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1 Phylogenetic networks

In order to account for both hybridization and incomplete lineage sorting, we use the phy-

logenetic network model given in [17], which is described briefly below.

Definition 1 A phylogenetic X -network, or X -network for short, Ψ is a directed, acyclic

graph (DAG) with V = {r} ∪ VL ∪ VT ∪ VN , where

• indeg(r) = 0 (r is the root of Ψ);

• ∀v ∈ VL, indeg(v) = 1 and outdeg(v) = 0 (VL are the external tree nodes, or leaves,

of Ψ);

• ∀v ∈ VT , indeg(v) = 1 and outdeg(v) ≥ 2 (VT are the internal tree nodes of Ψ);

and,

• ∀v ∈ VN , indeg(v) = 2 and outdeg(v) = 1 (VN are the reticulation nodes of Ψ),

E ⊆ V ×V are the network’s edges, including reticulation edges whose heads are reticula-

tion nodes, and tree edges whose heads are tree nodes., and ` : VL → X is the leaf-labeling

function, which is a bijection from VL to X .

We use V (Ψ) andE(Ψ) to denote the set of nodes and edges of phylogenetic network Ψ

respectively. In addition to the topology of a phylogenetic network Ψ, each edge b = (u, v)

in E(Ψ) has a length λb measured in coalescent units, which is the number of generations

divided by effective population size on that branch. We use Ψ to refer to both the topology

and branch lengths of the phylogenetic network.
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2 Distribution of gene tree topologies

Given a phylogenetic network Ψ, the gene tree topology is a random variable whose prob-

ability mass function (pmf) was given in [3] for the case where the topology of Ψ is a tree,

and in [36] for the case where the topology of Ψ is a network. We now briefly review the

pmf given in [36].

We denote by Ψu the set of nodes that are reachable from the root of Ψ via at least one

path that goes through node u ∈ V (Ψ). Then given a phylogenetic network Ψ and a gene

tree G for some locus j, a coalescent history is a function h : V (G)→ E(Ψ) such that the

following two conditions hold:

• if v is a leaf in G, then h(v) = (x, y) where y is the leaf in Ψ with the label of the

species from which the allele labeling leaf v in G is sampled;

• if v is a node in Gu, and h(u) = (p, q), then h(v) = (x, y) where y ∈ Ψq.

In Fig. 1, we show an example of all the possible coalescent histories for a given gene tree

and phylogenetic network.

Given a phylogenetic network Ψ and a gene tree G for locus j, we denote by HΨ(G)

the set of all coalescent histories of G within the branches of Ψ. Then the pmf of the gene

tree is given by

P(G|Ψ,Γ) =
∑

h∈HΨ(G)

P(h|Ψ,Γ), (1)

where Γ is the inheritance probabilities matrix (see the main text) and P(h|Ψ,Γ) gives the

pmf of the coalescent history random variable, which can be computed as

P(h|Ψ,Γ) =
w(h)

d(h)

∏
b∈E(Ψ)

wb(h)

db(h)
Γ[b, j]ub(h)pub(h)vb(h)(λb). (2)

In this equation, ub(h) and vb(h) denote the number of lineages enter and exit edge b of

Ψ under coalescent history h. The term pub(h)vb(h)(λb) is the probability of ub(h) gene

lineages coalescing into vb(h) during time λb [28]. And wb(h)/db(h) is the proportion of

all coalescent scenarios resulting from ub(h)− vb(h) coalescent events that agree with the

topology of the gene tree [3]. This quantity without the b subscript corresponds to the root
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Figure 1: A phylogenetic network Ψ, a gene tree G, and the eight possible coalescent

histories of G within the branches of Ψ. Here, one allele is sampled from taxa A and C,

and two alleles from taxon B.

of Ψ. In Table 1, we gave an example of how Eq. 2 is computed given the phylogenetic

network Ψ and G in Fig. 1.

Recently, we proposed the first method for computing P(G|Ψ,Γ) based on the concept

of MUL-tree [36]. Basically, the phylogenetic network is first converted to a MUL-tree, and

then the probability is calculated as the sum of the probabilities of observing the gene tree

within the branches of the MUL-tree under all allele mappings. Later, we proposed another

more efficient way of computing P(G|Ψ,Γ) based on the concept of weighted ancestral

configuration [37]. It is an bottom-up algorithm working on the network Ψ directly without

explicitly enumerating any coalescent history.
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Table 1: The probabilities of all coalescent histories in Fig. 1. For every coalescent history

h, columns from 2 to 7 list the probability of having h on every branch of the species

network Ψ, where ti is the branch length of branch i and guv(ti) is the probability of u gene

lineages coalescing into v within time ti [3]. Branch 6 corresponds to the branch incident

into the root of the species network Ψ. A dash means no gene lineages enter that branch.

Therefore, the total probability of a coalescent history is the product taken over all branches

of the species network. In Fig. 1, coalescent events y and z can only happen above the root

of Ψ. For every coalescent history, the highlighted cell shows where coalescent event x

happens.

Probability of each branch

1 2 3 4 5 6

h1 g21(t1) γ − g22(t4) 1 1
3

h2 g21(t1) − 1− γ 1 g22(t5) 1
3

h3 g22(t1) γ2g21(t2) − g22(t4) 1 1
3

h4 g22(t1) − (1− γ)2g21(t3) 1 g22(t5) 1
3

h5 g22(t1) γ2g22(t2) − 1
3
g32(t4) 1 1

3

h6 g22(t1) − (1− γ)2g22(t3) 1 1
3
g32(t5) 1

3

h7 g22(t1) γ2g22(t2) − g33(t4) 1 1
9

h8 g22(t1) − (1− γ)2g22(t3) 1 g33(t5) 1
9

h9 g22(t1) γ 1− γ g22(t4) g22(t5) 1
9

h10 g22(t1) γ 1− γ g22(t4) g22(t5) 1
9

3 Distribution of gene trees with their branch lengths

Given a species tree, the probability density function (pdf) of a gene tree with branch

lengths was given in [20]. Now we propose the first method for computing this pdf when

the given species phylogeny is a network. We discuss in the main text the conversion

between branch lengths of gene trees in units of expected numbers of mutations and branch

lengths of phylogenetic networks in coalescent units. Therefore, neither the phylogenetic

network nor the gene trees have to be ultrametric in our model, unless time (in both cases)
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is measured in standard units (calendar time).

