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SI Materials and Methods 

 

Materials. We purchased manganese (II) chloride tetrahydrate (ACS Reagent Grade), 

perfluorodecalin (95 % pure), Allura Red AC (dye content 80 %) from Sigma Aldrich. 

Polystyrene particles were purchased from Invitrogen. Heavy Liquid was purchased from 

GeoSciences Inc. Polymeric components, such as poly(methyl methacrylate) (PMMA), 

polytetrafluoroethylene (Teflon) and polyoxymethylene (Delrin), were purchased from 

McMaster-Carr and custom machined: PMMA sheets with a thickness l = 6.35 mm, rods with a 

diameter l = 6.35 mm, tubes with an outer diameter l = 6.35 mm and  inner diameter of 5.56  mm 

were cut into rectangular, circular, and annular blocks with different thickness, T; Delrin and 

PMMA sheets were cut into equilateral triangular prisms (l = 6.67 mm) with different T. 

Polyamide (Nylon 6/6) screws (2 cm in length) were purchased from McMaster-Carr.  

 

Levitation of Objects in MagLev. We used commercially available NdFeB magnets — square 

magnets (5.0  5.0  2.5 cm) or disc magnets (4.8 cm in diameter, 2.5 cm thick), which are 

capable of providing surface fields of ~ 0.4 T. We levitated objects in an aqueous solution of 

MnCl2 in a rectangular glass container (4.5  3.0  4.5 cm). We adjusted the concentration of 

MnCl2 to yield a solution that had a density that was similar to that of the object so that the 

object levitated close to the center of the device. We sonicated the solution for one minute to 

remove air bubbles. After waiting a minimum of three minutes, to allow the object to levitaite to 



its equilbrium height and orientation,  we took an image of the objects in the device, using a 

Nikon DS-50 digital camera. We measured the orientation angle, α, from the photographs using 

ImageJ (NIH Bethesda). We used a digital angle indicator (McMaster-Carr, accuracy of 0.01) 

when rotating the device. 

 

Fabrication of Armored Droplets. We spread a monolayer of polysytrene particles onto an 

air/water interface by adding dropwise a suspension of polystrene particles in ethanol. The 

ethanol spread on the water surface and evoporated, thus depositing the particles on the surface. 

Once a complete monolayer had formed, we added perfluorodecalin dropwise onto the surface of 

this monolayer. The perfloruodecalin formed a lens-shaped drop and eventually, with additional 

volume, overcame the surface tension of the water and penetrated the surface of the liquid, and 

sank. Perfluorodecalin has a density higher than water (ρ=1.95 g/cm3). The droplet picked up a 

jammed monolayer of particles from the water surface. These particles were trapped at the 

interface of the perfluorodecalin droplet and did not desorb. We produced two coated droplets 

that we then fused to form the peanut shaped object by squeezing the droplets between two glass 

plates(12). We then added MnCl2 and a commercial water-based density matching liquid (Heavy 

Liquid, ρ=2.85 g/cm3, Geoliquids Inc) and levitated the non-spherical droplet in the MagLev 

device.  

 

 

 

 

 



SI Figures 

 

  



Fig. S1.   The orientation of objects does not depend on its levitation height in the MagLev 

device. We imaged the levitating Nylon screw along the y-z- plane. We progressively increased 

the density of the paramagnetic medium by adding sucrose, while keeping [MnCl2] constant at 

1.0 M. The orientation of the screw did not change with levitation height. The distance between 

the lines in the ruled scale in the background is 5 mm.  
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Fig. S2.  The orientation of objects is insensitive to the separation distance between the magnets. 

We imaged the levitating Nylon screw along the y-z- plane. The separation distance between the 

top and bottom magnets: (from top to bottom) 45 mm, 55 mm, and 65 mm. The screw was 

levitated in 1.0 M MnCl2 solution containing sucrose. The orientation of the screw did not 

change. The distance between the lines in the ruled scale in the background is 5 mm.  

  



 



Fig. S3.  Equilibrium orientation of objects in the x’-y’ plane of the MagLev with square 

magnets.  The top image shows the cross pattern that we used as a guide to the eye, the straight 

black lines in the pattern were aligned along the diagonals of the magnet.  We allowed the 

hollow PMMA cylinder to equilibrate for 3 minutes before imaging. We then perturbed the 

cylinder by moving the container out of the device several times. The cylinder orients along the 

diagonals of the magnet. The behavior of the cylinder is expected based on the location of the 

minima in the magnetic field in this plane. Scale bar 5 mm.  

  



  

 



Fig. S4.  Keeping the container stationary while rotating the device as a means of manipulating 

the orientation of objects. We placed the container containing the screw and the paramagnetic 

liquid on a pedestal. We then rotated the MagLev device with respect to the container. The object 

tracked the position of the magnets. The cross in the background was fixed relative to the 

laboratory frame of reference. With this configuration, the top of the container remained open 

and accessible, allowing external grippers, for example, to retrieve the oriented objects.  For 

scale, the horizontal line in the cross is 30 mm.  
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Fig. S5.  Manipulating the orientation of an object in the xy- plane with an external magnet. (A) 

Initial orientation of a Nylon screw (2 cm in length) levitating in the MagLev device. The 

orientation of the screw was controlled by using (B-D) one or (E-F) two external magnet(s) . The 

screw remained in its new position orientation after the magnet(s) was/were removed. Schemes 

on the right show the orientation of the objects.  
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Fig. S6 Manipulation of objects with metallic or paramagnetic components.  (A) A Nylon screw 

levitating in the MagLev device. The paramagnetic solution is [MnCl2] = 1.0 M. (B) The same 

screw wrapped in aluminum foil and levitating in the device. The orientation of the object did 

not change.   

