BMJ Open

An ecological study, using data from multiple health systems in Merseyside, UK to assess the direct and indirect effect of routine rotavirus vaccination.

Journal:	BMJ Open
Manuscript ID:	bmjopen-2014-006161
Article Type:	Protocol
Date Submitted by the Author:	18-Jul-2014
Complete List of Authors:	Hungerford, Daniel; University of Liverpool, , Department of Clinical Infection, Microbiology & Immunology, Institute of Infection and Global Health; Public Health England, Field Epidemiology Services, Health Protection Vivancos, Roberto; Public Health England, Field Epidemiology Services, Health Protection French, Neil; University of Liverpool, Department of Clinical Infection, Microbiology & Immunology, Institute of Infection and Global Health; Royal Liverpool and Broadgreen University Hospitals NHS Trust, Iturriza-Gomara, Miren; University of Liverpool, Department of Clinical Infection, Microbiology & Immunology, Institute of Infection and Global Health Cunliffe, Nigel; University of Liverpool, Department of Clinical Infection, Microbiology & Immunology, Institute of Infection and Global Health Cunliffe, Nigel; University of Liverpool, Department of Clinical Infection, Microbiology & Immunology, Institute of Infection and Global Health; Alder Hey Children's NHS Foundation Trust,
Primary Subject Heading :	Infectious diseases
Secondary Subject Heading:	Epidemiology, Public health, Gastroenterology and hepatology, Immunology (including allergy)
Keywords:	Epidemiology < INFECTIOUS DISEASES, IMMUNOLOGY, Gastrointestinal infections < GASTROENTEROLOGY, Public health < INFECTIOUS DISEASES, STATISTICS & RESEARCH METHODS

SCHOLARONE[™] Manuscripts

1 2	1	An ecological study, using data from multiple health systems in Merseyside, UK to assess the
3 4 5	2	direct and indirect effect of routine rotavirus vaccination.
6 7 8	3	
9 10	4	Dan Hungerford ^{1,4} – <u>d.hungerford@liverpool.ac.uk,</u> 0151 795 9609 (corresponding author)
11 12 13	5	Dr Roberto Vivancos ⁴ – <u>roberto.vivancos@phe.gov.uk</u>
14 15 16	6	Professor Neil French ^{1,3} – french@liverpool.ac.uk
17 18	7	Dr Miren Iturriza-Gomara ¹ – <u>miren@liverpool.ac.uk</u>
20 21	8	Professor Nigel Cunliffe ^{1,2} – <u>nigelc@liverpool.ac.uk</u>
22 23 24	9	1. Department of Clinical Infection, Microbiology & Immunology, Institute of Infection and Global Health,
25 26	10	University of Liverpool, The Ronald Ross Building, 8 West Derby Street, Liverpool, L69 7BE, UK
27 28	11	2. Alder Hey Children's NHS Foundation Trust, Eaton Rd, Liverpool, L12 2AP, UK
29 30 31	12	3. Royal Liverpool and Broadgreen University Hospitals NHS Trust, Prescot St, Liverpool, L7 8XP, UK
32 33	13	4. Public Health England, Field Epidemiology Services, 5 th Floor Rail House, Lord Nelson Street, Liverpool, L1
34 35 36	14	1JF, UK
37 38	15	
39 40 41 42	16	Keywords
43 44 45	17	Rotavirus; Vaccination; Gastroenteritis; Epidemiology; Immunity, Herd
46 47 48	18	Word Count
49 50 51	19	3819
52 53 54	20	
55 56 57 58 59 60	21	
00		For peer review only - http://bmiopen.bmi.com/site/about/guidelines xhtml

22 ABSTRACT

23 Introduction

Rotavirus is the most common cause of severe gastroenteritis in infants and young children worldwide. Currently 67 countries include rotavirus vaccine in childhood immunisation programmes, but uptake in Western Europe has been slow. In July 2013 rotavirus vaccine was introduced into the UK's childhood immunisation programme. Prior to vaccine introduction in the UK rotavirus was estimated to result in 750,000 diarrhoea episodes and 80,000 GP consultations each year, together with 45% and 20% of hospital admissions and emergency department attendances for acute gastroenteritis, in children under 5 years of age. It is therefore important to assess vaccine impact in the UK, to support continued vaccination and to inform rotavirus immunisation policy in other Western European countries.

32 Methods and analysis

In Merseyside, Northwest England we will conduct an ecological study using a "before and after" approach to examine changes in gastroenteritis and rotavirus incidence following the introduction of rotavirus vaccination in the UK. Data will be collected on mortality, hospital admissions, healthcare associated infection, emergency department attendances, GP consultations and community health consultations to capture all healthcare providers that people access with symptoms of acute gastroenteritis and rotavirus gastroenteritis. We will assess both the direct and indirect (herd) effect of the vaccine on the study population. Comparisons of outcome indicator rates will be made in relation to vaccine uptake and the association with deprivation examined.

41 Ethics and dissemination

42 NHS ethics approval has been granted. The findings will be disseminated through scientific conferences and 43 peer-reviewed journal articles. The findings will enable demonstration of a complete health system 44 perspective of the impact of rotavirus vaccination on the burden of disease. It will also identify key areas that 45 require improved data collection tools to maximise the usefulness of this surveillance approach and provide 46 a template for ecological methodology vaccine evaluations in the UK.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2	47	STRENGTHS AND LIMITATIONS
3		
4 5 6	48	Strengths include use of data from multiple health systems that will allow examination of the
7 8	49	relative impact of vaccination on the various health providers and communities rather than the
9 10	50	individual. These multiple data sources will provide robustness, enabling easier identification of
11 12	51	outliers from overall trends.
13 14 15	52	• The study will cover all ages for rotavirus and all cause gastroenteritis incidence three years post-
15 16 17	53	vaccination, minimising cofounding caused by yearly variance in rotavirus numbers.
18 19	54	Additionally it is powered to measure the herd effect on hospital admissions and whilst the majority
20 21	55	of studies have focused on this, this study will also provide evidence for the indirect effect in
22 23	56	emergency departments and community settings.
24 25	57	• The study is limited by the ecological before and after design, and the difficulties of ascribing
26 27	58	causality to vaccine, as well as the inherent risks of bias and confounding in observational studies
20 29 30	59	particularly due to underlying secular trends.
31 32	60	Using syndromic indicators that are non-specific to rotavirus limits the study to measuring large
33 34	61	effects rather than small variations.
35		
36 37 38	62	INTRODUCTION
39 40 41	63	Rotavirus is the most common cause of severe gastroenteritis in infants and young children, responsible for
42 43	64	an estimated annual 453,000 deaths worldwide among children under age 5 years, with over 90% of deaths
44 45	65	occurring in the developing countries.[1] In the UK, rotavirus gastroenteritis (RVGE) is seasonal and most
46 47	66	cases occur between February and April each year. Rotavirus is estimated to result in 750,000 diarrhoea
48 49	67	episodes and 80,000 GP consultations each year in the UK,[2] together with 45% and 20% of hospital
50 51 52	68	admissions and emergency department (ED) attendances for acute gastroenteritis (AGE), respectively in
52 53 54	69	children under 5 years of age.[3] The economic cost of RVGE to the health service is estimated to be
55 56	70	approximately £14 million per year in England and Wales.[3] At Alder Hey Children's NHS Foundation Trust,
57 58	71	Liverpool, UK rotavirus is a major cause of community-acquired and healthcare-associated diarrhoea; in a 2-
59 60	72	year prospective study among hospitalised children, rotavirus was detected by RT-PCR in 43% of community-
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

acquired and in 31% of healthcare-associated gastroenteritis cases.[4] AGE hospital admissions are known
to have a positive correlation with deprivation [5] and globally the burden of severe RVGE is much higher in
low-income countries. However, no statistical correlation between RVGE in infants and deprivation has been
shown to exist in the UK.

