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Soliton in the Flipper Phase
In this section, we derive the continuum ϕ4 theory that describes
the domain wall (soliton) solution in the flipper phase of motion.
The discrete Lagrangian for the one-dimensional mechanical ana-
log of the Su–Schrieffer–Heeger (SSH) chain is
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where, I = Mr
2 is the moment of inertia of the rod–mass system,

θn is the angular position of the nth rod measured with respect to
the positive direction of the y axis, ke is the bare spring constant
between neighboring rods with rest length l, and ln,n+1 is the
instantaneous length of the spring connecting rods n and n + 1.
We make the working assumption that throughout the course

of the motion, the lengths of the springs do not change appre-
ciably from their rest length; that is, we consider the springs to be
almost rigid. Thus, a more tractable continuum limit follows by
expressing the potential energy in Eq. S1 as
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where in the last step we have assumed that ðln;n+ 1 + lÞ2 ≈ 4l2 and
so the potential energy is approximately unchanged if we define
a new spring constant κ= ke=4l

2. Next, by expressing ln,n+1 in
terms of the angles θn, θn+1 and the geometrical parameters r,
a, we find the potential part of the Lagrangian to be
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Next, we take the continuum limit, assuming a → dx, θn → θðxÞ−
ða=2Þðdθ=dxÞ, θn+1 → π − θðxÞ− ða=2Þðdθ=dxÞ (taking a Taylor se-
ries centered at x = n + 1/2), to obtain the potential energy density
as a perfect square
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where we denote the projection of the rods along the x̂ axis by u(x) =
r sin θ(x) and define the constants u= r sinθ and K = 16κ= 4ke=l

2.
Thus, in the continuum limit and expressed in terms of the field

u(x, t), Eq. S1 assumes the form
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Eq. S6 differs from the ordinary ϕ4 theory due to the presence of
the last term (linear in ∂u=∂x) and because of the nonlinear ki-
netic term. As explained in the main text, the last term is related
to the topological charge of the soliton that ensures that the static
kink costs zero potential energy and does not contribute to the
equation of motion. Moreover, by expanding the nonlinear ki-
netic term to order u2/r2 (valid in the limit of small θ), we obtain
from Eq. S6 the ordinary ϕ4 theory, whose soliton solution is
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where v is the speed at which the kink propagates and the effec-
tive “speed of light” is c= ða2=lÞ ffiffiffiffiffiffiffiffiffiffiffi

ke=M
p

. This coincides with Eq. 11
in the main text.

Soliton in the Spinner Phase
As discussed in the main text, to obtain the soliton solution in the
spinner phase, we define the continuum field as the slowly varying
angular field of odd or even sites. In the following, we discuss an
approximate method for describing odd (even) fields, whose soliton
solutions can be described by the sine-Gordon theory. Consider
Eq. S1 (writing three terms), assuming n is an odd site, for instance,
and with the working assumption that ðln;n+ 1 + lÞ2 ≈ 4l2,
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where dots denote derivative with respect to time.
To combine odd (even) sites, consider combining half of the

potential energies at a time, so that both odd and even sites get
their share from the same Lagrangian. To do this, we express the
potential energy as a sum of terms of the following form:
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For instance, the first square bracket can now be used to integrate
out an even site and the second one to integrate out an odd site.
Consider the first square bracket reexpressed as
�
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Assuming that the average of l2n;n+ 1 + l2n+ 1;n+ 2 = 2l2, the first term in
the above equation can be approximated to 0. We are thus left with
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After substituting the lengths by angles and r, a, we obtain

l2n;n+1 − l2n+1;n+2 = 2r2
h
cosðθn − θn+1Þ− cosðθn+1 − θn+2Þ

+
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	i
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As discussed in the main text, we take the continuum limit by de-
fining the field θn → θ(x) and θn+2 → θðx+ 2aÞ= θ+ 2aðdθ=dxÞ
and then retaining terms to leading order in a. We “integrate
out” θn+1 (the degree of freedom representing the middle rod)
by using the constraint equation l2n;n+ 1 = l2. Expressing this sec-
ond constraint equation in terms of the angles fθ; θn; θn+1g, we
find (in the limit a � r) that θn+1 ≈ θn + π − 2θ. We thus obtain
the following potential energy contribution from the odd sites:
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We therefore identify an effective spring constant Keff = ker4a2

sin2ð2θÞ=l2. Similarly, combining half of the kinetic energies from
the odd sites ð1=4ÞMr2 _θ 2

n + ð1=4ÞMr2 _θ 2
n+ 2, we obtain ð1=2ÞMr2 _θ 2.

Therefore, the moment of inertia is I = Mr
2.

