

Fig. S1. Tri-sialylated glycan structures are increased in the CHO-GnT4-GalT4 cell line. HILIC analysis of WAX fractionated N-glycans from CHO-GnT4-GalT4 cell line. This is a 2-dimensional glycan analysis using WAX in the first dimension and HILIC in the second dimension as a way to deconvolute complex glycan pools for structural assignments. Major increases in tri-antennary structures were observed in this cell line in comparison to hCG purified from CHO cells **a**. Total N-glycan pool; **b**. Neutral fraction; **c**. Mono-sialylated fraction; **d**. Di-sialylated fraction; **e**. Tri-sialylated fraction; **f**. Tetra-sialylated fraction.

Fig. S2. Exoglycosidase digestions of N-glycans from CHO-GnT4-GalT4. a. Undigested N-glycan pool; **b**. Arthrobacter ureafaciens sialidase (ABS) digest, ABS is specific for α 2-3/6 linked sialic acids; **c**. ABS + Streptococcus pneumoniae (SPG) β-galactosidase digest, SPG is specific for β1,4-linked galactose residues; **d**. ABS + SPG + bovine kidney fucosidase (BKF) digest, BKF is specific to α 1,6/2 fucose residues with a preference for core fucoses; **e**. ABS+SPG+BKF+ S. pneumoniae N-acetylglucosaminidase (GUH), GUH is specific for β1,2/4/6-linked GlcNac residues; **f**. ABS+SPG+BKF+GUH+Jack Bean Mannosidase (JBM), JBM is specific for α 1-2,6,3 mannose residues. Following digestion HILIC-HPLC was used to analyse the composition of the constituent monosaccharides and to determine individual N-glycan structures.

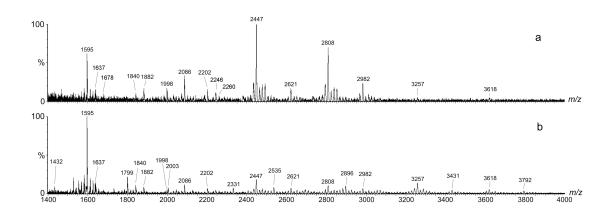


Fig. S3. MALDI-TOF profiles of reduced and permethylated N-glycans from hCG and CHO-GnT4-GalT4

Mass spectrometry was used to verify N-glycan structures identified by HILIC. Permethylated N-glycans were analysed using a Waters MALDI Micro MX mass spectrometer with an ultraviolet 337 nm wavelength nitrogen laser. Spectra processing was performed with Waters MassLynx v4.1 software. Ions were observed as [M+Na]⁺ adducts. Structures and m/z values are shown in Table SI. a. hCG; b. CHO-GnT4-GalT4.

Table SI. N-glycan structures identified for hCG purified from CHO-GnT4-GalT4 cell lines.

Structures were determined by a combination of HILIC, WAX-HPLC and exoglycosidase digestions.

Peak	GU	Peak Area		Glycan	
	Value	(%)	Name	Structure	Observed <i>m/z</i> (M+Na) ⁺
1	4.94	0.21	A1	□	1432.97
2	5.45	0.40	A2	•	1678.00
		0.15	F(6)A1		ND
3	5.70	0.27	M4A1	(0 0 · 0 , 0 ■ ■	1636.85
4	5.89	0.35	F(6)A2	•	ND
		1.00	A3		ND
5	6.19	3.97	M5	• Q	1595.85
6	6.29	0.97	F(6)A3	0	ND
7	6.42	0.87	A1G(4)1S(3)1		1997.92
8	6.68	1.06	F(6)A2[6]G(4)1	^ [0	ND
9	6.82	2.49	F(6)A2[3]G(4)1	★	
10	7.13	0.53	F(6)A3G(4)1	♦-I	2330.85
		5.50	A2G(4)2	♦ • • • • • • • • • • • • • • • • • •	2085.98
11	7.41	0.79	F(6)A2G(4)1S(3)1		ND

12	7.56	7.57	F(6)A2G(4)2	♦	2259.77
13	7.97	9.50	A2G(4)2S(3)1	◇-■ ◇-■ →	2246.90
		2.73	F(6)A3G(4)1S(3)1	* \$____\	ND
14	8.30	12.44	F(6)A2G(4)2S(3)1	* [2620.74
		0.89	A3G(4)2S(3)1	^ ♦- i	ND
15	8.63	4.00	A2G(4)2S(3)2	* •	2807.48
		4.45		*^-	
16	8.73	1.15 4.26	F(6)A3G(4)3	?	ND
17	8.93		M8		ND
		9.08	F(6)A2G(4)2S(3)2	*	2981.30
18	9.27	4.40	F(6)A3G(4)2S(3)2	*	???
19	9.54	4.4 9.30	F(6)A3G(4)3S(3)1	**	3070.82
20	9.94	1.36 4.89	A3G3S2	* * & # * * * * * * * * *	3257.77
21	10.35	2.09	A3G3S3		3618.74
22	10.77	1.12	FA3G3S3	****	3792.26