Given a gene tree G and a species tree Ψ (both given by their topologies and branch

lengths), there is only one way of reconciling G within the branches of Ψ. However, when

the species phylogeny is a network, there might be more than one reconciliation due to

different paths that the gene lineages can take at reticulation nodes of Ψ when tracing them

backwards in time.

We use τΨ(v) to denote the height of node v in phylogeny Ψ with branch lengths λ.

Given a gene tree G whose branch lengths are given by λ′ and a phylogenetic network

Ψ whose branch lengths are given by λ, we define a coalescent history with respect to

coalescence times to be a function h : V (G) → E(Ψ), such that the following condition

holds:

• for h ∈ HΨ(G), if h(v) = (x, y) and τΨ(x) > τG(v) ≥ τΨ(y), then h(v) = (x, y).

The quantity τG(v) indicates at which point of branch (x, y) coalescent event v happens.

We denote the set of coalescent histories with respect to coalescence times for gene tree G

and phylogenetic network Ψ by HΨ(G). Clearly, in this case, the set H depends on λ and

λ′. To illustrate this, an example is shown in Fig. 2, where the same phylogenetic network

and gene tree are used as the ones in Fig. 1, but with branch lengths. We can see that there

are only two coalescent histories with respect to coalescence times, h1 and h2, resulting

from different paths b1 and b2 took at the reticulation node. And their corresponding coa-

lescent histories in Fig. 1 are h5 and h6, respectively. It is important to note that some λ

and λ′ may result in HΨ(G) = ∅, which means G cannot be reconciled within the branches

of Ψ with respect to their coalescence times.

Given a phylogenetic network Ψ, the pdf of the gene tree (topology and branch lengths)

random variable is given by

p(G|Ψ,Γ) =
∑

h∈HΨ(G)

P(h|Ψ,Γ), (3)

where p(h|Ψ,Γ) gives the pdf of the coalescent history (with respect to coalescence times)

random variable.

Let us now consider a locus j, whose gene tree is G and an arbitrary h ∈ HΨ(G).

For an edge b = (x, y) ∈ E(Ψ), we define Tb(h) to be a vector of the elements in the
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Figure 2: A phylogenetic network Ψ, a gene tree G, and the two possible coalescent histo-

ries with respect to coalescence times of G within the branches of Ψ. One allele is sampled

from taxa A and C, and two alleles from taxon B. As shown in the figure, τ1, τ2 and τ3 are

the heights of the three internal nodes of G, and η1, η2, η3 and η4 are the heights of four

internal nodes of Ψ.

set {τG(w) : w ∈ h−1(b)} ∪ {τΨ(y)} in increasing order. We denote by Tb(h)[i] the i-

th element of the vector. Furthermore, we denote by ub(h) the number of gene lineages

entering edge b and vb(h) the number of gene lineages leaving edge b under h. Then we

have

p(h|Ψ,Γ) =
∏

b=(x,y)∈E(Ψ)

[ |Tb(h)|−1∏
i=1

fc(ub(h)− i+ 1, Tb(h)i+1 − Tb(h)i)

× 1(
ub(h)−i+1

2

)]× fn(vb(h), τΨ(x)− Tb(ht)|Tb(h)|)× Γ[b, j]ub(h)

, (4)

where fc(j, t) is the pdf of the waiting time t (t ≥ 0) for j lineages to coalesce into j − 1

[11, 12]

fc(j, t) =

(
j

2

)
e−(j2)t. (5)

Furthermore, 1/
(
ub(h)−i+1

2

)
is the probability of a particular pair of gene lineages among

ub(h) − i + 1 lineages coalescing in a manner that is consistent with the topology of G.
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Table 2: The individual terms of the pdf of all coalescent histories with respect to coales-

cence times in Fig. 2. For every h, the six columns labeled 1—6 give the term for having

the coalescence events given by h on every branch of the species network Ψ. Since there

is only one reticulation node and we are illustrating an arbitrary locus, we replace Γ by a

single γ value for edge 2 in the network and 1 − γ for edge 3 (the Γ values for every tree

edge in the network is 1). Branch 6 is the one incident into the root of the species network.

A dash means no gene lineages enter that branch. The relative likelihood for the coalescent

history random variable to take on the value of a specific history is the product of all the

six terms in the corresponding row of that coalescent history. In Fig. 2, coalescent events y

and z can only happen above the root of Ψ. For every h, the highlighted cell shows where

coalescent event x happens.

Phylogenetic network branch-specific individual terms of the coalescent history pdf

1 2 3 4 5 6

h1 e−η4 γ2e−(η3−η4) − 3e−(τ3−η3)e−(η1−τ3) 1 3e−(τ2−η1)e−(τ1−τ2)

h2 e−η4 − (1− γ)2e−(η2−η4) 1 3e−(τ3−η2)e−(η1−τ3) 3e−(τ2−η1)e−(τ1−τ2)

And fn(j, t) is the probability of no coalescent events happening among j gene lineages

for time t which can be computed as [11, 12]

fn(j, t) = e−(j2)t (6)

After substituting Eq. 5 and Eq. 6 into Eq. 4, we have

p(h|Ψ,Γ) =
∏

b∈E(Ψ)

[ |Tb(h)|−1∏
i=1

e−(ub(h)−i+1
2 )(Tb(h)i+1−Tb(h)i)

]
×e−(vb(h)

2 )(τΨ(b)−Tb(h)|Tb(h)|)×Γ[b, j]ub(h).

(7)

In Table 2, we give an example of how Eq. 7 is computed given the phylogenetic

network Ψ and gene tree G in Fig. 2.

We can use the same technique in [36] but with Eq. 3 to calculate p(G|Ψ,Γ). Basically,

we first convert the phylogenetic network to a MUL-tree. Then under every allele mapping,

we compute the set of coalescent histories with respect to coalescence times and use Eq. 7

to compute the probability of every coalescent history. Note that as in [36] special attention

needs to be paid to the sets of edges in the MUL-tree that come from the same edge in the

original network.
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Additionally, we can also compute p(G|Ψ,Γ) based on weighted ancestral configura-

tions, which is faster than computing it based on MUL-trees. The main idea is similar

to the method we proposed in [37], which was built on the work of [32] for the case of

phylogenetic trees. We now describe this method in detail.

We first describe briefly the concept of weighted ancestral configuration (AC, or simply

configuration) we introduced in [37]. An ancestral configuration can be associated with a

node v of Ψ, denoted by ACv, or an edge b of Ψ, denoted by ACb. It is a triplet (B, a, w)

interpreted as follows:

• B: a set of lineages that exist at the point with which the AC is associated.

