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Appendix

A. Asymptotic distributions of test statistics

The two proposed test statistics (T1 and T2), as well as the log-rank (TLR) and modified PH (TmPH ) test statistics, are all asymptotically

equivalent to quadratic forms of S(β̂, 0, 0). In the following, we describe asymptotic distributions of such quadratic forms, as well as

approximation methods to calculate p-values. The following derivations are similar to those of Lin et al. (2006).

We consider a general quadratic form Q = STUS, where S := S(β̂, 0, 0) is a vector of length r and U is a positive semi-definite matrix

of size r × r. Since each element of S is a realization of the score function, S has mean 0 and its variance-variance matrix is the Fisher

information V . One can rewrite Q = STUS = (V −1/2S)T (V 1/2UV 1/2)(V −1/2S), where V −1/2S are standardized S with identity

matrix as its covariance matrix. Using quadratic form theory and the central limit theorem, one obtains the following result.

Proposition. Asymptotically, the distribution of the quadratic formQ = STUS is approximately a weighted average of χ2
1, more specifically,

Q→
r∑

k=1

λkχ
2
1,

where λk’s are eigenvalues of the matrix UV . The mean and variance of the limiting distribution are tr(UV ) and tr(UV UV ), respectively.

In practice, it is often the case that the first few eigenvalues capture the most variations and the remaining ones are negligible. To calculate

p-values, one can use another approximation cχ2
v , i.e., a scaled χ2 distribution with degree of freedom v. By matching the mean and

variance of the two distributions, one can obtain the choice of parameters c = tr(UV UV )/tr(UV ) and v = {tr(UV )}2/tr(UV UV ). In

simulations, we found that both approximations work reasonably well in finite samples.

B. Connection with weighted log-rank tests via spectral decomposition

In this section, we will apply the spectral decomposition to understand the connection between the proposed tests and the weighted log-rank

test. Consider the general quadratic form Q = STUS, where U is a non-negative semi-definite matrix. One has spectral decomposition

U =
∑r

k=1 λkPkP
T
k , where λk’s and Pk’s are eigenvalues and eigenvectors of U , respectively. Using such decomposition, the quadratic

form can be written as

Q = STUS =
r∑

k=1

λk S
TPkP

T
k S =

r∑
k=1

λk(PT
k S)T (PT

k S). (A.1)
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Note that the kth term is equivalent to the weighted log-rank statistic with weight Pk. Thus, the test statistic Q is equivalent to a linear

combination of several weighted log-rank statistics, with weights determined by the eigenvectors of the matrix U . The relative importance of

each weighted log-rank statistic in the linear combination is determined by the eigenvalues λk.

If the matrix U has rank 1 and thus only one eigenvector P1, the test statistic Q is actually weighted log-rank test with weight P1

(unweighted log-rank test if and only if U ∝ 11T , or equivalently, P1 ∝ 1). If rank(U) > 1, the quadratic form Q is equivalent to a

linear combination of several weighted log-rank statistics, different from any weighted log-rank tests. The resulting test statistics incorporate

information from deviation from the null in several different directions, and thus are expected to be omnibus when the shape of true hazard

ratio function is unknown. In Lin et al. (2006), they chose U = Σ, which was derived from the differential operator, and their test statistic

would summarize information from possible non-proportionality. For the proposed tests T1 and T2, we choose the matrix U to be a linear

combination of 11T and Σ, and thus our test statistics combine information from both the magnitude and shape of the hazard ratio function.

C. A sketch of proof of the properties of T2

We provide a sketch of proof to show that 1TS(β̂, 0, 0) and W (β̂)S(β̂, 0, 0) are approximately uncorrelated under the null. Therefore, T2

is expected to combine information from 1TS(β̂, 0, 0) and S(β̂, 0, 0) effectively. Because the profile likelihood is an approximately least

favorable submodel of the Cox model (Murphy and van der Vaart, 2000), we treat the partial likelihood as a legitimate likelihood from a

parametric model without a nuisance parameter. Denote the partial likelihood as `(β, θ0, θ). Note that the projection of a random vector

X onto a random vector Y is Z = {cov(X,Y )/var(Y )}Y . We consider X = S(β0, 0, 0) and Y = 1TS(β0, 0, 0) where β0 is a true

parameter. Then the projection of X onto Y is given by

Z =
cov{ S(β0, 0, 0),1TS(β0, 0, 0) }

var(1TS(β0, 0, 0))
1TS(β0, 0, 0)

=
E{S(β0, 0, 0)S(β0, 0, 0)T }1

1T var{S(β0, 0, 0)}1 1TS(β0, 0, 0),

Let

V = E{S(β0, 0, 0)S(β0, 0, 0)T } = E

[
∂`(β0, 0, 0)

∂θ

∂`(β0, 0, 0)

∂θT

]
= −E

[
∂2`(β0, 0, 0)

∂θ∂θT

]
,

we obtain

Z = (1TV 1)−1V 11TS(β0, 0, 0).

Since E{Ṡ(β0, 0, 0)} and β0 are unknown, we plug in their empirical estimates, n−1Ṡ(β̂, 0, 0) and β̂, to obtain

Ẑ = (1T V̂ 1)−1V̂ 11TS(β̂, 0, 0).

Thus, WS(β̂, 0, 0) = S(β̂, 0, 0)− Ẑ and 1TS(β̂, 0, 0) are asymptotically uncorrelated.
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