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Web Appendix A. Choice of tuning parameters

A-1. Choice of the maximum number of iterations, Mmax, and weight, w̃{∆(Y )}

There are two tuning parameters that need specification when implementing the boosting

method: the weight function, w̃{∆(Y )}, and the maximum number of iterations, Mmax.

Choosing Mmax is similar to choosing the number of base-models in any ensemble method that

combines multiple base-models (Opitz and Maclin (1999); Assareh et al. (2008)). Typically a

larger number of base-models yields improved model performance, up until some M0 beyond

which no improvement and potentially even deterioration in performance is observed. The

best weight function and optimal Mmax are not known in practice, and so we recommend

investigating these choices using a separate data set that is not used for fitting or evaluating

model performance, or using cross-validation (CV).

A-1-1. Impact of choice of Mmax and w̃{∆(Y )} in simulations. In our simulation study,

we set w̃{∆(Y )} = ∣∆(Y )∣− 1
3 which was the best-performing weight function among several for

the models we considered in the sense of maximum mean θ across 1000 training data sets. In

addition to w̃{∆(Y )} = ∣∆(Y )∣− 1
3 , we considered w̃{∆(Y )} = ∣∆(Y )∣− 1

10 , w̃{∆(Y )} = e−∣∆(Y )∣

and w̃{∆(Y ), Y } = e−∣∆(Y )∣WA(Y ), whereWA(Y ) is similar to the weight function used in Ad-

aboost (Friedman et al., 2000). Specifically,WA(Y ) = exp{−
1

2
log (1 − err

err
) × (2D − 1)(2D̂ − 1)},

where D̂ = 1{P̂ (D = 1∣T,Y ) > 0.5} is the outcome classification at the previous stage and

err = P (D ≠ D̂) is the error in this classification. Additional polynomial weight functions of

the form w̃{∆(Y )} = ∣∆(Y )∣d were also considered (data not shown). Web Table 1 compares

the performance of the boosting method under different choices for the weight function for the

4 most informative simulation scenarios. The results suggest that the best-performing weight

function depends on simulation scenario and working model. However, the improvement in

model performance associated with using the optimal w̃{∆(Y )} was minimal.
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In the simulations, MBest is what we found to be the best-performing Mmax among Mmax =

1, . . . ,50, in terms of maximizing mean θ across 1000 training data sets for each Mmax. Web

Figures 1, 2, 3 and 4 show that for most simulation scenarios with n = 500 observations,

Mmax = 10 ∼ 20 yields near-optimal mean θ and Mmax = 40 ∼ 50 achieves optimal mean

θ. However, as with choice of the weight function, the improvement in model performance

associated with using the optimal Mmax is minimal (Web Table 1). These figures also show

that MBest was also near-optimal in terms of minimizing MCRTB.

A-1-2. Choosing Mmax and w̃{∆(Y )} in practice using cross-validation. In practice, to

determine the maximum number of iterations, Mmax, and the best weight function, w̃{∆(Y )},

we recommend K-fold cross-validation. We start with a collection of reasonable Mmax, for

example, M̃ (1) = {10,50,100,300,500}. Using K − 1/K of the data, we apply the boosting

method with each of Mmax ∈ M̃ , and estimate θ using the remaining hold-out data. We

calculate θ̂ as the average estimated θ over K hold-out data sets. This entire procedure is

then repeated J times, where we use J = 10. Let M(1)max = argmax
M̃(1)

θ̂. In the second stage, we

refine M̃ (1) further using a finer grid of possible Mmax values. For example, if M(1)max = 150,

then M̃ (2) = {100, . . . ,130,140,150,160, . . . ,200} and θ̂ is calculated for each element of M̃ (2).

The third stage refines M̃ (2) even further. In our analysis, we have found that 3-stages for

refining M̃ has been sufficient and define the best Mmax as M(3)max = argmax
M̃(3)

θ̂. In general, we

recommend continuing to refine M̃ until the variation in θ̂ over M̃ is minimal.

We recommend a similar CV procedure to determine the best weight function, w̃{∆(Y )},

given a set of possible weight functions. Alternatively, one could conduct a single CV analysis,

simultaneously optimizing the choice of Mmax and w̃{∆(Y )}, using a grid search method.