In July 2013, the Department of Health introduced rotavirus vaccine into the UK's childhood immunisation programme.[6,7] The live-attenuated, two-dose oral monovalent vaccine (Rotarix[™], GlaxoSmithKline Biologicals, Belgium) is administered at two and three months of age. Clinical trials in Europe and the Americas with both currently licensed rotavirus vaccines (Rotarix[™] and a pentavalent vaccine RotaTeq[™] developed by Merck), led to a WHO recommendation in 2007 to vaccinate children in these regions.[8–10] Subsequent trials in Africa and Asia led to an extension of the recommendation to include all children worldwide.[10–12] At present more than 60 countries include a rotavirus vaccine in childhood immunisation programmes.[13] Uptake in Western Europe has been slow however, with only Austria, Belgium, Finland, Luxemburg and most recently the UK having rolled out universal rotavirus vaccination programmes to date.[14] Based on the uptake of other routine childhood vaccinations in UK; vaccine uptake over 90% would be expected for rotavirus immunisation, [15] and initial uptake figures for England support this with 93% for

88 first dose and 88% for the second dose.[16]

Clinical trials in middle and high income countries demonstrated high (> 85%) efficacy against severe rotavirus gastroenteritis.[10] The introduction of rotavirus vaccines in the immunisation programmes of these countries has demonstrated direct benefits on a par with those observed in clinical trials, with significant reductions in diarrhoea hospitalisations.[17] An unanticipated but beneficial consequence of rotavirus vaccination is the reduction of rotavirus disease in unvaccinated individuals (herd protection), likely due to reduced virus transmission. Such "indirect benefits" include reduced disease in non-vaccinated older children and adults who were not thought to sustain a significant burden of rotavirus disease.[18] In the UK the burden of RVGE in older children and adults is difficult to estimate but admissions for viral gastroenteritis are 2 per 1,000 population in 5-14 year olds and 7 per 1,000 in those 15+ years.[19] Hence monitoring changes in AGE incidence in non-vaccinated older children and adults is critical to assess indirect impact.

BMJ Open

Ecological rotavirus vaccine effectiveness studies have primarily focused on mortality, hospitalisations and laboratory detections as a measure of burden. [20-27] Severe cases of rotavirus will often end up in hospital and receive full diagnostics. However, many cases of rotavirus particularly older children and adults will not attend hospital but be seen by primary and community healthcare providers. Therefore in order to better understand the burden of RVGE and AGE on all ages and the impact of routine immunisation on the health system; it is crucial to study routine data sources for all health service providers in a defined study area. Taking advantage of a range of regional healthcare facilities in Merseyside, England, we describe an ecological study using a "before and after" approach that will allow comprehensive evaluation of the direct and indirect vaccine impact following its introduction into the UK's childhood immunisation programme. Whilst investigating the correlation of deprivation and vaccination uptake with burden. These data will provide evidence to support future rotavirus vaccination in the UK and will inform rotavirus immunisation policy in other Western European countries.[6]

111 METHODS

112 Study aim

Routine data sources will be used to estimate the direct and indirect effects of rotavirus vaccination on gastroenteritis indicators in the population of Merseyside, and the relationship of such effects to vaccine coverage and socio-demographic indicators. We also hope to identify the key areas that require extended and improved data collection tools to maximise the usefulness of this surveillance approach. The main outcome measures are as follows:

- 118 Laboratory detections of rotavirus in faecal samples
- Admissions to hospital for RVGE or AGE
- 120 Attendances to Emergency departments for AGE
- Number of nosocomially acquired cases of RVGE
 - General practice (GP) and community consultations for diarrhoea and AGE in children less than 5 and in
- 123 all ages

• Routine rotavirus vaccine coverage mapping by small area geography

- Relative contribution of direct (those vaccinated) and indirect (not vaccinated) effects to overall vaccine
- 126 benefit in health system usage for both RVGE and AGE
- Relationship between deprivation, vaccine uptake and RVGE / AGE incidence

128 Study setting and location

The study will be conducted in the large metropolitan area of Merseyside in North West England which contains the city of Liverpool. Merseyside has a population of nearly 1.4 million people, with approximately 80,000 of its population under 5 years of age. Deprivation within Merseyside is variable but over 60% of its population live in a more deprived area than the England average (Figure 1).[28] Vaccination uptake for most routine childhood vaccinations is also variable in small areas, but overall Merseyside has uptake above the average for England.[15]

135 Study overview and choice of study designs

The study is ecological in design utilising routine health surveillance data. The evaluation design incorporates
interrupted time-series analyses of outcome indicators across the study population. Comparisons of
outcome indicator rates will be made between communities with high vaccine uptake and those with lower
vaccine uptake and the relationship with deprivation. The ecological study approach allows rates of
outcomes to be compared in space and time using vaccine uptake and community level deprivation as
covariates.

142 Study data

143 The National Health Service (NHS) in England and other government service agencies collect a range of 144 administrative and health care related data which is held at both local service level and centrally. Figure 2 145 outlines the data sources that will be used for the evaluation and table 1 shows the case definitions.

BMJ Open

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
10
10
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
30
40
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

146	Hospital admission and emergency department attendance data will be obtained from hospital episode
147	statistics (HES), which record all inpatient admissions in NHS hospitals in England and directly from NHS
148	Trusts which cover the population of Merseyside.
149	The study will obtain GP consultations for diarrhoea or gastroenteritis from Clinical Commissioning Groups
150	covering Merseyside or from government held sentinel surveillance systems. Community consultations for
151	diarrhoea and gastroenteritis at Walk-in Centres will be sourced from NHS Community Health Trusts. Walk-in
152	Centres are primarily nurse led primary care facilities for illness and injuries without the need for an
153	appointment.
154	The infection control team at Alder Hey Children's NHS Foundation Trust in Liverpool classifies rotavirus
155	cases as community acquired or healthcare associated (nosocomial). Alder Hey NHS Foundation Trust's
156	footprint covers the majority of Merseyside's children, so these data will enable evaluation of the effect of
157	rotavirus vaccination on nosocomial rotavirus infection in children across Merseyside.
158	Laboratory detections of rotavirus from Public Health England Laboratory surveillance covering Merseyside
159	residents will be included in the analysis. Other causative agents of AGE identified through laboratory testing
160	including, for example, norovirus, adenovirus, astrovirus will also be extracted for analysis.
161	Each data set will cover at least three-years either side of vaccine introduction. All data will be
162	pseudoanonymised to allow distinction of records but no linking of datasets or identification of individuals
163	will be undertaken. All data will be either geo-coded from postcode to small statistical geographical
164	community units termed Lower Super Output Areas (LSOA) or sourced with this geography. Denominator
165	populations will be derived from the Office of National Statistics (ONS) mid-year population-estimates by
166	LSOA [29]. Indicators of deprivation at LSOA level will be sourced from the Department for Communities and
167	Local Government.[28] Rotavirus vaccination uptake data will be sourced from the Child Health Information
168	System (CHIS) which is held by community NHS health Trusts in Merseyside.