• a[i], for 1 ≤ i ≤ |VN |: an index for the AC split that occurred at reticulation node i

and gave rise to B.

• w: weight of the AC which is the probability of observing B at the point with which

the AC is associated.

Given two ACs, AC1 = (B1, a1, w1) and AC2 = (B2, a2, w2), if B1 = B2 and a1 = a2, we

say that AC1 and AC2 are identical. Furthermore, we define two ACs to be compatible if

for each i, 1 ≤ i ≤ q, either a1[i] = a2[i] or a1[i] · a2[i] = 0.

Basically, we traverse the nodes of Ψ in post-order and build a set of ancestral config-

urations for every node we visit. We denote a set of ACs of node v by A C v, and a set

of ACs of edge b which are about to leave b by A C b. After A C is built for the root of

the network, we could obtain p(G|Ψ,Γ). There are three important operations during this

process:

• Merging ACs whenever an internal tree node is encountered. Let u be an inter-

nal tree node with two child nodes x1 and x2. To construct A C u, every com-

patible AC pair (AC1, AC2) where AC1 = (B1, a1, w1) ∈ A C (u,x1) and AC2 =

(B2, a2, w2) ∈ A C (u,x2) are merged into one AC (B, a, w) where B = B1 ∪ B2,

a[i] = max{a1[i], a2[i]} for all 1 ≤ i ≤ q and w = w1·w2.

• Splitting ACs whenever an reticulation node is encountered. Let u be the kth retic-

ulation node whose two parent nodes are y1 and y2. For each reticulation node i of
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N , we have a counter oi initialized to 0. Let (B, a, w) be an AC in A C u. Then

we split B it into all possible ordered pairs (B1, B2), such that B1 ∪ B2 = B and

B1 ∩ B2 = ∅. For each pair, we make AC1 = (B1, a1, w) and AC2 = (B2, a2, 1),

where a1 = a2 = a except for a1[k] = a2[k] = ok + 1 and ok is incremented by 1.

AC1 then is a configuration about to go along edge (y1, u), and AC2 is a configura-

tion about to go along edge (y2, u).

• Coalescing ACs along an edge. We define a function called CoalACs which takes

a gene tree G, an edge (x, y) of Ψ and a set of configurations A C y that enter edge

(x, y), and returns a set of configurations A C (x,y) that leave edge (x, y). See Alg. 1

for details.

The algorithm for computing p(G|Ψ,Γ) is shown in Alg. 2. Further, we can use the

same technique we introduced in [37] to reduce the number of configurations at articulation

nodes of the network.
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Algorithm 1: CoalACs.
Input: a gene tree G, an edge (x, y) ∈ E(Ψ), a set of ACs A C y

Output: a set of ACs A C (x,y)

Let V (G) be the set of internal nodes of G ordered by their heights in increasing order;

A C (x,y) ← ∅;

foreach (B, a,w) ∈ ACy do

t← τΨ(y);

B+ ← B;

p← λ
|B|
(x,y)

;

foreach v ∈ V (G) do

if τΨ(y) ≤ τG(v) < τΨ(x) then

Let Lv be the set of taxa under node v in G;

Let LB be the set of taxa that coalesce into B;

if Lv ⊆ LB then

p← p· e−
(
|B+|

2

)
(τG(v)−t);

t← τG(v);

Apply the coalescent event represented by v to B+ and the resulting B+ contains one less lineages;

else if Lv ∩ LB 6= ∅ then

p← 0;

Break;

if p 6= 0 then

if |B+| 6= 1 then

p← p· e−
(
|B+|

2

)
(τΨ(x)−t);

A C (x,y) ← A C (x,y) ∪ (B+, a, w· p);

return A C (x,y);
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Algorithm 2: CalProb.
Input: Phylogenetic network Ψ, gene tree G, and inheritance probabilities matrix Γ

Output: p(G|Ψ,Γ)

while traversing the nodes of Ψ in post-order do

if node v is a leaf, whose parent is u then
A C v ← {(B, a, 1)} where B is the set of leaves in G sampled from the species associated with v and a is a

vector of q 0’s;

A C (u,v) ← CoalACs(G, (u, v),A C v);

else if node v is a reticulation node, who has child w, and two parents u1 and u2 then

A C v ← A C (v,w);

S1 ← ∅;

S2 ← ∅;

foreach AC ∈ A C v do

Split AC in every possible way into pairs of ACs, and for each pair, add one to S1 and the other to S2 ;

A C (u1,v) ← CoalACs(G, (u1, v), S1);

A C (u2,v) ← CoalACs(G, (u2, v), S2);

else if node v is an internal tree node, who has two children w1 and w2 then

foreach pair (AC1, AC2) of compatible ACs in A C (v,w1) ×A C (v,w2) do

Merge AC1 and AC2 and add the resulting AC to A C v ;

if node v is an internal tree node, and its parent is u then

A C (u,v) ← CoalACs(G, (u, v),A C v);

else

Create a dummy node r′ with height +∞;

A C (r′,v) ← CoalACs(G, (r′, v),A C v);

return
∑

(B,a,w)∈A C(r′,r)
w;
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4 Inference of networks and inheritance probabilities

The search consists of (1) optimizing a candidate network’s branch lengths and inheritance

probabilities, and (2) searching the network topologies space. We assume here that all

loci share the same inheritance probability (denoted by γ) for a given branch in the phy-

logenetic network. Extending this to allow for varying these probabilities across loci is

straightforward (of course, while increasing the running time).

4.1 Optimizing branch lengths and inheritance probabilities of a phy-

logenetic network

In this section, we describe our approach for optimizing branch lengths λ∗ and inheritance

probabilities γ∗ for a fixed network topology Ψ (λ∗ is part of Ψ here), given a set G of

gene trees, in order to maximize p(G|Ψ, γ). We discuss separately the cases of using gene

tree topologies alone and using gene tree topologies and branch lengths.

