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Web Appendix A. Choice of tuning parameters

A-1. Choice of the mazimum number of iterations, Myay, and weight, W{A(Y")}

There are two tuning parameters that need specification when implementing the boosting
method: the weight function, @W{A(Y)}, and the maximum number of iterations, Mpx.
Choosing M.« is similar to choosing the number of base-models in any ensemble method that
combines multiple base-models (Opitz and Maclin (1999); Assareh et al. (2008)). Typically a
larger number of base-models yields improved model performance, up until some My beyond
which no improvement and potentially even deterioration in performance is observed. The
best weight function and optimal M,,,, are not known in practice, and so we recommend
investigating these choices using a separate data set that is not used for fitting or evaluating

model performance, or using cross-validation (CV).

A-1-1. Impact of choice of My, and W{A(Y)} in simulations. In our simulation study,
we set W{A(Y)} = |A(Y)|‘% which was the best-performing weight function among several for
the models we considered in the sense of maximum mean 6 across 1000 training data sets. In
addition to @W{A(Y)} = |A(Y)|"3, we considered T{A(Y)} = |A(Y)[ 710, TW{A(Y)} = e7A0)]
and W{A(Y),Y} = e AW, (Y'), where W (Y) is similar to the weight function used in Ad-
) x (2D -1)(2D - 1)},

where D = 1{P(D = 1|T,Y) > 0.5} is the outcome classification at the previous stage and

1-err

aboost (Friedman et al., 2000). Specifically, W (Y") = exp {—% log(

err = P(D # D) is the error in this classification. Additional polynomial weight functions of
the form @W{A(Y)} = |A(Y")|? were also considered (data not shown). Web Table 1 compares
the performance of the boosting method under different choices for the weight function for the
4 most informative simulation scenarios. The results suggest that the best-performing weight
function depends on simulation scenario and working model. However, the improvement in

model performance associated with using the optimal @W{A(Y)} was minimal.



2 Biometrics, December 0000

In the simulations, Mpes is what we found to be the best-performing M., among M.« =
1,...,50, in terms of maximizing mean 6 across 1000 training data sets for each M,... Web
Figures 1, 2, 3 and 4 show that for most simulation scenarios with n = 500 observations,
Muax = 10 ~ 20 yields near-optimal mean 6 and M,,., = 40 ~ 50 achieves optimal mean
0. However, as with choice of the weight function, the improvement in model performance
associated with using the optimal My, is minimal (Web Table 1). These figures also show

that Mpest was also near-optimal in terms of minimizing MCRg.

A-1-2. Choosing My, and W{A(Y)} in practice using cross-validation. In practice, to
determine the maximum number of iterations, M.y, and the best weight function, W{A(Y")},
we recommend K-fold cross-validation. We start with a collection of reasonable M., for
example, M = {10,50,100,300,500}. Using K - 1/K of the data, we apply the boosting
method with each of M.« € M , and estimate 6 using the remaining hold-out data. We
calculate 8 as the average estimated 6 over K hold-out data sets. This entire procedure is
then repeated J times, where we use J = 10. Let M) = arg max. In the second stage, we

M
refine M further using a finer grid of possible Max valuj\gs. For example, if Mf&gx = 150,
then M = {100,...,130,140,150, 160, . ..,200} and @ is calculated for each element of M(2).
The third stage refines M(?) even further. In our analysis, we have found that 3-stages for
refining M has been sufficient and define the best M.y as Mffgx = arg] rg)ax@\. In general, we
M

recommend continuing to refine M until the variation in # over M is minimal.

We recommend a similar CV procedure to determine the best weight function, W{A(Y")},
given a set of possible weight functions. Alternatively, one could conduct a single CV analysis,
simultaneously optimizing the choice of M., and W{A(Y")}, using a grid search method.

This is what we used for the breast cancer data analysis; the procedure is described in detail
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below.

[Web Table 1 about here.]
[Web Figure 1 about here.|
[Web Figure 2 about here.|
[Web Figure 3 about here.]

[Web Figure 4 about here.]

A-1-3. Application of the C'V procedure to the breast cancer data. In the breast cancer data
analysis, the best weight function and the maximum number of iterations were determined
using 10 replications of 5-fold CV. We considered weight functions of the form w{A(Y)} =
IA(Y)|4, where d e D) = {~1.85,-1.6,-1.35,-1.1,-0.85,-0.6,-0.35,-0.1}. The best d and
M.« were explored using a grid search. In the first stage, we applied the boosting method for
each element of EM(” = {(d,Mpay) : d € DD M € M} to obtain DM = arg max®.

max
D“]—\;[(l)

In the second stage, we refined DM M and performed another grid search yielding DMggX =

arg max 8. We further refined DM @) and performed a third grid search to obtain the best
pm®

(d, Mpax) = Dl\/[r(]ff‘gbX = argmax 0. The resultant best weight function and maximum number
pm

of iterations are given in Web Table 2.