Table 1: Case definitions for the study by health data set

Data set	Case definition
----------	-----------------

Nosocomial andNosocomial – Laboratory confirmed rotavirus case. Gastroenteriticommunity acquiredsymptoms beginning more than two days after admissionCommunity acquired– Laboratory confirmed rotavirus case.Gastroenteritis symptoms starting within two days of admissionHospital admissionsRotavirus case definition – Inpatient finished consultant episodeswith a primary or subsidiary diagnosis International ClassificationDisease version 10 (ICD10) diagnosis code of A08.0AGE case definition – inpatient FCE with a primary or subsidiarydiagnosis ICD10 code of A08 –A09Emergency attendancesAttendance with a primary or secondary diagnosis code Z:IIIGastrointestinal conditions-Other (those subsequently admitted excluded to prevent duplication in hospital admissions)GP ConsultationsGP consultations (Read codes in parenthesis) vomiting (1992.), dia (19F2) and viral gastro-enteritis (A07y0). Viral gastro-enteritis will used as the primary case definition but diarrhoea/vomiting will be for a secondary indicator of burden.Community consultationsThere is no code system for diagnosis in Walk-in-Centre data. The (Walk-in-Centres)(Walk-in-Centres)the description of patient symptoms field will be queried using th following key words: diarrhoea, vomiting, GI and gastroenteritis. J Soundex script will be used to allow for spelling inaccuracies.		
community acquiredsymptoms beginning more than two days after admissionCommunity acquired – Laboratory confirmed rotavirus case.Gastroenteritis symptoms starting within two days of admissionHospital admissionsRotavirus case definition - Inpatient finished consultant episodes with a primary or subsidiary diagnosis International Classification Disease version 10 (ICD10) diagnosis code of A08.0 AGE case definition – inpatient FCE with a primary or subsidiary diagnosis ICD10 code of A08A09Emergency attendancesAttendance with a primary or secondary diagnosis code 2:III Gastrointestinal conditions-Other (those subsequently admitted excluded to prevent duplication in hospital admissions)GP ConsultationsGP consultations (Read codes in parenthesis) vomiting (1992.), dia (19F2) and viral gastro-enteritis (A07y0). Viral gastro-enteritis will used as the primary case definition but diarrhoea/vomiting will be for a secondary indicator of burden.Community consultationsThere is no code system for diagnosis in Walk-in-Centre data. The (Walk-in-Centres)(Walk-in-Centres)the description of patient symptoms field will be queried using th following key words: diarrhoea, vomiting, GI and gastroenteritis. Soundex script will be used to allow for spelling inaccuracies.	Nosocomial and	Nosocomial – Laboratory confirmed rotavirus case. Gastroenteritis
Community acquired – Laboratory confirmed rotavirus case. Gastroenteritis symptoms starting within two days of admissionHospital admissionsRotavirus case definition - Inpatient finished consultant episodes with a primary or subsidiary diagnosis International Classification Disease version 10 (ICD10) diagnosis code of A08.0 AGE case definition – inpatient FCE with a primary or subsidiary diagnosis ICD10 code of A08A09Emergency attendancesAttendance with a primary or secondary diagnosis code Z:III Gastrointestinal conditions-Other (those subsequently admitted excluded to prevent duplication in hospital admissions)GP ConsultationsGP consultations (Read codes in parenthesis) vomiting (1992.), dia (19F2) and viral gastro-enteritis (A07y0). Viral gastro-enteritis will used as the primary case definition but diarrhoea/vomiting will be for a secondary indicator of burden.Community consultationsThere is no code system for diagnosis in Walk-in-Centre data. The the description of patient symptoms field will be queried using th following key words: diarrhoea, vomiting, GI and gastroenteritis. Soundex script will be used to allow for spelling inaccuracies.	community acquired	symptoms beginning more than two days after admission
Gastroenteritis symptoms starting within two days of admissionHospital admissionsRotavirus case definition - Inpatient finished consultant episodes with a primary or subsidiary diagnosis International Classification Disease version 10 (ICD10) diagnosis code of A08.0 AGE case definition – inpatient FCE with a primary or subsidiary diagnosis ICD10 code of A08A09Emergency attendancesAttendance with a primary or secondary diagnosis code Z:III Gastrointestinal conditions-Other (those subsequently admitted excluded to prevent duplication in hospital admissions)GP ConsultationsGP consultations (Read codes in parenthesis) vomiting (1992.), dia (19F2) and viral gastro-enteritis (A07y0). Viral gastro-enteritis will used as the primary case definition but diarrhoea/vomiting will be for a secondary indicator of burden.Community consultationsThere is no code system for diagnosis in Walk-in-Centre data. The the description of patient symptoms field will be queried using th following key words: diarrhoea, vomiting, GI and gastroenteritis. Soundex script will be used to allow for spelling inaccuracies.		Community acquired – Laboratory confirmed rotavirus case.
Hospital admissionsRotavirus case definition - Inpatient finished consultant episodes with a primary or subsidiary diagnosis International Classification Disease version 10 (ICD10) diagnosis code of A08.0 AGE case definition - inpatient FCE with a primary or subsidiary diagnosis ICD10 code of A08A09Emergency attendancesAttendance with a primary or secondary diagnosis code Z:III Gastrointestinal conditions-Other (those subsequently admitted excluded to prevent duplication in hospital admissions)GP ConsultationsGP consultations (Read codes in parenthesis) vomiting (1992.), dia (19F2) and viral gastro-enteritis (A07y0). Viral gastro-enteritis will used as the primary case definition but diarrhoea/vomiting will be for a secondary indicator of burden.Community consultationsThere is no code system for diagnosis in Walk-in-Centre data. The diagnosis in Walk-in-Centre data. The diagnosis words: diarrhoea, vomiting, GI and gastroenteritis. A Soundex script will be used to allow for spelling inaccuracies.		Gastroenteritis symptoms starting within two days of admission
with a primary or subsidiary diagnosis International ClassificationDisease version 10 (ICD10) diagnosis code of A08.0AGE case definition – inpatient FCE with a primary or subsidiarydiagnosis ICD10 code of A08A09Emergency attendancesAttendance with a primary or secondary diagnosis code Z:IIIGastrointestinal conditions-Other (those subsequently admittedexcluded to prevent duplication in hospital admissions)GP ConsultationsGP consultations (Read codes in parenthesis) vomiting (1992.), dia(19F2) and viral gastro-enteritis (A07y0). Viral gastro-enteritis will used as the primary case definition but diarrhoea/vomiting will be for a secondary indicator of burden.Community consultationsThere is no code system for diagnosis in Walk-in-Centre data. The following key words: diarrhoea, vomiting, GI and gastroenteritis. A Soundex script will be used to allow for spelling inaccuracies.	Hospital admissions	Rotavirus case definition - Inpatient finished consultant episodes (FCE)
Disease version 10 (ICD10) diagnosis code of A08.0AGE case definition – inpatient FCE with a primary or subsidiary diagnosis ICD10 code of A08A09Emergency attendancesAttendance with a primary or secondary diagnosis code Z:III Gastrointestinal conditions-Other (those subsequently admitted excluded to prevent duplication in hospital admissions)GP ConsultationsGP consultations (Read codes in parenthesis) vomiting (1992.), dia (19F2) and viral gastro-enteritis (A07y0). Viral gastro-enteritis will used as the primary case definition but diarrhoea/vomiting will be for a secondary indicator of burden.Community consultationsThere is no code system for diagnosis in Walk-in-Centre data. The following key words: diarrhoea, vomiting, GI and gastroenteritis. A Soundex script will be used to allow for spelling inaccuracies.		with a primary or subsidiary diagnosis International Classification of
AGE case definition – inpatient FCE with a primary or subsidiary diagnosis ICD10 code of A08A09Emergency attendancesAttendance with a primary or secondary diagnosis code Z:III Gastrointestinal conditions-Other (those subsequently admitted excluded to prevent duplication in hospital admissions)GP ConsultationsGP consultations (Read codes in parenthesis) vomiting (1992.), dia (19F2) and viral gastro-enteritis (A07y0). Viral gastro-enteritis will used as the primary case definition but diarrhoea/vomiting will be for a secondary indicator of burden.Community consultationsThere is no code system for diagnosis in Walk-in-Centre data. The diagnosis in Walk-in-Centres)(Walk-in-Centres)the description of patient symptoms field will be queried using th following key words: diarrhoea, vomiting, GI and gastroenteritis. A Soundex script will be used to allow for spelling inaccuracies.		Disease version 10 (ICD10) diagnosis code of A08.0
diagnosis ICD10 code of A08A09Emergency attendancesAttendance with a primary or secondary diagnosis code Z:IIIGastrointestinal conditions-Other (those subsequently admitted excluded to prevent duplication in hospital admissions)GP ConsultationsGP consultations (Read codes in parenthesis) vomiting (1992.), dia (19F2) and viral gastro-enteritis (A07y0). Viral gastro-enteritis will used as the primary case definition but diarrhoea/vomiting will be for a secondary indicator of burden.Community consultationsThere is no code system for diagnosis in Walk-in-Centre data. The following key words: diarrhoea, vomiting, GI and gastroenteritis. A Soundex script will be used to allow for spelling inaccuracies.	C	AGE case definition – inpatient FCE with a primary or subsidiary
Emergency attendancesAttendance with a primary or secondary diagnosis code Z:IIIGastrointestinal conditions-Other (those subsequently admitted excluded to prevent duplication in hospital admissions)GP ConsultationsGP consultations (Read codes in parenthesis) vomiting (1992.), dia (19F2) and viral gastro-enteritis (A07y0). Viral gastro-enteritis will used as the primary case definition but diarrhoea/vomiting will be for a secondary indicator of burden.Community consultationsThere is no code system for diagnosis in Walk-in-Centre data. The the description of patient symptoms field will be queried using th following key words: diarrhoea, vomiting, GI and gastroenteritis. A Soundex script will be used to allow for spelling inaccuracies.		diagnosis ICD10 code of A08A09
Gastrointestinal conditions-Other (those subsequently admitted excluded to prevent duplication in hospital admissions)GP ConsultationsGP consultations (Read codes in parenthesis) vomiting (1992.), dia (19F2) and viral gastro-enteritis (A07y0). Viral gastro-enteritis will used as the primary case definition but diarrhoea/vomiting will be for a secondary indicator of burden.Community consultationsThere is no code system for diagnosis in Walk-in-Centre data. The (Walk-in-Centres)(Walk-in-Centres)the description of patient symptoms field will be queried using th following key words: diarrhoea, vomiting, GI and gastroenteritis. J Soundex script will be used to allow for spelling inaccuracies.	Emergency attendances	Attendance with a primary or secondary diagnosis code Z:III
excluded to prevent duplication in hospital admissions)GP ConsultationsGP consultations (Read codes in parenthesis) vomiting (1992.), dia (19F2) and viral gastro-enteritis (A07y0). Viral gastro-enteritis will used as the primary case definition but diarrhoea/vomiting will be for a secondary indicator of burden.Community consultationsThere is no code system for diagnosis in Walk-in-Centre data. The the description of patient symptoms field will be queried using th following key words: diarrhoea, vomiting, GI and gastroenteritis. A Soundex script will be used to allow for spelling inaccuracies.		Gastrointestinal conditions-Other (those subsequently admitted
GP ConsultationsGP consultations (Read codes in parenthesis) vomiting (1992.), dia (19F2) and viral gastro-enteritis (A07y0). Viral gastro-enteritis will used as the primary case definition but diarrhoea/vomiting will be for a secondary indicator of burden.Community consultationsThere is no code system for diagnosis in Walk-in-Centre data. The (Walk-in-Centres)(Walk-in-Centres)the description of patient symptoms field will be queried using th following key words: diarrhoea, vomiting, GI and gastroenteritis.Soundex script will be used to allow for spelling inaccuracies.		excluded to prevent duplication in hospital admissions)
(19F2) and viral gastro-enteritis (A07y0). Viral gastro-enteritis will used as the primary case definition but diarrhoea/vomiting will be for a secondary indicator of burden.Community consultationsThere is no code system for diagnosis in Walk-in-Centre data. The (Walk-in-Centres)(Walk-in-Centres)the description of patient symptoms field will be queried using th following key words: diarrhoea, vomiting, GI and gastroenteritis. A Soundex script will be used to allow for spelling inaccuracies.	GP Consultations	GP consultations (Read codes in parenthesis) vomiting (1992.), diarrhoea
used as the primary case definition but diarrhoea/vomiting will be for a secondary indicator of burden.Community consultationsThere is no code system for diagnosis in Walk-in-Centre data. The (Walk-in-Centres)(Walk-in-Centres)the description of patient symptoms field will be queried using th following key words: diarrhoea, vomiting, GI and gastroenteritis. A Soundex script will be used to allow for spelling inaccuracies.		(19F2) and viral gastro-enteritis (A07y0). Viral gastro-enteritis will be
for a secondary indicator of burden.Community consultationsThere is no code system for diagnosis in Walk-in-Centre data. The (Walk-in-Centres)(Walk-in-Centres)the description of patient symptoms field will be queried using th following key words: diarrhoea, vomiting, GI and gastroenteritis. A Soundex script will be used to allow for spelling inaccuracies.		used as the primary case definition but diarrhoea/vomiting will be used
Community consultationsThere is no code system for diagnosis in Walk-in-Centre data. The (Walk-in-Centres)(Walk-in-Centres)the description of patient symptoms field will be queried using th following key words: diarrhoea, vomiting, GI and gastroenteritis. Soundex script will be used to allow for spelling inaccuracies.		for a secondary indicator of burden.
(Walk-in-Centres) the description of patient symptoms field will be queried using the following key words: diarrhoea, vomiting, GI and gastroenteritis. A Soundex script will be used to allow for spelling inaccuracies.	Community consultations	There is no code system for diagnosis in Walk-in-Centre data. Therefore
following key words: diarrhoea, vomiting, GI and gastroenteritis.	(Walk-in-Centres)	the description of patient symptoms field will be queried using the
Soundex script will be used to allow for spelling inaccuracies.		following key words: diarrhoea, vomiting, GI and gastroenteritis. A
		Soundex script will be used to allow for spelling inaccuracies.
Laboratory detectionsDetection of rotavirus in a faecal specimen by a standard assay.	Laboratory detections	Detection of rotavirus in a faecal specimen by a standard assay.
Detection of other AGE causative organisms		Detection of other AGE causative organisms