 

 

 

 

 

 



SI Text

1 Background

The MagLev device that we used was similar to the ones previously described (1). Finite

element simulations based on the parameters (dimensions, strength of the magnetic field,

magnetic susceptibility of the solution) of this device show that, to a good approximation,

the gradient of the magnetic field is linear, with a constant slope between the surface of the

top magnet to the surface of the bottom magnet, and the magnetic field is zero at the

center of the device (1).

When an object is immersed in a (paramagnetic) liquid, it experiences a gravitational

force, Fg, due to the difference in densities between the object, ρo (kg m−3), and the

solution, ρs (kg m−3(Fig. 1 in main text). In Equation (1), V (m3) is the volume of the

object and ~g (m s−2) is the acceleration due to gravity. By convention, we take the direction

towards the center of the earth as positive. The gravitational force, Fg, acts upwards when

the object has a lower density than the liquid, downwards when the object has a higher

density than the liquid, and is zero when the object has the same density as the liquid.

~Fg = (ρo − ρs)V ~g (1)

When placed in the MagLev device, an object with a magnetic susceptibility χo(χo is

dimensionless and is typically on the order of 105 for diamagnetic objects (1)), that is

different from the magnetic susceptibility of the paramagnetic solution, χs (χs ≈1.8 ×10−4

for 1.00 M MnCl2 (1)), experiences a magnetic force, ~Fmag, given by Equation (2) (1). In

Eq. 2, ~B is the applied magnetic field (T) and µ0 = 4π × 10−2 (N A−2) is the magnetic

permeability of free space.

~Fmag =
(χo − χs)

µ0

V ~B · (∇ ~B) (2)
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The magnetic force arises due to the interaction between the paramagnetic liquid and

the gradient in the magnetic field between the two coaxial magnets. In a gradient of

magnetic field, maximizing the volume of paramagnetic liquid in regions of high magnetic

field strength minimizes the potential energy of the system. Thus, in a MagLev device, the

magnetic force acts to displace diamagnetic objects towards the center of the device, where

the magnitude of the field is lowest. This movement of diamagnetic objects away from

high-field regions allows the volume of paramagnetic liquid displaced by the object to

occupy regions of higher relative field strength closer to the surface of the magnets. An

object levitates stably when the gravitational and magnetic forces balance. Equation (3)

gives the levitation height h (Fig.1 in main text) at which this equilibrium is achieved for a

point-like object (1). In this equation, d (m) is the separation distance between the

magnets, and Bo is the magnitude of the magnetic field at the surface of the magnets. To a

good approximation, Eq. 3 also describes the levitation height of the center of volume of

finite-sized, homogenous spherical objects (and less generally of objects that are

heterogeneous and/or non-spherical) in the MagLev device (1).

h =
(ρo − ρs)gµ0d

2

4B2
o(χo − χs)

+
d

2
(3)

If Fg > Fmag everywhere in the device, the objects sinks, and if Fg < Fmag everywhere

in the device, the object rises. Thus, only values of h from 0 to the height of the meniscus

of the paramagnetic liquid are relevant practically, although Eq. 3 can, in principle,

provide values of h ranging from −∞ to +∞.

2 Convention for Describing Orientation

Non-spherical objects adopt distinguishable orientations in the MagLev device (and, by

extension, a fixed laboratory frame of reference). Here we describe the convention we adopt

to describe our results. We use Cartesian coordinates. The fixed coordinates (i.e., the
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laboratory frame of reference) are the x−, y−, and z− axes. The MagLev device may be

rotated relative to the laboratory frame of reference, and thus we define a body-fixed

coordinate system, x−, y−, z−, for the device (Fig. 1 in main text). To describe the

orientation of objects with obvious (even if approximate) axes of symmetry (e.g., the long

axis of a screw or a cylinder), we define a normalized direction vector ~p (Fig. 1 inset). The

direction of p could, in principle, be chosen arbitrarily, but for objects with obvious axes of

symmetry, it is usually convenient to define ~p to be aligned with one such axis.

3 Introduction

In our experiments, we observed that objects of homogeneous density and anisotropic

shape levitating in a MagLev device moved to a stable levitation height away from the

surface of the magnets and adopted a stable orientation with respect to the magnetic field.

The orientation of the object depended on the object’s shape and its aspect ratio. As the

aspect ratio of the object was increased, we observed that the objects changed orientation

sharply at a critical aspect ratio.

