.63e-06
75 6 149,618,772 3.64e-06 4.40e-02 1.85e-01 1.67e-01 1.64e-01 4.39e-06
76 6 21,578,398 4.97e-06 6.78e-02 2.41e-01 2.34e-01 2.25e-01 5.02e-06
77 22 20,264,229 1.25e-06 3.25e-01 7.58e-01 7.58e-01 7.58e-01 6.26e-06
78 11 63,906,946 4.74e-06 2.45e-01 6.30e-01 6.30e-01 6.30e-01 7.44e-06
79 4 187,576,360 1.35e-06 8.65e-02 2.87e-01 2.83e-01 2.76e-01 7.81e-06
80 2 230,916,728 8.93e-06 8.43e-02 2.83e-01 2.80e-01 2.72e-01 9.04e-06
81 17 29,849,794 1.25e-05 9.61e-02 3.10e-01 3.07e-01 2.99e-01 1.01e-05
82 2 102,529,086 1.08e-05 4.93e-02 2.02e-01 1.83e-01 1.75e-01 1.11e-05
83 20 57,351,084 1.73e-06 1.01e-01 3.22e-01 3.14e-01 3.10e-01 1.18e-05
84 4 187,585,769 1.34e-06 1.07e-01 3.28e-01 3.16e-01 3.16e-01 1.33e-05
85 16 84,545,499 4.74e-06 2.26e-01 5.87e-01 5.87e-01 5.87e-01 1.40e-05
86 18 17,927,329 1.59e-05 4.43e-02 2.73e-01 1.67e-01 1.64e-01 1.44e-05
87 18 54,054,001 5.56e-06 2.07e-01 5.55e-01 5.55e-01 5.55e-01 1.97e-05
88 14 75,071,147 4.71e-06 1.52e-01 4.35e-01 4.26e-01 4.26e-01 2.25e-05
89 5 37,949,301 1.74e-06 2.73e-01 6.68e-01 6.68e-01 6.68e-01 2.41e-05
90 10 75,324,937 1.12e-05 1.04e-01 3.28e-01 3.16e-01 3.16e-01 3.32e-05
91 6 21,565,929 1.09e-05 1.23e-01 3.68e-01 3.56e-01 3.56e-01 3.40e-05
92 11 63,967,228 1.60e-05 8.82e-02 2.89e-01 2.85e-01 2.78e-01 3.45e-05
93 12 58,059,725 2.84e-05 1.49e-01 4.32e-01 4.22e-01 4.22e-01 3.97e-05
94 22 20,281,207 8.65e-07 4.93e-01 1.00e+00 1.00e+00 1.00e+00 4.55e-05
95 4 106,463,957 6.25e-06 2.71e-01 6.68e-01 6.68e-01 6.68e-01 5.03e-05
96 1 222,692,358 2.73e-06 3.93e-01 8.46e-01 8.46e-01 8.46e-01 5.08e-05
97 4 7,649,390 3.24e-06 3.52e-01 7.99e-01 7.99e-01 7.99e-01 5.27e-05
98 17 35,315,722 3.41e-06 4.19e-01 8.95e-01 8.95e-01 8.95e-01 5.45e-05
99 3 13,3674,827 6.84e-06 1.61e-01 4.56e-01 4.46e-01 4.46e-01 6.21e-05
100 1 7,766,478 1.45e-05 2.11e-01 5.60e-01 5.60e-01 5.60e-01 6.82e-05
101 8 83,235,127 1.32e-05 2.23e-01 5.85e-01 5.85e-01 5.85e-01 1.28e-04