171 Quality control

172 Data sources such as HES and laboratory detections will be influenced by testing practices; for instance

testing of some organisms is more likely to occur at certain times of the year. In the hospital admission data

1

2

BMJ Open

set it is possible that some cases of RVGE will not be coded as rotaviral enteritis (ICD10: A08.0) and may be

3
4
5
6
7
0
0
9
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
26
20
21
28
29
30
31
32
33
34
35
20
30
37
38
39
40
41
42
43
10
Λ <u>5</u>
40
40
41
48
49
50
51
52
53
5/
5 4 55
00 50
56
57
58
59
60

classified as other-unspecified either due to an absence of lab confirmation or misclassification / miscoding.
In order to attempt to quantify this information bias the investigator team will perform quality control on
hospital admissions and lab detections at the lead NHS Trust hospital site. Using a sample of cases from at
least 3 years, those cases with a lab confirmation will be checked against clinical records and clinic coding
and those coded as ICD10 A08.0 rotaviral enteritis will be cross-matched against laboratory detections.
Based on the results audit, it may be applicable to adjust the recorded number of hospital admissions for any
ascertainment bias identified.

182 Ethical considerations

We do not foresee a requirement to obtain ethical approval for this ecological study, as analysis will be
conducted using routinely collected aggregated data. However, a data sharing agreement will be obtained
between PHE, participating NHS Trusts and the University of Liverpool. Research governance approval will be
sought form all participating NHS Trusts. Ethics approval for quality control of data will be sort from NHS
Research Ethics Committee if required.

188 Data analysis

189 Changes in trends of primary care consultations, community consultations, ED attendances, hospitalisations 190 and rotavirus detections will be explored using interrupted time series analysis. Moving averages will be 191 examined to highlight any long-term trends whilst smoothing out any short-term fluctuations. Standardized 192 rates for a minimum of a three-year period prior to vaccination and year on year after vaccination (for three 193 years) will be compared. For the regression analysis, Poisson regression will be used. We will first compute 194 monthly rates that are "expected" to occur in the absence of a rotavirus vaccination programme by fitting 195 the model to pre-vaccine data. We will then adjust for seasonality. The model will be used to estimate 196 "expected" rates after vaccination and we will then compare with "observed" rates. We will then calculate 197 rate ratios and assess the magnitude of decline in rates. Using a Poisson regression model, and including 198 demographic and vaccine uptake indicators we would be able to predict impact of vaccination on the AGE

and RVGE indicators at various services and vaccine uptake levels. Potential data biases will be controlled for
by the access and analysis multiple health data sources over a minimum of six years.

Environmental factors which may influence rotavirus incidence and seasonality are difficult to identify or indeed guantify. To account for any potential environmental confounders, correlation of laboratory confirmations of viral gastroenteritis causing organisms (e.g. norovirus, astrovirus) with rotavirus laboratory confirmations will be established. If a significant correlation between any other viral gastroenteritis and rotavirus can be identified, the resulting correlation coefficients will be used to estimate relative contribution of vaccination and undefined environmental factors to any changes in rotavirus incidence. Furthermore we will explore a potential rebound effect on an increase in other viral agents (e.g. norovirus) due to a decrease in circulating rotavirus, and potential increase in susceptible individuals particularly in those under 5 years of age.

Power calculation

Based on hospital admission for RVGE in 2012 obtained from HES data, the estimated rate of hospitalisation is approximately 1 per 1,000 children under age 5 years. [19] Assuming reductions in this rate between 25% and 75%, and high vaccine uptake rates (i.e. 95%), similar to uptake of other routine childhood vaccines in Merseyside, we used a one sample comparison of proportions for a two sided test to calculated the power estimates shown in table 2. Studies from other high income countries on the population effects of rotavirus vaccination have shown reductions in hospital admissions of over 50% in children under 5 years of age [13]. Supposing a similar reduction in Merseyside, this study is powered at over 90% to detect a significant change in RVGE hospital admissions.

Table 2: Predicted power of study for main outcome (hospitalisation rate) in Merseyside and selected sub districts.

Area	Population	Assumed reduction in rotavirus hospitalisation rate				
	(children <5 years)	25%	30%	40%	50%	75%
Liverpool	27000	0.22	0.31	0.56	0.82	1

Page 11 of 21

	Liverpool and Setton	41000	0.34	0.48	0.78	0.96	1
	Liverpool, Sefton and Knowsley	50000	0.41	0.58	0.87	0.99	1
	Merseyside	80000	0.63	0.8	0.98	1	1
21							
22	The study is also powered for d	etecting an indi	irect effect in ad	ults. Using	gan AGE h	ospital adr	nission rate
23	per 1000 population aged 15+ y	vears[18] we wo	ould expect pow	er to be at	least 0.97	for Merse	eyside at
24	assumed hospitalisation rate re	ductions post v	accination of 5%	ő, 8%, 10%	. No forma	al power c	alculations
25	been undertaken for other end	-points under st	tudy.				
26	Timeline						
27	The study will be conducted over	er a three year	period beginnin	g in April 2	014, whicl	h includes	time for
.8	administrative procedures to be	e undertaken su	uch as data shar	ing agreer	nents, con	sultation	with data
9	providers, database developme	nt for storing a	Il sourced data,	data analy	sis and rep	port writin	g (including
0	interim yearly, final and peer re	view papers).					
1	Project governance						
2	A stakeholder group within Me	rseyside will be	established to e	nable effe	ective achie	evement o	f the projec
3	objectives and ownership by the professional community. The stakeholder group will include representative						
4	from: Liverpool Health Partners;[30] Liverpool Community Health NHS Trust;[31] NHS England Merseyside						
5	Area Team Screening and Immu	inisation Team;	:[32] <u>Alder Hey (</u>	Children's I	NHS Found	dation Trus	st[33] and <u>P</u>
6	Health England[34]-Liverpool.						
7	Dissemination of research find	ings					
		-		_			
8	The findings will be presented a	t professional a	and scientific co	nterences.	The result	ts will also	be publishe
9	peer review journal articles. Int	erim and final r	eports will be pr	esented t	o the fund	ers and th	e stakehold
10	group.						