In the following sections, we present a general theory for the orientation and levitation

of arbitrary objects in MagLev. The layout of the SI is as follows. In section I, we obtain

an analytical closed form approximation of the magnetic field in a MagLev device. In

Section II, we derive the potential energy of an arbitrary object in a MagLev device and

find expressions for the equilibrium height and equilibrium orientation of the object. We

conclude: (i) the levitation height of the centroid of an object depends only on its average

density and its average susceptibility. The levitation height does not depend on the the

distribution of these quantities within an object. This result greatly simplifies calculations

for objects of heterogeneous density and/or magnetic susceptibility; (ii) a homogeneous

object has only two potential stable configurations in the MagLev. The configuration that

is preferred (i.e. of lowest potential energy) depends only on the ratio of second moments
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of area of the object. This result is consistent with a torque balance, but is more general

and proves that the levitating object does not have any metastable orientations. In section

III, we calculate the potential energy of the levitating objects used in experiments and

obtain analytical predictions for the critical aspect ratio, AR at which transitions in

orientation occur. The theoretical values are in excellent agreement with experiments.

4 Expression for the Magnetic Field in the Magnetic

Levitation Device

We assume that the MagLev device is stationary with respect to the laboratory frame of

reference. Thus the fixed coordinates (i.e., the laboratory frame of reference), the x-,y-,z-

axes, as defined in the main text, is always coincident with the body-fixed x′-,y′-,z′- axes of

the MagLev device. To simplify the notation, we equate these two coordinates and define

the “MagLev frame of reference” as ~r = (x, y, z).

The Maglev device consists of two coaxial circular or square magnets with like poles

facing set a distance d apart. We choose the z axis (unit vector ez) to be the axis of

symmetry and define the upper surface of the bottom magnet to be z = 0 and the lower

surface of the top magnet to be at z = d. This simple configuration between the two

magnets sets up a rather complicated magnetic field that is a function of axial and radial

positions.

In our experiments we find that the orientation of the object in the plane perpendicular

to the surface of the magnets is independent of the shape of the magnets. Thus, to simplify

the analysis, we consider the radially symmetric case, and let the lateral extent of the

magnetic field to be R. The axial symmetry allows the expression of the magnetic field in

the volume between the magnets −R ≤ x ≤ R, −R ≤ y ≤ R and 0 ≤ z ≤ d, in cylindrical

coordinates, approximately as a field that is a function of z and ρ =
√
x2 + y2, B(ρ, z).

Note that the term ρ used in this section is different from the use of ρ for the mass density.
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For ρ used to refer to mass density we always have a subscript to refer to the object.

We next obtain an approximation for the field, B(x, y, z), between two magnets in the

absence of the paramagnetic medium. Solving Maxwell’s equations yields the magnetic

field - this is however complicated to attempt analytically. The field generated by

two-loops of wire of radius R through which a current I flows, arranged in the

anti-Helmholtz configuration yields to leading order (2):

Bz = 3Iµo

(
d

2
R2

)[
(
d

2
)2 +R2

]− 5
2
(
z +

d

2

)
+ .... (4)

Bρ = −3

2
Iµo

(
d

2
R2

)[
(
d

2
)2 +R2

]− 5
2

ρ+ ... (5)

Here, µo is the permeability of free space. The region of field minimum is at the center of

the device equidistant from the surface of the magnets. The field is maximum at the

surface of the magnets, i.e. at z = 0 and d , and the magnitude of Bo can, in principle, be a

function of z and ρ. A single permanent magnet can be modeled as an infinite number of

loops extending from R = 0 to R = Rm, where Rm is the radius of the magnet. Thus,

integrating, and keeping only leading order terms, the field due to permanent magnets in

the anti-Helmholtz configuration is expected to have the form

Bz ≈
[∫ Rm

0
3Iµ

(
d
2
R2
) [

(d
2
)2 +R2

]− 5
2 dR

] (
z + d

2

)
which on rearranging yields approximate

expressions

Bz = Bo,z

(
1− 2

z

d

)
, and (6)

Bρ = Bo,ρ

( ρ
R

)
(7)

Thus, the field is approximately

Bo(x, y, z) ≈ Bo,z

(
1− 2

z

d

)
ez +

1√
2
Bo,ρ

( ρ
R

)
ex +

1√
2
Bo,ρ

( ρ
R

)
ey. (8)
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The magnetic flux lines are perpendicular close to the surface of the magnets but curve

appreciably at the center. Thus, although the magnetic field is zero at the point

equidistant between the magnets, this is also a point of inflexion of the flux lines. When a

paramagnetic liquid, of magnetic susceptibility χm, is introduced between the magnets, the

magnetic field will change. To leading order, one may approximate the field by the linear

term in z - this is the Taylor series expansion about the point ρ = 0 where only the term

due to the geometric symmetries of the two-magnet configuration is retained. Thus

(consistent with Mirica et. al. (1)) we write approximately

B(x, y, z) ≈ Bo

(
1− 2

z

d

)
ez. (9)

For a linear variation in z, Bo is constant.

5 Equilibrium Orientation and Position of an Object

of Arbitrary Shape in a Linearly Varying Magnetic

Field

5.1 Total Energy

Consider a dielectric object, of volume V , in an paramagnetic medium suspended in a

uniform magnetic field defined in (9). The object has a magnetic susceptibility χo(~r) and

density ρo(~r). These quantities may vary as a function of position, parametrized by the

vector ~r = (x, y, z), within the object. The magnetic susceptibility of the medium is χm.