4.1.1 Using gene tree topologies alone

A heuristic for finding the optimal branch lengths for a fixed species tree topology was

introduced in [32]. Here, we are using the same method but in our case of phylogenetic

networks we are optimizing not only branch lengths but also inheritance probabilities. In

particular, an initial value of likelihood is first calculated with every branch length initial-

ized to be 1.0 and inheritance probability initialized to be 0.5. Then the elements in [λ,γ]

are optimized one by one separately using Brent’s method [2]. More specifically, while

Brent’s method is varying the value of one element in [λ,γ] in order to find a local op-

timum, the values of all other elements are fixed. After the local optimum is found, the

element is replaced by this new value and then Brent’s method moves to the next element

for optimization. Updating all elements in [λ,γ] once is called a round. After each round

of optimization, we compare the likelihood of the network with the newly updates branch

lengths and inheritance probabilities to the likelihood from the previous round. If the im-

provement is smaller than some pre-specified threshold or some pre-specified maximum
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number of rounds is reached, then the new branch lengths and inheritance probabilities are

declared to be optimal and the optimization process terminates. This processes is repeated

multiple times to handle the issue of local optima. All parameters used in this optimization

process, including those for Brent’s method, are listed in Section 8.

4.1.2 Using both topologies and branch lengths of gene trees

As we mentioned, the set of coalescent histories of a gene tree G within the branches of a

phylogenetic network Ψ does not change with the branch lengths or inheritance probabili-

ties if only the topology of gene tree G is considered. However, this is not the case if both

topologies and branch lengths of the gene trees need to be taken into account. The main

reason for this is that the coalescence times in the gene tree provide constraints on where

coalescence events could take place within the branches of the phylogenetic network. Fur-

ther, it is important here to note that the time units in the gene tree and those in the species

network must be matched for our method below to work. Consider a branch b with length

λb (in coalescent units) in a phylogenetic network Ψ. Now, consider a branch d with length

τd (in units of expected number of mutations) in a gene tree G. The length of branch d in

coalescent units is

τd ×
2

θ

where θ = 4Nµ is the population mutation rate.

In our discussion below, as well as in our implementation, we assume that θ is the

same across all loci and all branches, and that the population size and generation time are

the same across all branches. This implies that both the network and gene tree must be

ultrametric. However, it is important to notice that removing these assumptions does not

affect the model, but rather increase the running time of the method as more parameters

require optimization.

In order to guarantee the ultrametricy requirement, instead of optimizing branch lengths

of phylogenetic network Ψ and inheritance probabilities, we optimize the height of every

internal node of Ψ and inheritance probabilities. Second, in order to ensure that the re-

sulting phylogenetic network allows for embedding the gene trees in the input, we use the
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coalescence times from the gene trees to compute upper bounds on the heights of nodes in

Ψ, and use these upper bounds to constrain the search for height values. Then the iterative

process for optimization itself is similar to what we described in Section 4.1.1. The full

details of the optimization procedure are available in open source in the software package

PhyloNet [30].

4.2 Inferring an ML phylogenetic network

For inferring an ML phylogenetic network, we couple the optimization procedures of the

previous section with a procedure for traversing the phylogenetic network space, which we

now describe.

4.2.1 Neighborhood of a phylogenetic network

For a fixed number of taxa n, the space of phylogenetic networks, denoted by Ω(n), con-

sists of an infinite set of non-overlapping subspaces, each of which contains phylogenetic

networks that have the same number of reticulation nodes. We denote each subspace of

Ω(n) by Ω(n, k), where k is the number of reticulation nodes. In particular, Ω(n, 0) is the

tree space.

Given a phylogenetic network Ψ ∈ Ω(n, k), we define four types of operations for

network rearrangement as follows.

• Adding a reticulation edge (δ1):

1. Let (u1, v1) and (u2, v2) be two distinct edges in Ψ such that v2 is not a prede-

cessor of u1.

2. Delete the two edges (u1, v1) and (u2, v2).

3. Add two new nodes x1 and x2 and five new edges (u1, x1), (x1, v1), (u2, x2),

(x2, v2), and (x1, x2) to network Ψ.

• Removing a reticulation edge (δ2):

1. Let (u, v) be an edge in Ψ such that v is a reticulation node and u is a tree node.
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2. Delete the two nodes u and v and the five edges (w, u), (u, z), (u, v), (x, v) and

(v, y), where w is the parent node of u, z is the child node of u other than v, x

is the parent node of v other than u, and y is the child node of v.

3. Add two new edges (w, z) and (x, y) to network Ψ.

• Relocating the destination of a reticulation edge (δ3):

1. Let (u1, v1) and (u2, v2) be two distinct edges in Ψ such that v1 is a reticulation

node and v2 is not a predecessor of u1.

2. Delete node v1 and the four edges (u1, v1), (u2, v2), (w, v1), and (v1, z), where

w is the parent node of v1 other than u1 and z is the child node of v1.

3. Add a new nodes x and four new edges (u2, x), (x, v2), (u1, x), and (w, z) to

network Ψ.

• Relocating the source of an edge (δ4):

1. Let (u1, v1) and (u2, v2) be two distinct edges in Ψ such that u1 is neither a

reticulation node nor a predecessor of v2.

2. Delete node u1 and the four edges (u1, v1), (u2, v2), (w, u1), and (u1, z), where

w is the parent node of u1 and z is a child node of u1 other than v1.

3. Add a new nodes x and four new edges (u2, x), (x, v2), (x, v1), and (w, z) to

network Ψ.

We denote the set of phylogenetic networks that can be obtained by applying operation δi

to Ψ by δi(Ψ), where 1 ≤ i ≤ 4. Clearly, Ψ′ ∈ Ω(n, k + 1) if Ψ′ ∈ δ1(Ψ), Ψ′ ∈ Ω(n, k)

if Ψ′ ∈ δ3Ψ or Ψ′ ∈ δ4(Ψ) and Ψ′ ∈ Ω(n, k − 1) if Ψ′ ∈ δ2(Ψ). Finally, we define the

neighborhood of a phylogenetic network Ψ, denoted by ∆(Ψ), to be
⋃

1≤i≤4 δi(Ψ). So a

phylogenetic network Ψ′ is a neighbor of Ψ if Ψ′ can be obtained by applying any operation

defined above to Ψ.
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4.3 Search heuristic

We employ a hill-climbing heuristic to search the network space in order to find an op-

timal phylogenetic network Ψ from a set G of gene trees. Starting from some network,

the search proceeds by sampling networks from the neighborhood of the current network,

optimizing its branch lengths as well as the inheritance probabilities, and accepting the

proposed network if its likelihood improves upon the current one. The process terminates

if no neighboring network improves upon the current one (our implementation allows for

pre-specifying a number of failed neighbor proposals, since the number of neighbors can

be very large for large numbers of leaves).