This study will enable demonstration of a complete health system perspective of the impact of rotavirus vaccination on the burden of disease in Merseyside, UK. It aims to study both direct and indirect effect from routine rotavirus vaccination. The study will also enable data on vaccine efficacy to infer the relative contribution of RVGE to AGE primary care, and emergency care consultations. Furthermore as data will be linked to specific geographical units, for which information on deprivation and vaccine uptake is available, we will be able to explore the association of these with overall vaccine effectiveness. Quality control audits contained with the study will provide a means of adjusting analysis for information bias and also enable identification of the key data collection issues that require improvement to maximise the usefulness of this surveillance approach. It is also hoped that this study will provide a learning resource and template for future ecological vaccine effectiveness studies in the UK.

252 Strengths

A whole health system approach in a geographically defined area provides a number of strengths. Using data sets from a range of health care providers within a health economy will allow us to examine the relative impact of vaccination on the various health providers rather than the individual. The use of multiple data sources to measure independent indicators of vaccination effect will also provide robustness, enabling easier

identification of outliers from overall trends.

There is annual variability in the number of rotavirus cases therefore it is imperative to conduct surveillance of rotavirus incidence over a number of year's pre and post vaccine introduction. This study will provide a mechanism to do this as it will be conducted over 3 years covering 3 rotavirus seasons post vaccine introduction. Thus cofounding caused by yearly variance in rotavirus numbers will be minimised.

At the time of writing there has been limited published evidence on the indirect effect of routine vaccination on un-vaccinated older children and adults (herd protection) and the majority of studies have focused on hospital admissions. As this study will collect data for all ages and cover RVGE and AGE incidence 3 years post-vaccination it will provide sufficient data for measurement of the herd effect on hospital admissions. Additionally, whilst the majority of studies into the indirect effect of vaccination have focused on hospital admissions this study will provide evidence for impact on the indirect effect in emergency departments and

BMJ Open

as a covariate at the lowest possible unit of analyses other than the individual. Thus, allowing the exploration

community settings. This is particularly important as it is perhaps more likely that severe RVGE in unvaccinated older children and adults will be treated at emergency departments and through community
consultations.
Another potential strength of the study is the ability to conduct analysis at small community (LSOA) level.
This will enable small area socio-demographic information such as deprivation to be included in the analyses

of the association between deprivation, burden of RVGE / AGE and vaccine uptake whilst limiting the

275 ecological fallacy of analysis.

As many of the data sources included in this study do not include specific RVGE classification, we are using AGE as an outcome measure for most datasets. Laboratory detections data which are organism specific will allow us to adjust these measures based on the seasonal contribution of organisms other than rotavirus such as norovirus. For example RVGE seasonality is fairly constant but that of norovirus tends to vary over the winter and spring months in the UK. These AGE indicators can therefore be adjusted for changes in norovirus seasonality (Figure 3)[35] to give a better proxy of the contribution of rotavirus to overall GI causes and the relative impact of rotavirus vaccination

283 Limitations

The gold standard for measurement of vaccine efficacy is the randomised controlled trial. However, the intention of this study is to look at the generalisability of vaccine effectiveness on population disease burden and impact on a health system therefore an ecological study is appropriate. Conversely it is recognised we cannot show individual level effects of vaccine and we can only infer the impact of the vaccine at the population level without causation. Additionally a key focus of this study is to quantify variation in the outcomes measured according to vaccine uptake levels and deprivation. Confounding may be an issue here with cases living in areas with low vaccine uptake or high deprivation may also have other characteristics that will affect the risk of RVGE or AGE.

For measures of AGE activity in community settings (e.g. GP and Walk-in-Centre), we use syndromic indicators that are non-specific to rotavirus e.g. diarrhoea, gastroenteritis symptoms. An inherent issue is that the ability to detect effect on these is likely to be limited to large effects rather than small variations. A further limitation of the study is that investigators are not in control of direct data collection as all data are secondary, and the consequent risk of bias that this brings. There is potential for clinical coding to lead to misclassification of disease, and this misclassification may vary by different data source. We will describe these biases through the quality control audit and subsequently adjust for at the analysis stage. The studies use of multi-data sets for outcome indicators limit these issues by improving robustness. It is likely that there has been changes in data collection methods over the study period for example changes to the assay used for rotavirus laboratory testing, leading to testing bias. One way to adjust for this in the analysis is to pool data over a number of years to smooth fluctuations caused by changes in testing methods. The investigators will identify changes through contact with rotavirus testing laboratories and NHS Trusts, so that changes may be described and where possible assist appropriate analytical adjustments. It is also feasible that the introduction of vaccination may also trigger changes in clinician requests for rotavirus and other AGE diagnostic testing, particularly in the vaccination age group. Any possible testing bias will be assessed at the lead NHS Trust via comparisons with pre-vaccine testing probabilities. The study currently does not include any economic component which given the cost of rotavirus to the health service is essential. However, previous studies have reported the likely cost-effectiveness of rotavirus vaccination for the population under 5 years of age.[36] This study would provide the results and data necessary for economic evaluation based on the direct and indirect impact of rotavirus vaccination Contributions DH participated in the design of the study, will oversee the study co-ordination, data collection and analysis, and wrote the manuscript. RV conceived of the study and participated in its design; and will contribute to study co-ordination and analysis. MIG conceived of the study and participated in its design; and will contribute to study co-ordination. NF conceived of the study and participated in its design; and will oversee

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2

BMJ Open

3	
4	
5	
6	
7	
8	
9	
10	
14	
10	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
27	
21	
20	
29	
30	
31	
32	
33	
34	
35	
20	
30	
37	
38	
39	
40	
41	
42	
43	
44	
44 15	
40	
46	
47	
48	
49	
50	
51	
52	
52	
53	
54	
55	
56	
57	
58	
50	
ປອ	

317 study co-ordination and contribute to analyses. NC conceived of the study, participated in its design and will 318 contribute to study co-ordination. All authors were involved in revising the manuscript and read and 319 approved the final manuscript. 320 Acknowledgements The authors gratefully acknowledge the effort and assistance provided by all the 321 research and development staff, laboratory technicians, data entry staff and support staff at the 322 collaborating sites. This work is support by the GlaxoSmithKline Biologicals. The funding body had no role in 323 the study design, the collection, analysis and interpretation of data, the writing of the manuscript, or the 324 decision to submit the manuscript for publication. 325 Funding This work is to be partially supported by GlaxoSmithKline Biologicals, Belgium, including salary 326 contributions to the lead author DH and resources for quality control of data sources. 327 **Competing interests** 328 Financial competing interests The Rotarix[™] vaccine used in the UK national immunisation programme evaluated by this study is developed 329 330 and licensed by GlaxoSmithKline Biologicals. NC is in receipt of research grant support from GSK Biologicals 331 (to University of Liverpool) and has received honoraria for participation in GSK Rotavirus Vaccine Advisory 332 Board Meetings. 333 Non-financial competing interests 334 The authors declare that they have no non-financial competing interests. 335 Peer review Peer reviewed and reviewed internally prior to sponsor and ethical approval. 336 Ethics approval The study has received NHS ethics approval.