To simplify calculations, we take advantage of the symmetry of the magnetic field and

define the origin, O, of the MagLev frame of reference at z + d/2. Therefore z is measured

relative to the center of the device (where B = 0) and B = 2Bo

d
zez. Since both χ(~r)o � 1

and χm � 1, the warping of the field is negligible; the object does not significantly modify
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the shape of the magnetic field lines. This assumption is true for most diamagnetic objects

and paramagnetic media. Equation (10) gives the potential energy density due to the

magnetic field within the volume of the object.

umag = −1

2

∆χ(~r)

µ0

B ·B = −∆χ(~r)

2µ0

(
2Bs

d
z

)2

= −2∆χ(~r)B2
0

µ0d2
z2

= β∆χ(~r)z2 (10)

In this equation, ∆χ(~r) = χo(~r)− χm, and we have defined the constant β = − 2B2
0

µ0d2
.

Equation (11) gives the potential energy density due to the gravitational field within the

volume of the object.

ugrav = ∆ρ(~r)gz, (11)

Integrating the energy density over the volume of the object provides the potential

energy of the system. (Equations (12) and (13)).

Umag =

∫
V

umagdV = β

∫
V

∆χ(~r)z2dV (12)

Ugrav =

∫
V

ugravdV = g

∫
V

ρ(~r)zdV (13)

In these equations, dV is the volume element in the MagLev frame of reference. The total

energy of the MagLev system is U = Umag + Ugrav.

We next define a body-fixed frame of reference for the object, with origin O′.

Translation and rotation of the object within the MagLev frame of reference can be

described relative to this “object frame of reference”. The object frame of reference is

chosen arbitrarily (at first). We will provide in the subsequent sections a method to find

the ideal reference frame that simplifies calculations.
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Within this object frame of reference, we define ~r′ = (x′, y′, z′) to be the coordinates.

Since the magnetic field in our approximation only varies in z, we take the origin O′ to be

along the z′ axis. Any rotation of the object frame of reference in the MagLev frame of

reference can be described as a rotation by an angle α around some axis defined by

eu = (sin θ cosφ, sin θ sinφ, cos θ). We use spherical coordinates to describe the MagLev

frame of reference: θ is the declination angle from z, and φ is the azimuthal angle measured

from x. The axis of rotation will always lie in the xy-plane such that θ = π/2 and

ez = (cosφ, sinφ, 0). A rotation by an angle α about the unit vector eu can be represented

by the rotation matrix in Equation (14).

A =


cosα + (1− cosα) cos2 φ (1− cosα) cosφ sinφ sinα sinφ

(1− cosα) cosφ sinφ cosα + (1− cosα) sin2 φ − cosφ sinα

− sinα sinφ cosφ sinα cosα

 (14)

Any configuration of the object in the MagLev can be treated as a pure rotation by A of

the original arbitrarily chosen configuration (which may not correspond to the minimal

energy configuration of the object) plus a vertical translation ~h = (0, 0, h).The coordinate

transformation from the object frame of reference to the MagLev frame of reference is

given by Equation (15).

~r = A~r′ + ~h. (15)

Since the energy only depends on z, we need only to find z = ez · ~r, which reduces to

Equation (16).
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z = ez ·
(
A~r′ + ~h

)
= (ezA) ~r′ + ez · ~h

=


− sinα sinφ

sinα cosφ

cosα

 ·


x′

y′

z′

+ h

= −x′ sinα sinφ+ y′ sinα cosφ+ z′ cosα + h (16)

Using Equation (16) we re-write the magnetic and gravitational potential energies in the

object frame of reference.

Umag = β

∫
V ′

∆χ(~r) (−x′ sinα sinφ+ y′ sinα cosφ+ z′ cosα + h)
2
dV ′ (17)

Ugrav = g

∫
V ′

∆ρ(~r′) (−x′ sinα sinφ+ y′ sinα cosφ+ z′ cosα + h) dV ′. (18)

The behavior of U will depend on the zeroth, first, and second moments of the functions

∆χ(~r) and ∆ρ(~r′) defined on the volume V ′ of the object. Expansion of these integrals will

result in many terms. Choosing an appropriate object frame of reference (we call this

frame of reference the “principal frame of reference”) however, will result in many terms

vanishing. We now proceed to describe a procedure for finding the principal frame of

reference.

5.2 Moments of a Function

Consider an arbitrary object with volume V defined in an object frame of reference O′ with

body-fixed coordinates ~r′ = (x′, y′, z′). We define a general scalar function f(x′, y′, z′) inside

the object, and f = 0 everywhere outside the object (Fig. S7). The moments of this
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Figure S7: Procedure for finding the principal frame of reference of an arbitrarily oriented
object in the MagLev. For clarity, we only show a 2D cross section of the object. Analyzing
the orientational potential energy in the principal frame simplifies calculations.

general function f(x′, y′, z′) is given by Equation (19).