With this procedure, we have therefore expressed the Lagrangian
as a sine-Gordon Lagrangian for the odd (even) sites, whose con-
tinuum limit for the odd (o) sites reads

Lo =
Z

dx


1
2
I _θ 2

o −
1
2
Keff



θo′−

a
r sinθ

sin
�
θo − θ

��2�
; [S14]

while for the even (e) sites, we find
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where primes denote derivative with respect to space x. Upon
using the Euler–Lagrange equations, we obtain the respective
soliton solutions
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where, ± corresponds to soliton solutions for the even (odd)
sites, respectively (which are of course constrained so that
θe = θo + π− 2θ), and where c, the speed of sound in the spin-
ner phase r � a, is
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The sine-Gordon soliton solution in the spinner phase suggests
an analogy with the well-known mechanical model consisting of
a chain of pendula coupled via torsional springs (1). However,
a side view of the model spinner chain in Fig. 7B suggests several
important differences between the two models. First, unlike for
the chain of coupled pendula, the springs connecting neighbor-
ing rods in our model have nonzero equilibrium projection in the
plane of rotation of the rods and thus the even- and odd-num-
bered sites have different equilibrium positions. Second, the
rotors do not all rotate about the same axis, but adjacent axes are
displaced by the lattice spacing a in the x direction (Fig. 7). This
breaks the global rotational symmetry of the chain. Moreover,
as for the flipper phase, the sine-Gordon soliton has a nonzero

topological charge originating from the term linear in θ′. This
charge ensures that the static kink has zero energy, whereas in
the dynamical case, it lowers the total energy of the soliton by
a constant factor.

Linearized Perturbation Theory for the Wobbling Flipper
We now construct a simple model to qualitatively understand the
wobbling flipper phase of motion as a superposition of the ϕ4

flipper kink and linear perturbations around its asymptotic
states. Because the wobbling flipper phase is observed for d > 1
(where d= 2r sinθ=a), we find that to correctly account for the
spatial period and decay length of the oscillations around the
flipper kink, the linear theory must bear signatures of the spinner
phase of motion (Eq. 4 and the subsequent discussion in the
main text).
We show the main phenomena as we increase d in the wobbling

flipper phase in Figs. S1 and S2. The static profile of the wob-
bling flipper is distinguished from that of the nonwobbling flip-
per by oscillations in u around the value u. For small d − 1, the
profile is indistinguishable by eye from the hyperbolic tangent
profile of the nonwobbling flipper, as the amplitude of the oscil-
lations is small, although subtracting off that profile as a back-
ground makes the deviation visible. As d increases, the amplitude
increases; we found that the dependence of the maximum de-
viation above the equilibrium value u= u was proportional to d3.
Furthermore, the wavelength of the oscillations seems to stabilize
at 2a. The function e−x=ws cosðπx=aÞ was found to fit the oscil-
lations for large enough x/a and d.
In the following, we approximate the oscillations observed in

the wobbling phase (Fig. 5, Upper Left Inset) as small perturba-
tions around the uniform ground state θ= ± θ that the kink
profiles approach asymptotically. Because the width of the flip-
per kink decreases inversely as w ∼ d−1, the asymptotic values are
reached within a few lattice spacings for larger values of d.
We begin with Eq. 5 in the main text, the equation constraining

two adjacent rotor angles θn, θn+1:
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a
r
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However, now we keep a few more terms in the continuum limit,
again by taking a Taylor series around x= n+ 1
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To this order, we obtain
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Observe that this continuum limit respects the reflection symmetry
(x, θ) → (−x, −θ).
It is convenient to define θ*= θ+ ða2=8Þðd2θ=dx2Þ. Note that

cos(2x) − cos(2y) = (sin x + sin y)(sin y − sin x). We use this fact
and then (after multiplying through by r2) use the approximation
sinθ+ sin θ* ≈ 2 sinθ as we wish to consider the behavior when
θ≈ θ:

2r2
�
2 sinθ

��
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�
+ a2r

�
dðsin θÞ

dx

�
= 0: [S20]

We assume that e= ða2=8Þðd2θ=dx2Þ is small enough that
sin e≈ e and cos e≈ 1. Then
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As usual, let u = r sin θ and u= r sinθ. A consequence of our
assumptions is that d2u=dx2 ≈ r2 cos θðd2θ=dx2Þ (neglecting a term
nonlinear in u). Then
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In the last line, we introduce δu≡ u− u. The solutions to
Eq. S23 are linear combinations of complex exponentials. In
particular,