102 21 39,215,894 8.73e-06 2.63e-01 6.63e-01 6.63e-01 6.63e-01 1.65e-04
103 10 122,495,603 2.08e-05 3.63e-01 8.10e-01 8.10e-01 8.10e-01 1.98e-04
104 14 75,056,332 1.28e-05 3.31e-01 7.58e-01 7.58e-01 7.58e-01 2.22e-04
105 13 80,961,793 1.61e-07 3.72e-01 8.22e-01 8.22e-01 8.22e-01 2.23e-04
106 18 75,866,208 1.38e-06 2.56e-01 6.52e-01 6.52e-01 6.52e-01 2.80e-04
107 12 13,070,503 8.89e-06 4.35e-01 9.18e-01 9.18e-01 9.18e-01 3.27e-04
108 10 132,842,492 2.65e-05 4.41e-01 9.18e-01 9.18e-01 9.18e-01 3.88e-04
109 5 37,948,752 1.06e-05 4.41e-01 9.18e-01 9.18e-01 9.18e-01 4.78e-04
110 13 80,973,593 2.64e-07 3.29e-02 1.48e-01 1.32e-01 1.28e-01 5.54e-04
111 12 13,046,606 4.05e-05 4.55e-01 9.40e-01 9.40e-01 9.40e-01 7.51e-04
112 10 1,453,158 7.72e-06 2.90e-01 6.96e-01 6.96e-01 6.96e-01 7.56e-04
113 1 181,883,035 1.04e-05 3.88e-01 8.43e-01 8.43e-01 8.43e-01 9.32e-04
114 18 59,311,578 1.01e-05 4.98e-01 1.00e+00 1.00e+00 1.00e+00 9.48e-04
115 7 130,385,443 1.24e-05 3.81e-01 8.35e-01 8.35e-01 8.35e-01 9.64e-04
116 18 55,030,807 1.75e-05 3.04e-01 7.23e-01 7.23e-01 7.23e-01 1.06e-03
117 19 50,999,246 1.95e-05 4.60e-01 9.42e-01 9.42e-01 9.42e-01 1.32e-03
118 15 72,660,732 7.44e-06 2.73e-01 6.68e-01 6.68e-01 6.68e-01 1.33e-03
119 18 55,028,896 8.34e-06 3.56e-01 8.01e-01 8.01e-01 8.01e-01 1.80e-03
120 16 84,542,932 3.44e-04 2.78e-01 1.00e+00 1.00e+00 1.00e+00 2.39e-03
121 8 107,779,719 2.92e-05 3.14e-01 7.40e-01 7.40e-01 7.40e-01 2.78e-03
122 12 58,052,436 1.14e-05 2.89e-01 6.96e-01 6.96e-01 6.96e-01 3.45e-03
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123 18 54,054,701 9.40e-06 1.95e-01 5.28e-01 5.28e-01 5.28e-01 5.28e-03
124 18 75,865,061 2.11e-06 1.08e-01 3.28e-01 3.16e-01 3.16e-01 6.92e-03
125 15 72,685,472 5.81e-06 7.71e-02 2.70e-01 2.59e-01 2.52e-01 1.27e-02
126 8 107,743,073 2.59e-05 1.43e-01 4.19e-01 4.09e-01 4.09e-01 1.36e-02