M ijk
f =

∫
V ′
x′iy′jz′kf(x′, y′, z′)dV ′. (19)

The center of f , in Cartesian coordinates, which we define as
(
x̄′f , ȳ

′
f , z̄
′
f

)
is given by

Equations (20-22).

x̄′f =

∫ ′
V
x′f(x′, y′, z′)dV ′∫ ′
V
f(x′, y′, z′)dV ′

=
M100

f

M000
f

(20)

ȳ′f =

∫ ′
V
y′f(x′, y′, z′)dV ′∫ ′
V
f(x′, y′, z′)dV ′

=
M010

f

M000
f

(21)

z̄′f =

∫ ′
V
z′f(x′, y′, z′)dV ′∫ ′
V
f(x′, y′, z′)dV ′

=
M001

f

M000
f

(22)

For example, if f = const, then M000
0 = V ′ and (x̄′, ȳ′, z̄′) is the geometric centroid of

the object. If f = χ(x′, y′, z′), then M000
χ =

∫
χ(x′, y′, z′)dV ′ = χ̄V ′, and

(
x̄′χ, ȳ′χ, z̄

′
χ

)
is the

center of susceptibility. If f = ρ(x′, y′, z′), then M000
ρ = ρ̄V ′, and

(
x̄′ρ, ȳ′ρ, z̄

′
ρ

)
is the center

of mass.

To find the principal axes and orientation of the object, we define the second order

10



central moments of the object µijkf (Equation (23)).

µijkf =
M ijk

f

M000
f

− x̄′f j ȳ′f j z̄′f k (23)

We construct the covariance matrix of the function f (Equation (24)).

cov[f(x′, y′, z′)] =


µ200
f µ110

f µ101
f

µ110
f µ020

f µ011
f

µ101
f µ011

f µ002
f

 (24)

The covariance matrix allows calculation of the length and direction of the three principal

axes of the object. The eigenvectors (v1,v2,v3) of the covariance matrix correspond to the

principal axes of the object, weighted by the function f(x’,y’,z’). The eigenvalues

(λ2
1, λ

2
2, λ

2
3) correspond to the squared length of the three principal axes. By constructing a

rotation matrix Q = [v1v2v3] composed of the eigenvectors, we can perform a change of

coordinates ~r′ → Q~r′ that will rotate the object such that its principal axes are parallel to

the axes of the MagLev frame of reference.

If we translate
(
x̄′f , ȳ

′
f , z̄
′
f

)
to O′, then x̄′f = ȳ′f = z̄′f = 0, and M100

f = M010
f = M001

f = 0.

If we also rotate the object frame of reference by applying Q, then v1 will be aligned with

the x-axis. In this principal frame of reference, the covariance matrix is diagonalized, i.e.

the axes of the object will be collinear with the axes of the MagLev frame of reference.

Therefore, µ110
f = µ101

f = µ011
f = 0 and M110

f = M101
f = M011

f = 0. In this principal frame of

reference, the integrals of all first order terms and second order cross-terms vanish, and the
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lengths of the principal axes reduces to Equations (25-27).

λ2
1 =

M200
f

M000
f

=

∫
V ′ x

′2f(x′, y′.z′)dV ′∫
V ′ f(x′, y′.z′)dV ′

(25)

λ2
2 =

M020
f

M000
f

=

∫
V ′ y

′2f(x′, y′.z′)dV ′∫
V ′ f(x′, y′.z′)dV ′

. (26)

λ2
3 =

M002
f

M000
f

=

∫
V ′ z

′2f(x′, y′.z′)dV ′∫
V ′ f(x′, y′.z′)dV ′

. (27)

5.3 Magnetic Potential Energy

We can simplify Umag by applying the above steps to an object, i.e. by orienting the object

in its principal frame of reference, and then by inspecting each of the nine terms separately.
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U200
mag = β sin2 α sin2 φ

∫
V ′
x′

2
∆χ(~r′)dV ′ = β sin2 α sin2 φM200

χ

= β∆χ̄V λ2
1 sin2 α sin2 φ (28)

U020
mag = β sin2 α cos2 φ

∫
V ′
y′

2
∆χ(~r′)dV ′ = β sin2 α cos2 φM020

χ

= β∆χ̄V λ2
2 sin2 α cos2 φ (29)

U002
mag = β cos2 α

∫
V ′
z′

2
∆χ(~r′)dV ′ = β sin2 αM002

χ

= β∆χ̄V λ2
3 cos2 α (30)

U110
mag ∝

∫
V ′
x′y′∆χ(~r′)dV ′ = M110

χ = 0 (31)

U101
mag ∝

∫
V ′
x′z′∆χ(~r′)dV ′ = M101

χ = 0 (32)

U011
mag ∝

∫
V ′
y′z′∆χ(~r′)dV ′ = M011

χ = 0 (33)

U100
mag ∝

∫
V ′
x′∆χ(~r′)dV ′ = M100

χ ∝ x̄χ = 0 (34)

U010
mag ∝

∫
V ′
y′∆χ(~r′)dV ′ = M010

χ ∝ ȳχ = 0 (35)

U001
mag ∝

∫
V ′
z′∆χ(~r′)dV ′ = M001

χ ∝ z̄χ = 0 (36)

U000
mag = βh2

∫
V ′

∆χ(~r′)dV ′ = βh2∆χ̄V, (37)

To obtain the preceding equations, we used the relations defined by equations (25), (26),

and (27) along with M000
χ = ∆χ̄V . The total magnetic potential energy Umag =

∑
ijk U

ijk
mag

is therefore given by Equation (38).