For the starting network, it is reasonable to start the search from some species trees, e.g.,

the set of all binary resolutions of majority consensus of the input gene trees, or the optimal

species tree under the MDC criterion [13, 29, 38, 39]. For moving from a current network,

a neighbor can be generated by applying one of the four types of operations of network

rearrangement we defined in the Section 4.2.1. We associate each of these four operations

a weight. When we propose a random neighbor of a network, the type of operation to be

applied to generate the neighbor is first randomly selected according to their weights and

the edges involved in that operation are then randomly chosen. The entire search process

is repeated multiple times to handle the problem of local optima.

An illustration of the search is given in Fig. 3.

5 Assessing phylogenetic networks

5.1 Information criteria

The Akaike Information Criterion [1] (AIC) is defined as follows for a phylogenetic net-

work:

AIC = 2k − 2 lnL (8)

where k is the number of free parameters which includes both branch lengths and inheri-

tance probabilities, and L is the likelihood of the network.
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multiple 
starting points
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(potentially convergent)

Figure 3: A schematic diagram of searching the n-taxon phylogenetic network space.

Layer Ω(n, k) contains all n-taxon phylogenetic networks with k reticulation nodes. Four

simple transformations enable searching this entire space and guarantee reachability of any

point from any other point (see main text and SI). These operations allow for the search

to proceed within a give layer, ascend a layer, or descend a layer. Weighting, or assigning

rates to the the transformations, allows for controlling the behavior of the search (e.g., never

descend a layer, or ascend a layer with very low probability). When searching for optimal

networks, multiple searches can be initiated from different starting points; these searches

may or may not converge onto a single optimal point estimate. Further, the number and

features of local optima vary from one layer to another.

The Bayes Information Criterion [24] (BIC) is defined as follows for a phylogenetic

network:

BIC = −2 lnL+ k lnn (9)

where k and L are defined as in AIC, and n is the number of gene trees in the set.

5.2 Cross-validation

Cross-validation is another model validation technique that assesses how well the model

fits a data set. K-fold cross-validation partitions a data set intoK equal-size subsets. It uses

one set, the training set, which consists of K−1 subsets, to infer the model parameters and

use the remaining subset, the validation set, to assess prediction. The difference between

predictions and the real data in the validation set can be computed. To reduce variability,K
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rounds of cross-validations are performed using different partitions, and the differences are

averaged over the number of rounds. If there are multiple models, the one with the lowest

average difference is the most appropriate model. In our case, for each distinct gene tree

topology in the validation subset, we compute its frequency, as well as its probably under

the learned network. The difference between these two values is taken to reflect the quality

of the model.

5.3 Parametric bootstrap

With the increasing interest in reconstruction of phylogenetic trees, in order to evaluate

how confident one should be in a reconstructed phylogeny, bootstrapping has been widely

used for decades since it was first proposed as a method for obtaining confidence limits on

phylogenies [5]. Here, we employ parametric bootstrap assess support for the branches in

an inferred phylogenetic network (illustrated in Fig. 4).

The idea is as follows. An inferred phylogenetic network Ψ is used to generate k sets of

gene trees independently, each of which has the same size as the number of loci in the input

(in PhyloNet, the default value of k is 100). Then from each simulated set of gene trees,

a phylogenetic network is inferred using the same method and settings as the one used to

obtain the original phylogenetic network Ψ from gene trees G. Finally, by comparing the k

inferred phylogenetic networks with Ψ, we obtain the support of every edge in Ψ.

This parametric bootstrap works for both inference from gene trees with and without

branch lengths. In PhyloNet, for ML inference using only the topologies of gene trees, we

implemented our own simulator to generate topologies of gene trees from a given phyloge-

netic network. And for ML inference using both the topologies and branch lengths of gene

trees, we called an external software ms [6] to simulate gene trees with branch lengths.

The bootstrap value of a branch in the inferred phylogenetic network Ψ is calculated as

the proportion of networks in Ψ1, . . . ,Ψk that contain the same branch. We say that branch

b1 in network Ψ1 and branch b2 in network Ψ2 are the same if they satisfy the following

two conditions:

• b1 and b2 induce the same set of softwired clusters [9],
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with Ψ

Figure 4: Illustration of parametric bootstrap to assess support for an inferred phylogenetic

network’s branches.

• b1 and b2 are either both tree edges or both reticulation edges.
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6 Simulations

6.1 Settings for the simulations in the main text (Figure 2)

Phylogenetic network. We used the phylogenetic network shown in Fig. 5. It captures a

scenario where there is divergence followed by a hybridization with inheritance probability

being 0.1 as shown in the figure.

A B C D

1

1

1

1

2

2

3 0.1
i1

i2i3

i5

i4

Figure 5: A phylogenetic network used in the simulations reported in the main text. Branch

lengths are in coalescent units and the inheritance probability is 0.1 for the reticulation edge

(i3, i2).

.

True gene trees. Gene trees were simulated using software ms [6]. See command below.

We varied the number of loci by loci = {10, 20, 40, 80, 160}, for each of which we generate

30 sets of gene trees.

ms 4 loci -T -I 4 1 1 1 1 -ej 0.5 4 3 -es 1.0 3 0.5 -ej 1.0 2 5 -ej 1.5 5 1 -ej 2.0 3 1

Sequences. Sequences were generated using Seq-gen [19] under the GTR model. We

used a population mutation rate of θ = 0.036. More specifically, for gene trees contained

in file gtF ile, the following command was used:

seq-gen -mGTR -s0.018 -fbaseFreq -rrates -lseqLen < gtF ile
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where baseFreq = 0.300414, 0.191363, 0.196748, 0.311475 are the base frequencies of

the nucleotides A, C, G and T, and rates = 1.24284, 3.47484, 0.48667, 1.07118, 4.38510, 1.0

are the relative rates of substitutions. We also varied the length of the sequences through

seqLen = {250, 500, 1000}.

Estimated gene trees. Gene trees were estimated using PAUP* [27] under maximum

likelihood. For each sequence alignment, we randomly generated 100 bootstrap replicates.

And for each of them, we used the following commands in PAUP* to reconstruct an ultra-

metric gene tree:

execute seqF ile;

nj;

lscore 1/tratio=estimate nst=6 rmatrix=estimate;

set criterion=likelihood;

lset tratio=estimate nst=6 rmatrix=estimate clock=yes;

hsearch addseq=asis;

where seqF ile is a NEXUS file that contains the sequence alignment. All branch lengths

of the reconstructed gene tree were then multiplied by 2/θ to convert them into coalescent

units.