[Web Table 2 about here.|

A-2. Influence of the choice of maximum weight, C)y

In our simulations and data analysis we used a “weight trimming” strategy that truncates
weights @W{A(Y;)} for subject i at a maximum weight, Cy; = 500. Weight trimming avoids
highly variable estimators that result when subjects with K(Y;) ~ () receive enormous weight;

this strategy is commonly employed for inverse-probability weighted estimation (Potter

3
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(1993); Cole and Hernan (2008); Lee et al. (2011)). However, under a correctly specified
working model, weight trimming can reduce variance of estimation at the cost of increased

bias (Cole and Hernén, 2008).

Web Table 3 shows the simulation results for the boosting method using different choices
for the maximum weight; Cy; is varied from 300 to 1000. Selected simulation scenarios with
n = 500 observations are examined, and the linear logistic working model is used. We observe
that neither the mean 6 or mean MCRrp across 1000 training data sets is sensitive to the

choice of Cy; and therefore fixing C,; = 500 appears reasonable.

[Web Table 3 about here. |

Web Appendix B. Bias-correction by bootstrap and double-bootstrap sampling

In the breast cancer data analysis, we used the bootstrap bias correction approach (Efron

and Tibshirani, 1993). Briefly, given the apparent 8 obtained using the original (training)
B

data set, bootstrap bias estimate is Biasy(0) = 0 — B™' )" 6,, where 6, is the estimate of 6
b=1

in the original training data given ab estimated using bootstrap sample b and B denotes

the number of bootstrap replications. Then the bootstrap bias-corrected estimate of 6 is

calculated as 0, = 6 - Bias,(0).

We used a double-bootstrap procedure to calculate a 95% confidence interval for the
bootstrap-bias corrected estimate of 6. Specifically, we bootstrapped from the data 300
times. In each bootstrap sample, we (double) bootstrapped 100 times and calculated the
bootstrap bias-corrected estimate of 6. Percentiles of the bootstrap distribution of bias-

corrected estimates were used to form the confidence interval.
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Figure 1. Scenario 1 simulation results for the boosting method using different maximum
number of iterations, M,,... Performance of marker combinations obtained using the following
methods are compared: the boosting method described in Section 2.3 with linear logistic
working model and the boosting method with classification tree working model. Mean 6 and
mean misclassification rate for treatment benefit (MCRrg) in a large independent test data
set over 1000 training data sets (n = 500) are shown for M.« = 1,...,50. The My < 50
achieving the highest 6 is indicated (grey arrow). The pre-specified convergence criterion
for the logistic regression working model is |F®) — BE-D|| < 1077, where 3®) is the vector
of estimated regression coefficients at the k" iteration, or reaching M, ... For the non-
parametric classification tree working model, the criterion is reaching M, ..
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Figure 2. Scenario 3 simulation results for the boosting method using different maximum
number of iterations, M,,... Performance of marker combinations obtained using the following
methods are compared: the boosting method described in Section 2.3 with linear logistic
working model and the boosting method with classification tree working model. Mean 6 and
mean misclassification rate for treatment benefit (MCRrg) in a large independent test data
set over 1000 training data sets (n = 500) are shown for M.« = 1,...,50. The My < 50
achieving the highest 6 is indicated (grey arrow). The pre-specified convergence criterion
for the logistic regression working model is |F®) — BE-D|| < 1077, where 3®) is the vector
of estimated regression coefficients at the k" iteration, or reaching M, ... For the non-
parametric classification tree working model, the criterion is reaching M, ..
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Figure 3. Scenario 6 simulation results for the boosting method using different maximum
number of iterations, M,,... Performance of marker combinations obtained using the following
methods are compared: the boosting method described in Section 2.3 with linear logistic
working model and the boosting method with classification tree working model. Mean 6 and
mean misclassification rate for treatment benefit (MCRrg) in a large independent test data
set over 1000 training data sets (n = 500) are shown for M.« = 1,...,50. The My < 50
achieving the highest 6 is indicated (grey arrow). The pre-specified convergence criterion
for the logistic regression working model is |F®) — BE-D|| < 1077, where 3®) is the vector
of estimated regression coefficients at the k" iteration, or reaching M, ... For the non-
parametric classification tree working model, the criterion is reaching M, ..
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Figure 4. Scenario 7 simulation results for the boosting method using different maximum
number of iterations, M,,... Performance of marker combinations obtained using the following
methods are compared: the boosting method described in Section 2.3 with linear logistic
working model and the boosting method with classification tree working model. Mean 6 and
mean misclassification rate for treatment benefit (MCRrg) in a large independent test data
set over 1000 training data sets (n = 500) are shown for M.« = 1,...,50. The My < 50
achieving the highest 6 is indicated (grey arrow). The pre-specified convergence criterion
for the logistic regression working model is |F®) — BE-D|| < 1077, where 3®) is the vector
of estimated regression coefficients at the k" iteration, or reaching M, ... For the non-
parametric classification tree working model, the criterion is reaching M, ..
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Simulation results for the boosting method using different weight functions, W{A(Y)}, and different mazimum iteration parameters, Mpqz, with n = 500

Table 1

observations. Simulation scenarios 1, 3, 6, and 7 are shown. Performance of marker combinations obtained using the following methods are compared: the boosting
method described in Section 2.3 with linear logistic working model and the boosting method with classification tree working model. Mean and Monte Carlo standard

deviation (SD) of 0 are shown, along with the mean misclassification rate for treatment benefit (MCRrp). The Mmas <

reported for the weight function W{A(Y)} = _DQ\V_lw.