Umag = U200
mag + U020

mag + U002
mag + U000

mag

= β∆χ̄V
(
λ2

1 sin2 α sin2 φ+ λ2
2 sin2 α cos2 φ+ λ2

3 cos2 α + h2
)

= β∆χ̄V
[
λ2

2 − λ2
3 +

(
λ2

1 − λ2
2

)
sin2 φ

]
sin2 α + β∆χ̄V h2, (38)
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To obtain Equation (38), we dropped terms that are constant with respect to the two

degrees of freedom, α and h. We define ratios of the second moment of susceptibility Ry

(Equation (39)) and Rz (Equation (40)) of the object.

Ry =

(
λ2

λ1

)2

(39)

Rz =

(
λ3

λ1

)2

, (40)

such that

Umag = β∆χ̄V λ2
1

[
Ry −Rz + (1−Ry) sin2 φ

]
sin2 α + β∆χ̄V h2. (41)

This result is the full three-dimensional form of the magnetic potential energy for an

arbitrary object that is parametrized within a MagLev (laboratory) frame of reference.

The angle α is the angle of declination of the z’-axis from the z-axis. The angle φ defines

the axis within the xy-plane about which the object rotates. If we did not use the principal

frame of reference construction, Equations (31-36) would be non-zero and the calculations

would be more complex.
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5.4 Gravitational Potential Energy

Using a similar procedure, we expand the gravitational potential energy into four terms.

U (100)
grav = −g sinα sinφ

∫
V ′
x′∆ρ(~r′)dV ′ = −g sinα sinφM100

ρ

= −mgx̄′ρ sinα sinφ (42)

U (010)
grav = g sinα cosφ

∫
V ′
y′∆ρ(~r′)dV ′ = g sinα cosφM010

ρ

= mgȳ′ρ sinα cosφ (43)

U (001)
grav = g cosα

∫
V ′
z′∆ρ(~r′)dV ′ = g cosαM001

ρ

= mgz̄′ρ cosα (44)

U (000)
grav = gh

∫
V ′

∆ρ(~r′)dV ′ = ghM000
ρ

= mgh, (45)

In this equation, ~rρ
′ =
(
x̄′ρ, ȳ

′
ρ, z̄
′
ρ

)
is the position of the center of mass of the principal

frame of reference. Equation (46) gives the total gravitational energy of the object.

Ugrav = mg
(
h− x̄′ρ sinα sinφ+ ȳ′ρ sinα cosφ+ z̄′ρ cosα

)
= mg

(
h− r̄′ρ · e′z

)
, (46)

In this equation, e′z = ezA = (sinα sinφ, sinα cosφ, cosα), which is the z-axis unit vector

parametrized in the object frame of reference. Thus, the gravitational potential energy

depends only the height of the object h and the z- component of the center of mass, as

expected.
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5.5 Equilibrium Height

The magnitude of the gravitational field is constant everywhere in the MagLev device,

whereas the magnitude of the magnetic field depends on position. Thus, we expect the

levitation height of the center of the object will not depend on the specific distribution of

density within the object. It will only depend on the mean density of the object. The

equilibrium height h0 occurs where ∂U
∂h

= 0.

∂U

∂h
=
∂Umag
∂h

+
∂Ugrav
∂h

= 2β∆χ̄V h0 + ∆ρ̄V g = 0, (47)

Equation (48) gives the equilibrium levitation height of an arbitrary object in the MagLev.

h0 = − g∆ρ̄

2β∆χ̄
. (48)

Expanding the constants we obtain Equation (49).

h0 =
(ρ̄o − ρm)gµ0d

2

(χ̄o − χm)4B2
0

(49)

This result proves that the levitation height of an object in a MagLev device (relative to

the center of susceptibility of the object) does not depend on the specific local distribution

of susceptibility (and density) within the object. The levitation height of the center of

susceptibility of the object (which may differ from the centroid) is wholly determined by its

mean density and mean susceptibility.

If the susceptibility (and/or the density) is distributed homogeneously (or with specific

symmetries) within the object, then the center of susceptibility (and/or the center of mass)

corresponds to the geometric centroid of the object. If we define h relative to the face of

the bottom magnet, we obtain Equation (50).

h0 =
(ρo − ρm)gµ0d

2

(χo − χm)4B2
0

+
d

2
, (50)
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This equation is consistent with equation 5 of Mirica et. al. (1).

We conclude that the position and orientation of the objects are decoupled, provided

that the magnetic field is linear. Therefore, in a linear magnetic field, we can minimize with

respect to the height to find the equilibrium position, and then minimize independently

with respect to orientation to calculate the equilibrium orientation of an object. The

decoupling allows the use of coordinate transformations such as those in Section 5.2 and

5.3 (which simplify calculations by making many terms zero), to perform calculations

independent of the actual equilibrium levitation height of the object in the device.

5.6 Potential Energy of Orientation for a Homogenous Object

For objects of homogenous susceptibility and density, we can make the following

simplifications: (i) ∆χ(~r) = ∆χ and ∆ρ(~r) = ∆ρ; (ii) ~rρ = 0 and there is no gravitational

torque
(
∂Ugrav

∂α
= 0
)

; (iii) λ2
1, λ2

2, and λ2
3 reduce to the second moments of area of the

object. All the objects that we tested experimentally had a pair of degenerate second

moments (a square prism, a cylinder, a hollow cylinder, and an equilateral prism). The

second moment of area, Ry is 1, if we orient our principal frame of reference so that the

first two principal axes are degenerate (λ1 = λ2). We thus can define a single parameter, R

that is a ratio of second moments that characterizes fully the behavior of objects with

double degenerate geometries (Equation (51)).