Experiments. We inferred the optimal networks from (i) true gene tree topologies, (ii)

estimated gene tree topologies, (iii) true gene tree topologies and branch lengths, and (iv)

estimated gene tree topologies and branch lengths. Default settings were used for inference

(See Table. 4). See main text for results.

Furthermore, to study the effect of branch lengths of the phylogenetic network and

the inheritance probability on the performance of the method, we investigated two cases.

More specifically, assuming the network in Fig. 5 is Ψ1, we considered two networks Ψ2

and Ψ3, where Ψ2 is obtained by doubling the lengths of the internal branches (i5, i4),

(i5, i2), (i4, i3) and (i2, i1) of Ψ1 and not changing the inheritance probability, and Ψ3 is

obtained by changing the inheritance probability of Ψ1 from 0.1 to 0.5 and keeping the
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branch lengths unmodified. Then from Ψ2 and Ψ3 we generated gene trees using the same

settings as above. Finally, we used the topologies of those gene trees to infer networks.

The results are shown in Fig. 6. We can see that, as expected, increasing branch lengths

and increasing inheritance probability result in improved accuracy of the method.
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Figure 6: The number of correct inferences using true gene tree topologies simulated from

species network Ψ1, Ψ2 and Ψ3. The blue, green and red bars are the results for Ψ1, Ψ2

and Ψ3, respectively.

Varying the number of individuals. We have also varied the number of individuals

(lineages) sampled from each of taxa C and D and considered 1, 2, and 4 lineages (for

each of the two taxa). For each case, we used the true gene tree topologies and true gene

tree topologies and branch lengths to infer the networks. The accuracy results are shown

in Fig. 7. The results show that increasing the number of individuals sampled from each

of C and D improves the accuracy of the method, as expected (except for the case when

using the gene tree topologies alone on 10 loci). Doubling the number of loci used in the

inference results in a bigger improvement in accuracy in general than doubling the number

of alleles (there are a few exceptions to this that can be seen in Fig 7). However, it is

important to caution here that these results are obtained from relatively small networks (4

taxa) and using true gene trees. As the number of taxa increases, the number of reticulations

increases, and the branch lengths get shorter, it would be expected that sampling more
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individuals would show more significant gains in accuracy.
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Figure 7: Accuracy of the method on simulated data with varying alleles. The data were

generated down the phylogenetic network Ψ1 (Fig. 5 and also shown in Fig. 2A in the main

text). Results based on true gene tree topologies and true gene tree topologies and branch

lengths are shown in the left and right panels, respectively. For every number of loci, the

bars from left to right correspond to cases of 1, 2, and 4 individuals sampled from each of

the two taxa C and D, respectively. The dark blue, cyan, and yellow regions correspond

to the number of times each of the networks Ψ1, Ψ2, and Ψ3, respectively (Fig.2A in the

main text), were inferred. The maroon region corresponds to the number of times any other

network with a single reticulation was inferred.

6.2 Other simulations

We also conducted other simulations under scenarios that are “easier” for the inference

method (longer sequences, longer branch lengths, higher inheritance probabilities, and no

speciation following hybridization).

The simulations make use of several tools and programs:

• PhyloNet [31], which has implementation of all our methods.

• Hybrid-Lambda [40] which simulates the evolution of gene trees within the branches

of a phylogenetic network under the coalescent model.
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• Seq-gen [19] which simulates the evolution of DNA sequences down a given (gene)

tree.

• Fasttree [15, 16], which infers a maximum likelihood phylogenetic tree from a se-

quence alignment.

Using these tools, we conducted three types of simulations (Fig. 8).

Model 
parameters

!,Υ

Simulate gene 
trees

Set G of model 
gene trees

Simulate DNA 
sequences

Set S of 
sequence 

alignments

Infer gene 
trees

Set G' of 
inferred gene 

tree topologies

Set G1 of 
model gene 

tree topologies

Set G2 of 
model gene 

trees 

Infer model
parameters

Infer model
parameters

Infer model
parameters

Inferred 
!1,Υ1

Inferred
!2,Υ2

Inferred 
network
!',Υ'

Compare

Figure 8: Simulation Flow Chart. Hybrid-Lambda [40] is used to simulate gene trees

within a network. Seq-gen [19] is used to simulate the evolution of DNA sequences down

gene trees. Fasttree [15, 16] is used to estimated gene trees from sequence alignments.

PhyloNet [31] is used to infer phylogenetic networks.

.

In each simulation run, we varied the number of gene trees: 10, 50, 100 and 500. We

also consider multiple scenarios of phylogenetic network topologies, branch lengths, and

inheritance probabilities, as shown in Fig. 9. For each setting, we conducted 30 runs and

averaged the results.
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(c) Model 3: 6 taxa, 1 reticulation
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(d) Model 4: 7 taxa and 1 reticulation
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(e) Model 5: 5 taxa and 2 reticulations
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(f) Model 6: 6 taxa and 2 reticulations

Figure 9: Models used in the simulation. These models are ultrametric networks, required

by Hybrid-Lambda.

6.2.1 Results

The plots are arranged as follows. First we show the six models we used for the short flow

simulation. Figures 9a, 9b, 9c and 9d have one reticulation node with four, five, six, and

seven taxa respectively. Figures 9e and 9f has two reticulation nodes with five and six taxa
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respectively.

Although limited and empirical in nature, some observations are made from the plots.

• In the topology only case, cross-validation captures much better the correct reticula-

tion nodes than both BIC and AIC. More trees help. But even with very few trees,

cross validation is still superior to the other two. It shows that cross-validation is an

effective way to determine the proper number of reticulation events.

• In the case of gene trees with branch lengths, AIC and BIC perform similarly when

there is a single reticulation node. BIC does a better job than AIC when the number

of reticulations is two.

• The cluster distance between the original network and the inferred network with cor-

rect network nodes is always smaller than that between the original network and the

inferred network with incorrect reticulations when the number of gene trees grows

larger.

• Using gene tree branch lengths results in better estimates of the inheritance probabil-

ities. When the number of trees increases, the estimates improve. When using gene

tree topologies alone, the inheritance probability estimates are slightly less accurate.

6.2.2 A complete simulation involving network, gene trees and sequences

We use a network as shown in Figure 16 to generate gene trees and nucleotide sequences.

Then the process is inverted to use these sequences to estimate gene trees and network.

Several public domain software are used as well as PhyloNet. Hybrid-Lambda [40] uses the

network to generate gene trees which form the input of Seq-gen [19] to produce sequences.