50 achieving the highest mean 0 (Mpest) is

Linear logistic boosting

Classification tree boosting

Scenario Weight @ IA(Y)| 5 IAY)[ 15 POy, (v) e 1A IA(Y)| 5 A5 PO, (v) A
maximum # of {0 500 500 500 500  Mpest 500 500 500
iterations

Optimal M=Mpest 1 50

) 0 Mean 0.1195 0.1195  0.1199 0.1199 0.1198 | 0.1083 0.1081  0.1009 0.0968 0.1023

SD 0.0026 0.0026  0.0022 0.0023 0.0023 | 0.0065 0.0066  0.0107 0.0115 0.0098
MCRt5 Mean 0.0555 0.0555  0.0521 0.0530 0.0524 | 0.1294 0.1299  0.1815 0.1701 0.1682
Optimal M=Mpest 50 18

5 0 Mean 0.1299 0.1299  0.1301 0.1305 0.1301 | 0.1162 0.1163  0.1095 0.0929 0.0977

SD 0.0022 0.0022  0.0020 0.0018 0.0021 | 0.0065 0.0062  0.0095 0.0393 0.0378
MCRrg Mean 0.0444 0.0443  0.0420 0.0383 0.0423 | 0.1124 0.1124  0.1596 0.1731 0.1618
Optimal M=Mp.xt 18 50

6 0 Mean 0.0438 0.0441  0.0310 0.0234 0.0310 | 0.1186 0.1189  0.1064 0.1060 0.1040

SD 0.0128 0.0122  0.0172 0.0191 0.0172 | 0.0106 0.0101  0.0167 0.0232 0.0101
MCRrg Mean 0.3542 0.3540  0.3739 0.3855 0.3739 | 0.1762 0.1755  0.2242 0.2119 0.2179
Optimal M=Mpest 39 47

. 0 Mean 0.1140 0.1141  0.1002 0.0963 0.1066 | 0.1151 0.1148  0.1089 0.1049 0.0962

SD 0.0118 0.0117  0.0201 0.0241 0.0185 | 0.0094 0.0094  0.0137 0.0139 0.0347
MCRrg Mean 0.1207 0.1206  0.1752 0.1879 0.1506 | 0.1394 0.1408  0.1851 0.1830 0.2010

1 1-
Wa(Y) = @%ﬁlw log AE
err

2

v < (2D - 1)(2D - i, where
D denotes the binary outcome (0 or 1), D = 1{P(D = 1|T,Y) > 0.5} denotes the predicted outcome in the previous stage, and err = P(D # D).
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The best weight function and the mazimum number of iterations for the boosting method in the breast cancer data.
Models including the modified risk score (MRS); genes G1,G2 and Gs; and genes Ga,G5 and G4 x G5 are shown.
Weight functions of the form W{A(Y)} = |A(Y)|¢ were considered. The best weight function and the mazimum
number of iterations are determined based on the average 6 over 10 replications of 5-fold cross-validation.

Table 2

Working Linear losistic Classification tree
Marker tneat Joglst with interactions
st model
d in Maximum d in Maximum
(Y)
TAN)  #of  TAY))  #of
=|A(Y)|¢ iterations =|A(Y)|¢ iterations
(Mmax) (Mmax)
MRS -1.83 100 -0.82 15
(G1,Gs, Gs) -0.33 270 -0.14 20
(G4,G5,G4 X G5> -1.85 150 -1.85 250

11
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Table 3
Simulation results for the boosting method using different choices for the maximum weight, Cu. Simulation
scenarios 1, 8, 6, and 7 with 500 observations are examined. The boosting method described in Section 2.3 is applied

with linear logistic working model, W{A(Y)} = |A(Y)|7%, and Mmae = 500. Mean 6 and mean misclassification rate
for treatment benefit (MCRrp) in a large independent test data set across 1000 training data sets are shown.

Maximum weight (Cyy)

300 500 1000

0 0.11949 0.11949 0.11949
MCRrg | 0.05557 0.05552 0.05557
0 0.12988 0.12988 0.12988
MCRrg | 0.04437 0.04436 0.04436
0 0.04383 0.04384 0.04384
MCRrg | 0.35423 0.35418 0.35419
0 0.11408 0.11405 0.11408
MCRrg | 0.12060 0.12071 0.12059

Scenario 1

Scenario 3

Scenario 6

Scenario 7