This is what we used for the breast cancer data analysis; the procedure is described in detail
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below.

[Web Table 1 about here.]

[Web Figure 1 about here.]

[Web Figure 2 about here.]

[Web Figure 3 about here.]

[Web Figure 4 about here.]

A-1-3. Application of the CV procedure to the breast cancer data. In the breast cancer data

analysis, the best weight function and the maximum number of iterations were determined

using 10 replications of 5-fold CV. We considered weight functions of the form w̃{∆(Y )} =

∣∆(Y )∣d, where d ∈ D̃(1) = {−1.85,−1.6,−1.35,−1.1,−0.85,−0.6,−0.35,−0.1}. The best d and

Mmax were explored using a grid search. In the first stage, we applied the boosting method for

each element of D̃M
(1) = {(d,Mmax) ∶ d ∈ D̃(1),Mmax ∈ M̃ (1)} to obtain DM(1)max = argmax

D̃M
(1)

θ̂.

In the second stage, we refined D̃M
(1)

and performed another grid search yielding DM(2)max =

argmax
D̃M

(2)
θ̂. We further refined D̃M

(2)
and performed a third grid search to obtain the best

(d,Mmax) = DM(3)max = argmax
D̃M

(3)
θ̂. The resultant best weight function and maximum number

of iterations are given in Web Table 2.

[Web Table 2 about here.]

A-2. Influence of the choice of maximum weight, CM

In our simulations and data analysis we used a “weight trimming” strategy that truncates

weights w̃{∆̃(Yi)} for subject i at a maximum weight, CM = 500. Weight trimming avoids

highly variable estimators that result when subjects with ∆̃(Yi) ≈ 0 receive enormous weight;

this strategy is commonly employed for inverse-probability weighted estimation (Potter
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(1993); Cole and Hernán (2008); Lee et al. (2011)). However, under a correctly specified

working model, weight trimming can reduce variance of estimation at the cost of increased

bias (Cole and Hernán, 2008).

Web Table 3 shows the simulation results for the boosting method using different choices

for the maximum weight; CM is varied from 300 to 1000. Selected simulation scenarios with

n = 500 observations are examined, and the linear logistic working model is used. We observe

that neither the mean θ or mean MCRTB across 1000 training data sets is sensitive to the

choice of CM and therefore fixing CM = 500 appears reasonable.

[Web Table 3 about here.]

Web Appendix B. Bias-correction by bootstrap and double-bootstrap sampling

In the breast cancer data analysis, we used the bootstrap bias correction approach (Efron

and Tibshirani, 1993). Briefly, given the apparent θ̂ obtained using the original (training)

data set, bootstrap bias estimate is B̂iasb(θ̂) = θ̂ − B−1
B

∑
b=1

θ̂b, where θ̂b is the estimate of θ

in the original training data given ϕ̂b estimated using bootstrap sample b and B denotes

the number of bootstrap replications. Then the bootstrap bias-corrected estimate of θ is

calculated as θ̂c = θ̂ − B̂iasb(θ̂).

We used a double-bootstrap procedure to calculate a 95% confidence interval for the

bootstrap-bias corrected estimate of θ. Specifically, we bootstrapped from the data 300

times. In each bootstrap sample, we (double) bootstrapped 100 times and calculated the

bootstrap bias-corrected estimate of θ. Percentiles of the bootstrap distribution of bias-