R =
Rz

Ry
=

(
λz
λy

)2

. (51)

Equation (52) gives the total potential energy for objects with double degenerate

geometries.

U = βV∆χλ2
1 (Ry −Rz) sin2 α + βV∆χh2 + ∆ρV gh. (52)

To calculate the orientation of an object, we consider only the angle dependent part
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U(α) of the potential energy, which is given by Equation (53).

U(α) = βV∆χλ2
2 (1−R) sin2 α

∝ (1−R) sin2 α. (53)

The equilibrium orientations occur at the local minima of U(α). The extrema of this

function occur at α = 0, π/2, π, and 3π/2 (the function is periodic). The sign of (1−R)

determines which of these are minima and which are maxima. If R < 1, then U(α) ∝ sin2 α

and the minima occur at α = 0 and α = π. If R > 1, then U(α) ∝ − sin2 α ∝ cos2 α and

the minima occur at α = π/2 and α = 3π/2. If R = 1, then U(α) = 0 and the potential

energy is degenerate; the object does not have any preferred orientation. For this system,

the orientation is completely determined by the value of R; the major axis (largest

eigenvalue) of the sample will always align perpendicular to the magnetic gradient (z-axis).

Intuitively, the magnetic field acts to both displace the object away from the magnets

(levitation), and orient in a way such that the object appears to be “as small as possible”

relative to the magnetic gradient.

5.7 The Effect of Non-Linearities of the Magnetic Field on the

Orientation of Dimensionally Degenerate Objects of

Homogeneous Density

We have analyzed the effects of non-linearities in the magnetic field on degenerate shapes

to show that the non-linear terms qualify the energy minima. The full analysis is lengthy,

thus we outline the basic steps here. First, as mentioned in the previous section, the

magnetic field plateaus when approaching the surface of the magnets and has an inflexion

point at the center. Therefore, the non-linearity of the field can be approximated by

B = B0z +B1z
3 +O(z5) where B0 is the linear coefficient of the magnetic field and B1 is
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the cubic coefficient of the magnetic field. The contribution of the cubic term cancels part

of the linear term, since the magnetic field stops increasing in magnitude as fast when away

from the center.

Assuming that the higher order terms are small compared to the leading one, the

magnetic energy density is then given by Equation (54).

umag ≈
∆χ

2µ0

B2
0z

2 +
∆χ

2µ0

2B0B1z
4 = c1z

2 + c2z
4. (54)

In this equation, c1 = ∆χ
2µ0
B2

0 and c2 = ∆χ
2µ0

2B0B1 and (c1 > 0, |c2| << c1).

Here, c2 > 0 if B1 and B0 have the same sign, and c2 < 0 if B1 and B0 have different

signs.

Equation (55) gives the total magnetic potential energy.

Umag =

∫
V

umag =

∫
V0

(c1z
2 + c2z

4)dV = U1 + U2, (55)

In this equation, V0 is the shape of the object, U1 = c1

∫
V0
z2dV , and U2 = c2

∫
V0
z4dV .

At equilibrium, this energy is again minimized as the system is conservative with no

dissipation. We analyze an object oriented in its principal frame of reference and, without

loss of generality, consider a 2D cross-section in the yz-plane. Since U1 � U2 for small

objects, the behavior of a non-degenerate case (R < 0 or R > 0) is dominated by U1, as

expected, for which there are no metastable states. For the dimensionally degenerate case

(R=1), such as for a square, the energy U1 = 0. Within this 2D cross-section,

z = y′ sinα + z′ cosα, and following a procedure similar to that in the previous section we
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find that for U2 =
∑

ij U
ij
2 :

U4,0
2 = c2 sin4 α

∫
V0

y′4dV (56)

U3,1
2 = 4c2 cosα sin3 α

∫
V0

y′3z′1dV (57)

U2,2
2 = 6c2 cos2 α sin2 α

∫
V0

y′2z′2dV (58)

U1,3
2 = 4c2 cos3 α sin1 α

∫
V0

y′1z′3dV (59)

U0,4
2 = c2 cosα4

∫
V0

z′4dV, (60)

which rely on the fourth geometric moments of the shape. For a square with side length `,

U3,1
2 = U1,3

2 = 0 the remaining potential energy is:

U2 = c2
`6

480
(cos (4α)− 7)

∝ cos (4α) (61)

For a superlinear magnetic field (c2 > 0) (the field increases with an exponent greater

than 1), Equation (61) shows that there are four stable configurations:

α = 0, 90◦, 180◦, 270◦. For a sublinear magnetic field (c2 < 0), there are also four stable

configurations: α = 45◦, 135◦, 225◦, 315◦. Based on our experimental observations of the

orientation of the objects, it appears that the field is slightly superlinear in our typical

MagLev setup. Simulations of the magnetic field using Mathematica, also demonstrates

that the field is superlinear in the vertical direction (results not shown).
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6 Specific Calculations for Objects in the