For each gene tree, only a sequence is generated. These sequences are fed into Fasttree

[15, 16] to generate unrooted rooted gene trees. PhyloNet reroots these gene trees via the

outgroup and later infers the network.

The gene trees are organized the same way as in the simulation section. The Hybrid-

Lambda parameter settings used to generate gene trees from the network are the same as

well. The Seq-gen settings used to generate sequences from gene trees is
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Figure 10: Results for Model 1. Left column: Input consists of true gene tree topologies alone.

Right column: Input consists of true gene tree topologies and branch lengths. Top row: inferred

number of hybridizations. Middle row: Distance between the true network and inferred network.

Bottom row: Inferred inheritance probabilities (averages over 30 runs with standard deviation bars

shown). 29
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Figure 11: Results for Model 2. Left column: Input consists of true gene tree topologies alone.

Right column: Input consists of true gene tree topologies and branch lengths. Top row: inferred

number of hybridizations. Middle row: Distance between the true network and inferred network.

Bottom row: Inferred inheritance probabilities (averages over 30 runs with standard deviation bars

shown). 30
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Figure 12: Results for Model 3. Left column: Input consists of true gene tree topologies alone.

Right column: Input consists of true gene tree topologies and branch lengths. Top row: inferred

number of hybridizations. Middle row: Distance between the true network and inferred network.

Bottom row: Inferred inheritance probabilities (averages over 30 runs with standard deviation bars

shown). 31
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Figure 13: Results for Model 4. Left column: Input consists of true gene tree topologies alone.

Right column: Input consists of true gene tree topologies and branch lengths. Top row: inferred

number of hybridizations. Middle row: Distance between the true network and inferred network.

Bottom row: Inferred inheritance probabilities (averages over 30 runs with standard deviation bars

shown). 32
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Figure 14: Results for Model 5. Left column: Input consists of true gene tree topologies alone.

Right column: Input consists of true gene tree topologies and branch lengths. Top row: inferred

number of hybridizations. Middle row: Distance between the true network and inferred network.

Bottom row: Inferred inheritance probabilities (averages over 30 runs with standard deviation bars

shown). 33
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Figure 15: Results for Model 6. Left column: Input consists of true gene tree topologies alone.

Right column: Input consists of true gene tree topologies and branch lengths. Top row: inferred

number of hybridizations. Middle row: Distance between the true network and inferred network.

Bottom row: Inferred inheritance probabilities (averages over 30 runs with standard deviation bars

shown). 34



seq-gen -mHKY -l5000 -t0.5 -s0.0005 -fe -op< treeFileName> seqFileName

For nucleotide substitution model, we used HKY. By setting the nucleotide frequencies

equal (with the -fe option) and the transition transversion ratio to 0.5 (with the -t0.5 option),

it becomes JC69 as a special case of HKY. The length of character sequence is 5000. The

scale factor of 0.0005 equals the expected number of substitutions per site per coalescent

unit for each branch is 0.0005. By multiplying with the branch length, we find the expected

number of substitutions per site for each branch. The output uses the PHYLIP format.

The Fasttree settings used to generate unrooted gene trees from sequences.

FastTree -nt < fasttreeInputFileName > fasttreeOutputFileName

Fasttree use the Jukes-Cantor + CAT model. The -nt option shows that it works with

nucleotide sequences.

We compared the gene trees that are used to generate the sequences and those estimated

from sequences. In this model, all the gene trees have the outgroup directly connected to

the root. The average Robinson-Foulds distance is 0.32 while its weighted version is 0.081.

The standard deviation for RF distance is 0.53 and its weighted version is 0.13. There are

totally 19800 gene trees on each side. Among them there are 14060 pairs are exactly the

same (71%). If we increase the scale factor or increase the sequence length, the same pair

rate will be higher.

When PhyloNet infers the network, the default maximum length of a network branches

is 6. Since there are some large branch length values in the models, we assigned the

maximum branch length to be 20 for all the models tested in this paper.
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Figure 16: Results for Model 7. Upper left: The model. Upper right: Inferred number of hy-

bridizations with inferred gene tree topologies from sequences. Lower left: Distance between the

true network and inferred network. Lower right: Inferred inheritance probabilities (averages over

30 runs with standard deviation bars shown).

7 Analysis of a house mouse (Mus musculus) data set

Using our method of inferring a phylogenetic network, we analyzed a house mouse (Mus

musculus) data set.

M. musculus samples. Our Mus musculus domesticus samples were provided by the pre-

vious study of [26] and represent one population from France (in the Massif Central) and

another population from Germany (in the vicinity surrounding Cologne and Bonn). The
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Mus musculus musculus samples in our study also came from previous studies [26, 4, 35]

and represent a population in Czechoslovakia (Studenec) [26], another population in Kaza-

khstan (Almaty) [26], and a third population from China (Urumqi in Xinjiang Province)

[4, 35]. For simplicity, these five populations will be referred to as DF, DG, MZ, MK and

MC, respectively.

Sequence data. Genome-wide sequence data for our samples was produced using the

Mouse Diversity Array [34]. We called genotypes from raw intensity values for the Chi-

nese M. m. musculus samples using the procedure described in [4]; genotypes for all other

M. musculus samples were provided by [26]. Since our computational pipeline was con-

structed to analyze substitution-based variation, we filtered loci exhibiting short indel or

structural variation found in previously reported whole-genome sequencing of M. muscu-

lus strains (including wild-derived M. m. domesticus and M. m. musculus strains) [10, 33].

We used the most recent M. musculus reference genome coordinates as of this writing

(version GRCm38.p2) throughout our study.

The reference Rattus norvegicus genome (version RGSC Rnor 5.0) was used as an

outgroup in our analyses. Orthology between the R. norvegicus genome and M. musculus

was determined using the BLASTZ-produced [23] pairwise genome alignment provided

by the UCSC Genome Browser [14].

In total, 387,923 loci from the M. musculus genome were sampled in our data sets.

Local phylogeny estimation. Genotypes were phased into haplotypes and missing bases

were imputed using fastPHASE [22]. A larger superset of 416 M. musculus samples from

the studies of [35, 4, 26] were used for this purpose.