δu=Aeλ−x +Beλ+x; [S24]
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Provided 1=u<
ffiffiffi
8

p
=a or d> 1=

ffiffiffi
2

p
, λ± are a complex conjugate

pair, with real parts equal to 1=u (as observed in Figs. S1 and S2)
and imaginary parts approaching ±

ffiffiffi
8

p
i=a≈ 2:8ia (compared with

the wavenumber of πi=a≈ 3:1i=a that we observe). Thus, for suf-
ficiently large d, this linearized perturbation theory captures the fact
that the decay length of the oscillations is equal to u= r sinθ, the
width of the spinner soliton, and the wavenumber is on the order of
the lattice spacing. In the opposite limit ðd< 1=

ffiffiffi
2

p Þ, both roots are
real negative and thus the solution is simply an exponential decay,
agreeing qualitatively with the shape of the tail of the hyperbolic
tangent kink solution in the nonwobbling flipper phase.
We conjecture that with a more sophisticated expansion (e.g.,

with higher-order terms or some treatment of the nonlinear
effects), the value of u=a and d at which we begin to see os-
cillations (and hence represents the transition between non-
wobbling and wobbling flippers) should approach 1, and the
imaginary part should approach πi/a.
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Fig. S1. The numerically generated displacement field u(x − vt) (symbols) for various r/a in the wobbling flipper phase. These results are for a chain of 100 rods
with θ= 0:77 and ke = 1,M = 1; with r/a = 0.8, d = 1.1 (blue); with r/a = 1.2, d = 1.7 (magenta); and with r/a = 1.6, d = 2.2 (gold). The data arise from 10 snapshots
of a single trajectory, translated so that the center of the soliton is at x = 0.

Fig. S2. The oscillations in numerically generated displacement fields u(x − vt) (solid circles) in the wobbling flipper phase compared with the functions
e−x=ws cosðπx=aÞ (solid lines). Oscillations are quantified by subtracting off the hyperbolic tangent flipper solution. The numerical results are for a chain of 100
rods with θ= 0:77 and ke = 1, M = 1; with r/a = 0.8, d = 1.1 (red); with r/a = 1.3, d = 1.8 (blue); and with r/a = 2.0, d = 2.8 (green). The solid lines have a decay
length of ws=a= ðr=aÞsinθ=d=2 with the same values of r/a, d. The data arise from 10 snapshots of a single trajectory, translated so that the center of the
soliton is at x = 0.

Chen et al. www.pnas.org/cgi/content/short/1405969111 3 of 6

www.pnas.org/cgi/content/short/1405969111


Movie S1. A model of the chain of rotors that is rigid in the bulk due to the acoustic modes being gapped and with an exponentially localized zero mode at
the end. These illustrate predictions of the linear theory.

Movie S1

Movie S2. How the exponentially localized mode integrates into a moving domain wall in the model chain.

Movie S2

Movie S3. A simulation (Newtonian dynamics) of the full cycle of a (nonwobbling) flipper soliton in a chain of 17 rotors. The geometrical parameters of the
chain are a = 1, r = 0.5, and θ = 0.97. The other model parameters are ke = 1,000, M = 1, and v0 = 0.08. The green arrows on each rotor are proportional to the
angular velocity, and the red and blue arrows underneath depict the x projections of the rotors, showing the domain wall nature of the soliton.

Movie S3
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Movie S4. A simulation of the full cycle of a wobbling flipper soliton in a chain of 17 rotors. The geometrical parameters of the chain are a = 1, r = 1.1, and θ =
1.18. The other model parameters are ke = 1,000, M = 1, and v0 = 0.04. The green arrows on each rotor are proportional to the angular velocity, and the red
and blue arrows underneath depict the x projections of the rotors, showing the domain wall nature of the soliton.

Movie S4

Movie S5. A simulation of the full cycle of a spinner soliton in a chain of 17 rotors. The geometrical parameters of the chain are a = 1, r = 2, and θ = 1.18. The
other model parameters are ke = 1,000, M = 1, and v0 = 0.04. The green arrows on each rotor are proportional to the angular velocity, and the red and blue
arrows underneath depict the x projections of the rotors, showing the domain wall nature of the soliton. We offset the x projections of the odd- and even-
numbered sites to emphasize that the angles of odd rotors and even rotors converge separately to smooth functions differing by a constant.

Movie S5

Movie S6. A unit cell of a chain in the (nonwobbling) flipper phase and its allowed motion in the configuration space spanned by the two rotor angles. The
geometrical parameters of the chain are a = 1, r = 0.25, and θ = 0.79.

Movie S6
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Movie S7. A unit cell of a chain in the wobbling flipper phase and its allowed motion in the configuration space spanned by the two rotor angles. The
geometrical parameters of the chain are a = 1, r = 1.1, and θ = 1.18.

Movie S7

Movie S8. A unit cell of a chain in the spinner phase and its allowed motion in the configuration space spanned by the two rotor angles. The geometrical
parameters of the chain are a = 1, r = 2, and θ = 1.18.

Movie S8

Movie S9. A model of the chain of rotors made out of LEGOs in the spinner phase.

Movie S9
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