337

338 References

1 2 3 4 5	339 340 341 342	1	Tate JE, Burton AH, Boschi-Pinto C, <i>et al.</i> 2008 estimate of worldwide rotavirus-associated mortality in children younger than 5 years before the introduction of universal rotavirus vaccination programmes: a systematic review and meta-analysis. <i>Lancet Infect Dis</i> 2012; 12 :136–41. doi:10.1016/S1473-3099(11)70253-5
6 7 8 9 10	343 344 345	2	Tam CC, Rodrigues LC, Viviani L, <i>et al.</i> Longitudinal study of infectious intestinal disease in the UK (IID2 study): incidence in the community and presenting to general practice. <i>Gut</i> 2012; 61 :69–77. doi:10.1136/gut.2011.238386
11 12 13	346 347	3	Harris JP, Jit M, Cooper D, <i>et al.</i> Evaluating rotavirus vaccination in England and Wales. Part I. Estimating the burden of disease. <i>Vaccine</i> 2007; 25 :3962–70. doi:10.1016/j.vaccine.2007.02.072
14 15 16	348 349	4	Cunliffe NA, Booth JA, Elliot C, <i>et al</i> . Healthcare-associated viral gastroenteritis among children in a large pediatric hospital, United Kingdom. <i>Emerg Infect Dis</i> 2010; 16 :55–62. doi:10.3201/eid1601.090401
17 18 19 20	350 351 352	5	Pockett RD, Adlard N, Carroll S, <i>et al.</i> Paediatric hospital admissions for rotavirus gastroenteritis and infectious gastroenteritis of all causes in England: an analysis of correlation with deprivation. <i>Curr Med Res Opin</i> 2011; 27 :777–84. doi:10.1185/03007995.2011.555757
21 22 23	353 354	6	Iturriza-Gómara M, Cunliffe N. Rotavirus vaccine: a welcome addition to the immunisation schedule in the UK. <i>BMJ</i> 2013; 346 :f2347.
24 25 26 27	355 356 357	7	Nakagomi O, Iturriza-Gomara M, Nakagomi T, <i>et al.</i> Incorporation of a rotavirus vaccine into the national immunisation schedule in the United Kingdom: a review. <i>Expert Opin Biol Ther</i> 2013; 13 :1613–21. doi:10.1517/14712598.2013.840285
28 29 30	358 359	8	Soares-Weiser K, Goldberg E, Tamimi G, <i>et al.</i> Rotavirus vaccine for preventing diarrhoea. <i>Cochrane Database Syst Rev</i> 2004;:CD002848. doi:10.1002/14651858.CD002848.pub2
32 33 34	360 361	9	World Health Organization. Rotavirus vaccines. <i>Relevé Épidémiologique Hebd Sect Hygiène Secrétariat Société Nations Wkly Epidemiol Rec Health Sect Secr Leag Nations</i> 2007; 82 :285–95.
35 36 37	362 363	10	Soares-Weiser K, Maclehose H, Bergman H, <i>et al.</i> Vaccines for preventing rotavirus diarrhoea: vaccines in use. <i>Cochrane Database Syst Rev</i> 2012; 11 :CD008521. doi:10.1002/14651858.CD008521.pub3
38 39 40	364 365	11	Rotavirus vaccines WHO position paper: January 2013 - Recommendations. <i>Vaccine</i> 2013; 31 :6170–1. doi:10.1016/j.vaccine.2013.05.037
41 42 43 44	366 367 368	12	World Health Organization. Rotavirus vaccines. WHO position paper – January 2013. Relevé Épidémiologique Hebd Sect Hygiène Secrétariat Société Nations Wkly Epidemiol Rec Health Sect Secr Leag Nations 2013; 88 :49–64.
45 46 47 48	369 370 371	13	PATH. Country introductions Maps and list – Rotavirus Vaccine Access and Delivery - PATH. http://sites.path.org/rotavirusvaccine/rotavirus-advocacy-and-communications-toolkit/country- introduction-maps-and-list/ (accessed 7 Jul2014).
49 50 51	372 373	14	Parez N, Giaquinto C, Du Roure C, <i>et al</i> . Rotavirus vaccination in Europe: drivers and barriers. <i>Lancet Infect Dis</i> 2014; 14 . doi:10.1016/S1473-3099(14)70035-0
52 53 54 55 56 57	374 375 376 377	15	Health and Social Care Information Centre. NHS Immunisation Statistics, England -2012-13. England: : Health and Social Care Information Centre 2013. http://www.hscic.gov.uk/searchcatalogue?q=title%3A%22NHS+Immunisation+Statistics%22&area=&siz e=10&sort=RelevanceDesc (accessed 17 Apr2014).
58 59 60	378 379	16	Public Health England. Early evidence of the impact of the national rotavirus immunisation programme. <i>Health Prot Rep Wkly Rep</i> 2014; 8 .

1 2 3	380 381	17	Patel MM, Glass R, Desai R, <i>et al</i> . Fulfilling the promise of rotavirus vaccines: how far have we come since licensure? <i>Lancet Infect Dis</i> 2012; 12 :561–70. doi:10.1016/S1473-3099(12)70029-4
4 5 6	382 383	18	Lopman BA, Curns AT, Yen C, <i>et al.</i> Infant rotavirus vaccination may provide indirect protection to older children and adults in the United States. <i>J Infect Dis</i> 2011; 204 :980–6. doi:10.1093/infdis/jir492
7 8 9 10	384 385 386	19	Health and Social Care Information Centre. Hospital Episode Statistics. Admitted Patient Care, England - 2012-13: Diagnosis. Health Soc. Care Inf. Cent. 2014. http://www.hscic.gov.uk/searchcatalogue?productid=13264&g=title%3a%22Hospital+Episode+Sta
11 12	387		tistics%2c+Admitted+patient+care+-+England%22&sort=Relevance&size=10&page=1#top
13 14 15 16	388 389 390	20	Braeckman T, Van Herck K, Meyer N, <i>et al.</i> Effectiveness of rotavirus vaccination in prevention of hospital admissions for rotavirus gastroenteritis among young children in Belgium: case-control study. <i>BMJ</i> 2012; 345 :e4752.
17 18 19 20	391 392 393	21	Bayard V, DeAntonio R, Contreras R, <i>et al.</i> Impact of rotavirus vaccination on childhood gastroenteritis- related mortality and hospital discharges in Panama. <i>Int J Infect Dis</i> 2012; 16 :E94–E98. doi:10.1016/j.ijid.2011.09.003
21 22 23 24	394 395 396	22	Buttery JP, Lambert SB, Grimwood K, <i>et al.</i> Reduction in rotavirus-associated acute gastroenteritis following introduction of rotavirus vaccine into Australia's National Childhood vaccine schedule. <i>Pediatr Infect Dis J</i> 2011; 30 :S25–29. doi:10.1097/INF.0b013e3181fefdee
25 26	397	23	Cortese MM, Immergluck LC, Held M, et al. Effectiveness of monovalent and pentavalent rotavirus
27 28	398		vaccine. Pediatrics 2013;132. doi:10.1542/peds.2012-3804
29 30 31	399 400	24	Field EJ, Vally H, Grimwood K, <i>et al</i> . Pentavalent rotavirus vaccine and prevention of gastroenteritis hospitalizations in Australia. <i>Pediatrics</i> 2010; 126 :e506–512. doi:10.1542/peds.2010-0443
32 33 34 35	401 402 403	25	Rissardo L, Karina, Furlan MCR, Marcon S, Silva, <i>et al.</i> Hospital morbidity before and after vaccination program against rotavirus in the state of ParanÃi-Brazil: descriptive- ecological study [Portuguese]. <i>Online Braz J Nurs</i> 2010; 9 :1–1.
36 37 38	404 405	26	Pendleton A, Galic M, Clarke C, <i>et al.</i> Impact of rotavirus vaccination in Australian children below 5 years of age A database study. <i>Hum Vaccines Immunother</i> 2013; 9 :1617–25. doi:10.4161/hv.24831
39 40 41	406 407	27	Paulke-Korinek M, Kollaritsch H, Aberle SW, <i>et al</i> . Sustained low hospitalization rates after four years of rotavirus mass vaccination in Austria. <i>Vaccine</i> 2013; 31 :2686–91. doi:10.1016/j.vaccine.2013.04.001
42 43	408 400	28	Department for Communities and Local Government. The English Indices of Deprivation 2010. England: :
44 45 46	409 410 411		https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/6871/1871208.pdf (accessed 14 Jan2014).
47 48	412	29	Office for National Statistics. Super Output Area Population Estimates - Mid-2011 (Census Based). Off.
49 50	413 414		Natl. Stat. 2013.http://www.ons.gov.uk/ons/rel/sape/soa-mid-year-pop-est-engl-wales-exp/mid-2011 census-based-/stbsuper-output-areamid-2011.html (accessed 17 Apr2014).
51 52 53	415	30	Liverpool Health Partners. http://www.liverpoolhealthpartners.org.uk/index.html
54 55	416	31	Liverpool Community Health NHS Trust. http://www.liverpoolcommunityhealth.nhs.uk/
56 57	417	32	NHS England Merseyside Area Team. http://www.england.nhs.uk/north/mers-at/
58 59 60	418	33	Alder Hey Children's NHS Foundation Trust. http://www.alderhey.nhs.uk/
			1/

1 2	419	34 Public Health England. https://www.gov.uk/government/organisations/public-health-england
3 4 5	420 421	35 Jit M, Edmunds WJ. Evaluating rotavirus vaccination in England and Wales. Part II. The potential cost- effectiveness of vaccination. Vaccine 2007;25:3971–9. doi:10.1016/j.vaccine.2007.02.070
6 7 8 9	422 423 424	36 Public Health England, Field Epidemiology Service North West. North West Infectious Intestinal Disease Activity Winter 2013/14 Bulletin: Week 44. Public Health England 2013. http://www.hpa.org.uk/webc/HPAwebFile/HPAweb_C/1317140237031
10 11	425	
12 13	426	Additional figure titles and legends
14 15		
16 17 18	427	Figure 1. Indices of multiple deprivation in Merseyside
19 20 21	428	Produced using the English Indices of Deprivation 2010, national quintiles for the index of multiple
21 22 23	429	deprivation [19].
24 25 26 27	430	Figure 2. Schematic of study data sources and outcome measures
28 29	431	Data sources cover a variety of health care providers at different levels of the health system. This shows
30 31 32	432	from which data sources outcome measures will be obtained.
33 34	433	Figure 3. Laboratory detections of rotavirus and norovirus in the North West, England, 2009/10-2013-14
35 36 37	434	Laboratory reports are from LabBase2 system at Public Health England [35], showing variation in the
38 39	435	norovirus season as compared to the rotavirus season.
40 41 42 43 44 45	436	
46 47 48		
49 50 51		
52 53 54 55		
56 57 58		
59 60		