The last column marks the 30 SNPs that were highlighted as “convincingly (Bonferroni P < 0:05) replicated CD
risk loci,” based on the follow-up study P values, in table 2 of the main text of ref. 1.

1. Barrett JC, et al.; NIDDK IBD Genetics Consortium; Belgian-French IBD Consortium; Wellcome Trust Case Control Consortium (2008) Genome-wide association defines more than 30
distinct susceptibility loci for Crohn’s disease. Nat Genet 40(8):955–962.

Table S3. For 4,500 cases and 4,500 referents in both studies, the average number of associated and disease SNPs
discovered (SE) and the average FDP (SE), for different values of l00

FDR r values ≤0.05 BH procedure on maximum P values at level 0.05/(1−l00)

No. replicated findings No. replicated findings

l00 Associated SNPs (SE) Disease SNPs (SE) FDP (SE) Associated SNPs (SE) Disease SNPs (SE) FDP (SE)

0 41.5 (5.3) 8.3 (0.5) 0.011 (0.011) 29.2 (3.2) 7.4 (0.4) 0.000 (0.000)
0.8 55.4 (5.3) 9.3 (0.4) 0.013 (0.013) 39.0 (3.5) 8.5 (0.5) 0.000 (0.000)
0.9 58.4 (4.9) 9.6 (0.3) 0.014 (0.014) 42.8 (3.3) 9.1 (0.4) 0.000 (0.000)
0.95 59.9 (4.5) 9.7 (0.3) 0.015 (0.014) 46.1 (3.5) 9.3 (0.3) 0.000 (0.000)
0.99 60.0 (4.6) 9.7 (0.3) 0.015 (0.014) 50.8 (3.9) 9.4 (0.3) 0.000 (0.000)

The actual value of f00 was above 0.999. Results are given for our proposal with c2 = 0:05 and q= 0:05 in columns 2–4 and for the BH
procedure on maximum P values at level 0:05=ð1− l00Þ in columns 5–7. SNPs were selected for follow-up only if they were discovered by
the BH procedure at level c1ð0:05Þ× 0:05.

Table S4. The estimated average power of our proposal with parameters (l00,c2,0:05), where c2 is the optimal choice among the values
in f0:05,0:1,…,0:95g for l00 = 0:5 (column 2), l00 = 0:8 (column 4), l00 =0:9 (column 6), and l00 =0 (column 8), and the optimal value of c2 is
given in the row below; c2 =0:5, for l00 ∈ f0:5,0:8,0:9,0g (columns 3, 5, 7, 9) in a configuration f00 = 0:9, f01 = f10 =0:025, f11 =0:05

ðπ1,π2Þ
Optimal for
l00 = 0.5

l00 = 0.5,
c2 = 0.5

Optimal for
l00 = 0.8

l00 = 0.8,
c2 = 0.5

Optimal for
l00 = 0.9

l00 = 0.9,
c2 = 0.5

Optimal for
l00 = 0

l00 = 0,
c2 = 0.5

(0.1, 0.8) 0.2980 0.2515 0.4486 0.3858 0.5681 0.4921 0.2009 0.1686
c2 = 0.2 c2 = 0.2 c2 = 0.15 c2 = 0.2

(0.1, 0.5) 0.1749 0.1666 0.2881 0.2750 0.3837 0.3669 0.1105 0.1044
c2 = 0.35 c2 = 0.35 c2 = 0.35 c2 = 0.35

(0.1, 0.2) 0.0425 0.0425 0.0786 0.0781 0.1152 0.1152 0.0261 0.0258
c2 = 0.5 c2 = 0.55 c2 = 0.5 c2 = 0.55

The number of hypotheses examined in the primary study is 1,000. The signal-to-noise ratios for the primary study and the follow-up study, μ1=σ1 and μ2=σ2,
respectively, are taken according to the requirement that the power of the Bonferroni procedure at level 0.05 in the primary study is π1 and that in the follow-
up study is π2 (given in the first column). The SEs were of the order of 10−3 or 10−4 for all of the estimates.

Table S5. Replicability analysis for FWER control for the study
of ref. 1 on GWAS of TPP

Chr. Position p1 p2 p_meta r value

17 65,837,933 6.28e-10 1.49e-05 7.69e-14 0.00012
17 65,818,432 1.39e-09 7.36e-05 1.59e-12 0.00059
17 65,799,923 2.27e-09 7.25e-05 1.09e-12 0.00058
17 65,778,654 1.84e-08 0.000116 1.6e-11 0.00360

The number of SNPs in the primary study was 486,782, and 4 SNPs were
followed up. The lower bound for f00 was l00 = 0:8 for the r-value computation.

1. Cheung CL, et al. (2012) Genome-wide association study identifies a susceptibility locus for thyrotoxic periodic paralysis at 17q24.3. Nat Genet 44(9):1026–1029.
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