corrected estimates were used to form the confidence interval.
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Figure 1. Scenario 1 simulation results for the boosting method using different maximum
number of iterations, Mmax. Performance of marker combinations obtained using the following
methods are compared: the boosting method described in Section 2.3 with linear logistic
working model and the boosting method with classification tree working model. Mean θ and
mean misclassification rate for treatment benefit (MCRTB) in a large independent test data
set over 1000 training data sets (n = 500) are shown for Mmax = 1, . . . ,50. The Mmax ≤ 50
achieving the highest θ is indicated (grey arrow). The pre-specified convergence criterion
for the logistic regression working model is ∥β̃(k) − β̃(k−1)∥ ≤ 10−7, where β̃(k) is the vector
of estimated regression coefficients at the kth iteration, or reaching Mmax. For the non-
parametric classification tree working model, the criterion is reaching Mmax.
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Figure 2. Scenario 3 simulation results for the boosting method using different maximum
number of iterations, Mmax. Performance of marker combinations obtained using the following
methods are compared: the boosting method described in Section 2.3 with linear logistic
working model and the boosting method with classification tree working model. Mean θ and
mean misclassification rate for treatment benefit (MCRTB) in a large independent test data
set over 1000 training data sets (n = 500) are shown for Mmax = 1, . . . ,50. The Mmax ≤ 50
achieving the highest θ is indicated (grey arrow). The pre-specified convergence criterion
for the logistic regression working model is ∥β̃(k) − β̃(k−1)∥ ≤ 10−7, where β̃(k) is the vector
of estimated regression coefficients at the kth iteration, or reaching Mmax. For the non-
parametric classification tree working model, the criterion is reaching Mmax.
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Figure 3. Scenario 6 simulation results for the boosting method using different maximum
number of iterations, Mmax. Performance of marker combinations obtained using the following
methods are compared: the boosting method described in Section 2.3 with linear logistic
working model and the boosting method with classification tree working model. Mean θ and
mean misclassification rate for treatment benefit (MCRTB) in a large independent test data
set over 1000 training data sets (n = 500) are shown for Mmax = 1, . . . ,50. The Mmax ≤ 50
achieving the highest θ is indicated (grey arrow). The pre-specified convergence criterion
for the logistic regression working model is ∥β̃(k) − β̃(k−1)∥ ≤ 10−7, where β̃(k) is the vector
of estimated regression coefficients at the kth iteration, or reaching Mmax. For the non-
parametric classification tree working model, the criterion is reaching Mmax.
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Figure 4. Scenario 7 simulation results for the boosting method using different maximum
number of iterations, Mmax. Performance of marker combinations obtained using the following
methods are compared: the boosting method described in Section 2.3 with linear logistic
working model and the boosting method with classification tree working model. Mean θ and
mean misclassification rate for treatment benefit (MCRTB) in a large independent test data
set over 1000 training data sets (n = 500) are shown for Mmax = 1, . . . ,50. The Mmax ≤ 50
achieving the highest θ is indicated (grey arrow). The pre-specified convergence criterion
for the logistic regression working model is ∥β̃(k) − β̃(k−1)∥ ≤ 10−7, where β̃(k) is the vector
of estimated regression coefficients at the kth iteration, or reaching Mmax. For the non-
parametric classification tree working model, the criterion is reaching Mmax.
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Table 2
The best weight function and the maximum number of iterations for the boosting method in the breast cancer data.
Models including the modified risk score (MRS); genes G1,G2 and G3; and genes G4,G5 and G4 ×G5 are shown.

Weight functions of the form w̃{∆(Y )} = ∣∆(Y )∣d were considered. The best weight function and the maximum
number of iterations are determined based on the average θ over 10 replications of 5-fold cross-validation.

Marker
set
(Y )

Working
Linear logistic

Classification tree
with interactions

model
d in Maximum d in Maximum

w̃ (∆(Y )) # of w̃ (∆(Y )) # of

= ∣∆(Y )∣d iterations = ∣∆(Y )∣d iterations

(Mmax) (Mmax)

MRS -1.83 100 -0.82 15

(G1,G2,G3) -0.33 270 -0.14 20

(G4,G5,G4 ×G5) -1.85 150 -1.85 250
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Table 3
Simulation results for the boosting method using different choices for the maximum weight, CM. Simulation

scenarios 1, 3, 6, and 7 with 500 observations are examined. The boosting method described in Section 2.3 is applied

with linear logistic working model, w̃{∆(Y )} = ∣∆(Y )∣−
1
3 , and Mmax = 500. Mean θ and mean misclassification rate

for treatment benefit (MCRTB) in a large independent test data set across 1000 training data sets are shown.

Maximum weight (CM)
300 500 1000

Scenario 1
θ 0.11949 0.11949 0.11949
MCRTB 0.05557 0.05552 0.05557

Scenario 3
θ 0.12988 0.12988 0.12988
MCRTB 0.04437 0.04436 0.04436

Scenario 6
θ 0.04383 0.04384 0.04384
MCRTB 0.35423 0.35418 0.35419

Scenario 7
θ 0.11408 0.11405 0.11408
MCRTB 0.12060 0.12071 0.12059