Experiments

In the previous sections, we demonstrated analytically how principles of symmetry in

conjunction with a simplified linear form for the magnetic field provides predictions for the

orientation of objects in the MagLev. Due to the minimization of magnetic potential

energy, homogeneous objects can orient only along their principal axis of symmetry in a

linear magnetic field. To compare theory to experiments, in this section, we present specific

calculations for the objects used in our experiments. The experimental objects have a pair

of degenerate principle axes (λ1 = λ2). We choose a body-fixed principal reference frame

such that one of the degenerate axes (λ1) remains collinear with the x- and x′-axes. In this

reference frame, all rotation is constrained to the yz-plane (around the x- and x′-axes). We

can, therefore, use Equation (53) to analyze the change in potential energy due to the

orientation of the object. We define a unit vector p perpendicular to the face that spans

the degenerate principal axes, and measure the angle α as the angle of inclination between

p and the z−axis (Fig. 2 in the main paper and Fig. S8). We prepare the object in an

initial state α = 0 (configuration 1). We expect that an object will abruptly transition

from α = 0 to α = 90 ◦ (configuration 2) when its second moment ratio R transitions from

R < 1 to R > 1. R can be calculated using Equation (62).

R =

(
λ3

λ2

)2

=

∫
V
z2dV∫

V
y2dV

(62)

Although R is a parameter that wholly predicts the orientation of a homogeneous

object in a linear field, this value cannot, typically, be easily measured experimentally. We

parametrize our objects with a pair of length parameters, ` for the characteristic width of

the face of the object, and T for the thickness (Fig. S8). Here we calculate R for various

shapes and relate it to the the easily measured aspect ratio, AR = T/`. In the experiments,
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Figure S8: Sketch of the configuration of a cylinder with the bounds of integration marked.

one dimension (`) was kept constant while the other (T ) was varied so as to change AR

(and therefore R).

6.1 Solid block of cross section area `× ` and length T

For a solid rectangular block, we use Cartesian coordinates for integration.

R =

∫
V0
z2dV∫

V0
y2dV

=

∫ T/2
−T/2 z

2dz
∫ `/2
−`/2 dy

∫ `/2
−`/2 dx∫ T/2

−T/2 dz
∫ `/2
−`/2 y

2dy
∫ `/2
−`/2 dx

=
l2T 3/12

`4T/12
=
T 2

`2
= A2

R, (63)

and therefore

AR =
√
R. (64)

The critical aspect ratio is therefore AR = 1, matching experiment. For AR < 1 , the object

will orient in configuration 1.
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6.2 Solid cylinder of diameter ` and height T

For a solid cylinder, we use cylindrical coordinates to simplify integration.

R =

∫
V0
z2dV∫

V0
y2dV

=

∫ T/2
−T/2 z

2dz
∫ 2π

0
dφ
∫ `/2

0
rdr∫ T/2

−T/2 dz
∫ 2π

0

∫ `/2
0

(r sinφ)2rdrdφ
=

π
48
`2T 3

π
64
`4T

=
4T 2

3`2
=

4

3
A2
R, (65)

and therefore

AR =

√
3

4
R. (66)

The critical aspect ratio is therefore AR =
√

3/4 ≈ 0.86, matching experiment. For

AR < 0.86 , the object will orient in configuration 1.

6.3 Hollow cylinder of outer diameter `, inner diameter ε` and

length T

.

For a hollow cylinder, we continue use cylindrical coordinates to simplify integration.

R =

∫
V0
z2dV∫

V0
y2dV

=

∫ T/2
−T/2 z

2dz
∫ 2π

0
dφ
∫ `/2
ε`/2

rdr∫ T/2
−T/2 dz

∫ 2π

0

∫ `/2
ε`/2

(r sinφ)2rdrdφ
=

π
48
`2T 3(1− ε2)

π
64
`4T (1− ε4)

(67)

=
4(1− ε2)T 2

3(1− ε4)`2
=

4(1− ε2)

3(1− ε4)
A2
R, (68)

and therefore

AR =

√
3

4

(1− ε4)

(1− ε2)
R. (69)

We note that increasing ε (making a hollow cylinder) will increase the critical aspect ratio

for the change in orientation - indeed we get critical aspect ratios that are greater than

unity for a range of ε. When ε = 0, we recover the result for a solid cylinder. When ε = 1,

there is no cylinder. For a range of ε, we have critical aspect ratios of greater than unity.

For the experiments the outer diameter of the hollow cylinder is 1/4 inch and the thickness
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of the wall is 1/32 inch (i.e. ε = 3/4). Substituting these values, we find the critical aspect

ratio to be AR ≈ 1.09 matching experiment. For AR < 1.09 , the object will orient in

configuration 1.

6.4 Triangular block

For a triangular block, we use Cartesian coordinates to parametrize the limits of

integration.

R =

∫
V0
z2dV∫

V0
y2dV

=

∫ T/2
−T/2 z

2dz
∫ l/2
−l/2 dx

∫ −√3|x|+`/
√

3

−`/2
√

3
dy∫ T/2

−T/2 dz
∫ l/2
−l/2 dx

∫ −√3|x|+`/
√

3

−`/2
√

3
y2dy

=

1
16
√

3
`2T 3

1
32
√

3
`4T

(70)

= 2
T 2

`2
= 2A2

R, (71)

and therefore

AR =

√
R

2
. (72)

The critical aspect ratio is therefore AR =
√

1/2 ≈ 0.70, matching experiment. For

AR < 0.7, the object will orient in configuration 1.
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