Produced using the English Indices of Deprivation 2010, national quintiles for the index of multiple deprivation [19]. 57x74mm (220 x 220 DPI)

Data sources cover a variety of health care providers at different levels of the health system. This shows from which data sources outcome measures will be obtained. 361x332mm (300 x 300 DPI)

BMJ Open

Ecological assessment of the direct and indirect effects of routine rotavirus vaccination in Merseyside, UK using data from multiple health systems: a study protocol

Journal:	BMJ Open
Manuscript ID:	bmjopen-2014-006161.R1
Article Type:	Protocol
Date Submitted by the Author:	04-Nov-2014
Complete List of Authors:	Hungerford, Daniel; University of Liverpool, , Department of Clinical Infection, Microbiology & Immunology, Institute of Infection and Global Health; Public Health England, Field Epidemiology Services, Health Protection Vivancos, Roberto; Public Health England, Field Epidemiology Services, Health Protection French, Neil; University of Liverpool, Department of Clinical Infection, Microbiology & Immunology, Institute of Infection and Global Health; Royal Liverpool and Broadgreen University Hospitals NHS Trust, Iturriza-Gomara, Miren; University of Liverpool, Department of Clinical Infection, Microbiology & Immunology, Institute of Infection and Global Health Cunliffe, Nigel; University of Liverpool, Department of Clinical Infection, Microbiology & Immunology, Institute of Infection and Global Health Cunliffe, Nigel; University of Liverpool, Department of Clinical Infection, Microbiology & Immunology, Institute of Infection and Global Health; Alder Hey Children's NHS Foundation Trust,
Primary Subject Heading :	Infectious diseases
Secondary Subject Heading:	Epidemiology, Public health, Gastroenterology and hepatology, Immunology (including allergy)
Keywords:	Epidemiology < INFECTIOUS DISEASES, IMMUNOLOGY, Gastrointestinal infections < GASTROENTEROLOGY, Public health < INFECTIOUS DISEASES, STATISTICS & RESEARCH METHODS

SCHOLARONE[™] Manuscripts

BMJ Open

1 2	1	Ecological assessment of the direct and indirect effects of routine rotavirus vaccination in
3 4 5	2	Merseyside, UK using data from multiple health systems: a study protocol
6 7	3	
8 9 10	4	Dan Hungerford ^{1,4} – <u>d.hungerford@liverpool.ac.uk,</u> 0151 795 9609 (corresponding author)
11 12 13	5	Dr Roberto Vivancos ⁴ – <u>roberto.vivancos@phe.gov.uk</u>
14 15 16	6	Professor Neil French ^{1,3} – french@liverpool.ac.uk
16 17 18	7	Dr Miren Iturriza-Gomara ¹ – <u>miren@liverpool.ac.uk</u>
19 20 21	8	Professor Nigel Cunliffe ^{1,2} – <u>nigelc@liverpool.ac.uk</u>
22 23 24	9	1. Department of Clinical Infection, Microbiology & Immunology, Institute of Infection and Global Health,
25 26	10	University of Liverpool, The Ronald Ross Building, 8 West Derby Street, Liverpool, L69 7BE, UK
27 28	11	2. Alder Hey Children's NHS Foundation Trust, Eaton Rd, Liverpool, L12 2AP, UK
29 30 31	12	3. Royal Liverpool and Broadgreen University Hospitals NHS Trust, Prescot St, Liverpool, L7 8XP, UK
32 33	13	4. Public Health England, Field Epidemiology Services, 5 th Floor Rail House, Lord Nelson Street, Liverpool, L1
34 35 26	14	1JF, UK
37 38	15	
39 40 41 42	16	Keywords
43 44 45	17	Rotavirus; Vaccination; Gastroenteritis; Epidemiology; Immunity, Herd
46 47 48 49	18	Word Count
49 50 51	19	3,624 (excluding footnotes)
52 53 54 55	20	
56 57 58 59 60	21	
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

22 ABSTRACT

23 Introduction

Rotavirus is the most common cause of severe gastroenteritis in infants and young children worldwide. Currently 67 countries include rotavirus vaccine in childhood immunisation programmes, but uptake in Western Europe has been slow. In July 2013 rotavirus vaccine was introduced into the UK's routine childhood immunisation programme. Prior to vaccine introduction in the UK rotavirus was estimated to result in 750,000 diarrhoea episodes and 80,000 GP consultations each year, together with 45% and 20% of hospital admissions and emergency department attendances for acute gastroenteritis, in children under five-years of age. This paper describes a protocol for an ecological study that will assess rotavirus vaccine impact in the UK, to inform rotavirus immunisation policy in the UK and in other Western European countries.

32 Methods and analysis

33 In Merseyside, UK we will conduct an ecological study using a "before and after" approach to examine

34 changes in gastroenteritis and rotavirus incidence following the introduction of rotavirus vaccination. Data

35 will be collected on mortality, hospital admissions, nosocomial infection, emergency department

36 attendances, GP consultations and community health consultations to capture all healthcare providers in the

37 region. We will assess both the direct and indirect effects of the vaccine on the study population.

38 Comparisons of outcome indicator rates will be made in relation to vaccine uptake and socioeconomic

39 status.

40 Ethics and dissemination

The study has been approved by NHS Research Ethics Committee, South Central-Berkshire REC Reference: 14/SC/1140. Study outputs will be disseminated through scientific conferences and peer-reviewed publications. The study will demonstrate the impact of rotavirus vaccination on the burden of disease from a complete health system perspective. It will identify key areas that require improved data collection tools to maximise the usefulness of this surveillance approach and will provide a template for vaccine evaluations using ecological methods in the UK.

1 2 3	47	STRENGTHS AND LIMITATIONS		
4				
5 6	48	Strengths include use of data from multiple health systems that will allow examination of the		
7 8	49	relative impact of vaccination on the various health providers and communities rather than the		
9 10	50	individual. These multiple data sources will provide robustness, enabling easier identification of		
11 12	51	outliers from overall trends.		
13 14 15	52	• The study will include all ages for rotavirus and all cause gastroenteritis incidence for three years		
16 17	53	post-vaccination, thereby minimising cofounding caused by yearly variance in rotavirus numbers.		
18 19	54	Additionally the study is powered to measure the indirect (herd) effect on hospital admissions and		
20 21	55	whilst the majority of studies have focused on this, this study will also provide evidence for the		
22 23	56	indirect effect in emergency departments and community settings.		
24 25 26	57	• The study will be limited by the ecological before and after design, and the difficulties of ascribing		
20 27 28	58	causality to vaccine, as well as the inherent risks of bias and confounding in observational studies		
20 29 30	59	particularly due to underlying secular trends.		
31 32	60	• Use of syndromic indicators that are non-specific to rotavirus will limit the study to measuring large		
33 34	61	effects rather than small variations for emergency departments and community health outcome		
35 36	62	measures.		
37 38				
39 40	63	INTRODUCTION		
41 42 43	64	Rotavirus is the most common cause of severe gastroenteritis in infants and young children, responsible for		
43 44 45	65	an estimated annual 453,000 deaths worldwide among children under age 5 years, with over 90% of deaths		
46 47	66	occurring in the developing countries.[1] In the UK, rotavirus gastroenteritis (RVGE) is seasonal and most		
48 49	67	cases occur between February and April each year. Rotavirus is estimated to result in 750,000 diarrhoea		
50 51	68	episodes and 80,000 GP consultations each year in the UK,[2] together with 45% and 20% of hospital		
52 53 54	69	admissions and emergency department (ED) attendances for acute gastroenteritis (AGE), respectively in		
55 56	70	children under 5 years of age.[3] The economic cost of RVGE to the health service is estimated to be		
57 58	71	approximately £14 million per year in England and Wales.[3] At Alder Hey Children's NHS Foundation Trust,		
59 60	72	Liverpool, UK rotavirus is a major cause of community-acquired and healthcare-associated diarrhoea; in a 2-		
		For peer review only - http://bmiopen.bmi.com/site/about/quidelines.xhtml		

year prospective study among hospitalised children, rotavirus was detected by RT-PCR in 43% of communityacquired and in 31% of healthcare-associated gastroenteritis cases.[4] AGE hospital admissions are known to
have a positive correlation with socioeconomic deprivation [5] and globally the burden of severe RVGE is
much higher in low-income countries. However, RVGE has not yet been correlated with socioeconomic
deprivation in the UK.