We then estimated local phylogenies along haplotype sequences using a custom analyti-

cal pipeline. To satisfy the assumption of no intralocus recombination required by our new

method, breakpoints inducing recombination-free intervals were inferred on haplotypes

using the Four-Gamete Test [7]. We inferred phylogenies between breakpoints using the

maximum likelihood method implemented in [18]. The maximum likelihood phylogenetic

analysis used the General Time Reversible substitution model [21] with the CAT model
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of rate variation across sites [25]. Local phylogenies were rooted using R. norvegicus as

an outgroup. To satisfy the assumption of free recombination between loci, as required

by our new method, local phylogenies were sampled at 100 kb intervals so that linkage

disequilibrium was negligible [26]. In total, 20639 local phylogenies were reconstructed.

Species phylogeny inference. From the reconstructed gene trees, we inferred the optimal

phylogenetic networks with 0, 1, 2 and 3 reticulation nodes, respectively, using our method

described in Section 2, 4.1 and 4.2 (only topologies of gene trees were used). For each of

them, the search was run 50 times and top 5 networks were saved. All other parameters

were set to their default values as listed in Section 8.

Since all five populations under analysis are closely related, most of the reconstructed

gene trees were not binary due to identical sequences of multiple alleles. As bootstrap is

not doable in this case, given the very short sequences for each locus and the low signal,

we treated uncertainty differently. Consider a non-binary gene tree G that is inferred for

some locus. Then, we use the following equation for the probability of G:

P (G|Ψ,Γ) =
∑

g′∈b(G)

P (g′|Ψ,Γ), (10)

where b(G) is the set of all binary resolutions ofG. We then used this term in the likelihood

formulation based on gene tree topologies.

The results are shown in Fig. 17. Furthermore, to account for model complexity, we

calculated the values of three information criteria, AIC, AICc and BIC, as well as the

error of cross-validation, for the optimal inferred networks with the number of reticulation

nodes from 0 to 3 respectively, as shown in Table 3. More specifically, we did 10-fold

cross-validation and only binary gene trees in the validation sets were used to calculate the

error. We can see in the table that the error keeps decreasing from optimal network with

0 reticulation node to the one with 2 reticulation nodes, and there is no improvement from

optimal network with 2 reticulation nodes to the one with 3 reticulation nodes. Similar

trend holds for all three information criteria, where the improvement from the optimal

network with 2 reticulation nodes to the one with 3 is relatively small compared to that

from the optimal network with 0 reticulation node to the one with 1, as well as the optimal
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network with 1 reticulation node to the one with 2.
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Figure 17: The inferred phylogenetic networks of the M. musculus dataset. The rows from

top to bottom contain top 5 phylogenetic networks with 0, 1, 2 and 3 reticulation nodes,

respectively. In each row, networks are listed from left to right with an decreasing value of

log likelihood shown under each of them. Branch lengths and inheritance probabilities are

shown for the networks with two reticulations.

Furthermore, in order to check how the search covered the space of phylogenetic net-

works, we exhaustively enumerated all networks with 1 reticulation node and calculated

their likelihood scores. More specifically, we first listed all possible 105 binary species

trees over 5 taxa (DF, DG, MZ, MK and MC). Then from each of them, say st, we cal-

39



lnL AIC AICc BIC Error of cross-validation

N(0) -47329 94664 94664 94688 7.69×10−5

N(1) -46756 93527 93527 93583 5.36×10−5

N(2) -46392 92806 92806 92893 4.03×10−5

N(3) -46300 92635 92635 92754 4.13×10−5

Table 3: The results of information criteria and cross validation of the optimal inferred

species networks of the M. musculus dataset. N(k) refers to the optimal inferred species

network with k reticulation nodes.

culated the likelihood score of every network in δ1(st). We ordered all of them by their

likelihood scores, and found the top 5 were exactly what we obtained by our heuristic

search in Fig. 17(b).
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8 PhyloNet implementation and use

PhyloNet [30] is an open-source software our group developed for phylogenetic analysis.

All methods we discussed in this paper are implemented in it. We illustrate the usage of the

command inferNetwork ML which infers a phylogenetic network from a set of gene trees.

It takes a set of gene trees and the maximum number of reticulations and returns optimal

inferred phylogenetic networks along with branch lengths and inheritance probabilities.

There are many parameters for the users to specify; See Table 4 for details.
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InferNetwork ml (gt1 [, gt2...]) numReticulations [-a taxaMap] [-bl] [-b threshold] [-s startingNetwork] [-n

numNetReturned] [-h {s1 [, s2...]}] [-w (w1,w2,w3,w4)] [-f maxFailure] [-x numRuns] [-m maxNetExam-

ined] [-d maxDiameter] [-p (rel,abs)] [-r maxRounds] [-t maxTryPerBr] [-i improveThreshold] [-l maxBL]

[-pl numProcessors] [-di]

Parameter Illustration Default
(gt1 [, gt2 . . .]) Comma delimited list of gene tree identifiers. -

numReticulations Maximum number of reticulations to add to the species network. -

-a taxaMap Gene tree / species network taxa association. -

-bl Use the branch lengths of the gene trees for the inference. No

-b threshold Gene trees bootstrap threshold. Edges of gene trees whose bootstrap values are

under it will be contracted.

100

-s startingNetwork The network to start search from. MDC tree

-n numNetReturned Number of top optimal networks to return. 1

-h {s1 [, s2 . . .]} A set of specified hybrid species. The size of this set equals the number of

reticulation nodes in the inferred network.

-

-w (w1, w2, w3, w4) The weights of operations (δ1, δ2, δ3, δ4) for network arrangement during the

network search.

(0.15, 0.15, 0.2, 0.5)

-f maxFailure The maximum number of consecutive failures before the search terminates. 100

-x numRuns The number of runs of the search. 10

-m maxNetExamined Maximum number of network topologies to examine during the search in each

run.

+∞

-d maxDiameter Maximum diameter to make an rearrangement during network search. +∞

-p (rel, abs) The original stopping criterion of Brents algorithm for optimizing branch lengths

and inheritance probabilities of a network.

(0.01, 0.001)

-r maxRound Maximum number of rounds to optimize branch lengths and inheritance proba-

bilities for a network topology.

100

-t maxTryPerBr Maximum number of trial per branch in one round to optimize branch lengths

and inheritance probabilities for a network topology.

100

-i improveThreshold Minimum threshold of improvement to continue the next round of optimization

of branch lengths and inheritance probabilities.

0.001

-l maxBL Maximum branch lengths considered during optimization. 6

-pl numProcessors Number of processors if you want the computation to be done in parallel. 1

-di Output the Rich Newick string of the inferred network that can be read by Den-

droscope [8].

No

Table 4: The usage of command inferNetwork ML in PhyloNet. The first two parameters

are mandatory and all others are optional.
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