In July 2013, the Department of Health introduced a rotavirus vaccine into the UK's routine childhood immunisation programme.[6,7] The live-attenuated, two-dose oral monovalent vaccine (Rotarix[™], GlaxoSmithKline Biologicals, Belgium) is administered at two and three months of age. Clinical trials in Europe and the Americas with both currently licensed rotavirus vaccines (Rotarix[™] and a pentavalent vaccine RotaTeq[™] developed by Merck), led to a WHO recommendation in 2007 to vaccinate children in these regions.[8–10] Subsequent trials in Africa and Asia led to an extension of the recommendation to include all children worldwide.[10–12] At present more than 60 countries include a rotavirus vaccine in childhood immunisation programmes.[13] Introduction of rotavirus vaccination in Western Europe has been slow however, with only Austria, Belgium, Finland, Luxemburg and most recently the UK having rolled out universal rotavirus vaccination programmes to date.[14] Based on the uptake of other routine childhood vaccinations in UK, coverage of over 90% would be expected for rotavirus vaccine;[15] initial figures for England indicate 93% uptake for first dose and 88% for the second dose of rotavirus vaccine.[16] Clinical trials in middle and high income countries demonstrated high (> 85%) efficacy against severe rotavirus gastroenteritis.[10] The introduction of rotavirus vaccines in the immunisation programmes of these countries has demonstrated direct benefits on a par with those observed in clinical trials, with significant reductions in diarrhoea hospitalisations.[17] An unanticipated but beneficial consequence of rotavirus vaccination has been the reduction of rotavirus disease in unvaccinated individuals (herd protection), likely due to reduced virus transmission. Such "indirect benefits" include reduced disease in

96 non-vaccinated older children and adults who were not thought to sustain a significant burden of rotavirus
97 disease.[18] In the UK the burden of RVGE in older children and adults is difficult to estimate but admissions
98 for AGE are 2 per 1,000 population in 5-14 year olds and 7 per 1,000 in those 15+ years.[19] Hence

BMJ Open

99 monitoring changes in AGE incidence in non-vaccinated older children and adults is critical to assess indirect100 impact.

Ecological rotavirus vaccine effectiveness studies have primarily focused on mortality, hospitalisations and laboratory detections as a measure of burden. [20–27] Severe cases of rotavirus infection will often end up in hospital and receive full diagnostic evaluation. However, many cases of rotavirus infection particularly in older children and adults will not attend hospital but will be seen by primary and community healthcare providers. Therefore in order to better understand the burden of RVGE and AGE on all ages and the impact of routine immunisation on the health system, it is crucial to examine routine data sources for all health service providers in a defined study area. Taking advantage of a range of regional healthcare facilities in Merseyside, UK, we describe a protocol for an ecological study which will use a "before and after" approach allowing comprehensive evaluation of the direct and indirect vaccine impact following the introduction of the monovalent rotavirus vaccine into the UK's routine childhood immunisation programme. We will investigate the relationship between socioeconomic deprivation, and vaccine uptake and disease burden. These data will provide evidence to support future rotavirus vaccination in the UK and will inform rotavirus immunisation policy in other Western European countries.[6]

METHODS

115 Study aim

Routine data sources will be used to estimate the direct and indirect effects of monovalent rotavirus vaccination on gastroenteritis indicators in the population of Merseyside, UK, and their relationship to vaccine coverage and socio-demographic indicators. We also hope to identify the key areas that require extended and improved data collection tools to maximise the usefulness of this surveillance approach. The main outcome measures are:

121 • Laboratory detections of rotavirus in faecal samples

• Admissions to hospital for RVGE or AGE

123 • Attendances to EDs for AGE

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2
3
4
5
6
7
1
8
9
10
11
12
13
10
14
15
16
17
18
19
20
20
21
22
23
24
25
26
27
20
28
29
30
31
32
33
24
34
35
36
37
38
39
10
40
41
42
43
44
45
46
17
+/
4ð
49
50
51
52
53
50
54
55
56
57
58
59
60
111

• Number of nosocomially-acquired cases of RVGE

General practice (GP) and community consultations for diarrhoea and AGE in children less than 5 and in
 all ages

• Routine rotavirus vaccine coverage mapping by small area geography

• Relative contribution of direct (those vaccinated) and indirect (not vaccinated) effects to overall vaccine

129 benefit in health system usage for both RVGE and AGE

130 • Relationship between socioeconomic deprivation, vaccine uptake and RVGE / AGE incidence

131 Study setting and location

The study will be conducted in the large metropolitan area of Merseyside in North West England which contains the city of Liverpool. Merseyside has a population of nearly 1.4 million people, with approximately 80,000 of its population under 5 years of age. Socioeconomic deprivation within Merseyside is variable but over 60% of its population live in a more socioeconomically deprived area than the England average (Figure 1).[28]. Vaccination uptake for most routine childhood vaccinations is also variable in small areas, but overall Merseyside has uptake above the average for England.[15] Healthcare for the population is self-contained with the region and including a specialist paediatric hospital. Further detail of healthcare provision is

139 provided below.

140 Study overview and choice of study designs

141 The study will employ an ecological design, utilising routine health surveillance data before and after 142 rotavirus vaccine introduction. The evaluation incorporates interrupted time-series analyses of outcome 143 indicators across the study population. Comparisons of outcome indicator rates will be made between 144 communities with high vaccine uptake and those with lower vaccine uptake and the relationship with 145 socioeconomic deprivation. The ecological study approach allows population based rates of outcomes to be 146 compared in space and time using vaccine uptake and community level socioeconomic deprivation as 147 covariates.

148 Study data

1	
2	
2	
1	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
17	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
20	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
24	
34	
35	
36	
37	
38	
39	
40	
41	
42	
<u>⊿</u> ∠	
40	
44 45	
45	
46	
47	
48	
49	
50	
51	
52	
52	
53	
54	
55	
56	
57	
58	
59	
60	

149	The National Health Service (NHS) in England and other government service agencies collect a range of
150	administrative and health care data which is held at both local service level and centrally. Figure 2 outlines
151	the data sources that will be used for the evaluation and table 1 shows the case definitions.
152	Hospital admission and ED attendance data will be obtained from hospital episode statistics (HES),[19] which
153	record all inpatient admissions in NHS hospitals in England. The study will therefore measure hospitalisations
154	and ED attendances for residents of Merseyside receiving care in hospitals throughout England.
155	The study will obtain GP consultation data for diarrhoea or gastroenteritis from Clinical Commissioning
156	Groups covering Merseyside or from government held sentinel surveillance systems. Community
157	consultations for diarrhoea and gastroenteritis at "Walk-in Centres" will be sourced from NHS Community
158	Health Trusts. Walk-in Centres are primarily nurse-led primary care facilities for illness and injuries without
159	need for prior appointment.
160	Rotavirus gastroenteritis at Alder Hey Children's NHS Foundation Trust (Alder Hey) in Liverpool is classified
161	as community acquired or nosocomial. Alder Hey's footprint covers the majority of Merseyside's children, so
162	these data will enable evaluation of the effect of rotavirus vaccination on nosocomial rotavirus infection in
163	children across Merseyside.
164	Laboratory detections of rotavirus from Public Health England Laboratory surveillance covering Merseyside
165	residents will be included in the analysis. Other causative agents of AGE identified through laboratory testing
166	including, for example, norovirus, adenovirus, and astrovirus will also be extracted for analysis.
167	Each data set will cover at least three-years either side of vaccine introduction. All data will be pseudo-
168	anonymised to allow distinction of records but no linking of data sets or identification of individuals will be
169	undertaken. All data will be either geo-coded from postcode to small statistical geographical community
170	units termed Lower Super Output Areas (LSOA) or sourced with this geography. LSOAs consist of
171	approximately 1,500 persons and denominator populations will be derived from the Office of National
172	Statistics (ONS) mid-year population-estimates by LSOA.[29] Indicators of socioeconomic deprivation at LSOA
173	level will be measured using the English Indices of Deprivation. The UK Department for Communities and

174 Local Government produce the English indices of Deprivation using census and other local administrative

- data.[28] Rotavirus vaccination uptake data will be sourced from the Child Health Information System (CHIS)
- 176 which is held by community NHS health Trusts in Merseyside. Records of doses of vaccinations given as part
- 177 of the UK childhood vaccine schedule are recorded in CHIS for each child.

178 Table 1: Case definitions by health data set

Data set	Case definition	
Nosocomial and	Nosocomial – Laboratory confirmed rotavirus case. Gastroenteritis	
community acquired	symptoms beginning more than two days after admission	
	Community acquired – Laboratory confirmed rotavirus case.	
	Gastroenteritis symptoms starting within two days of admission	
Hospital admissions	Rotavirus case definition - Inpatient finished consultant episodes (FCE)	
	with a primary or subsidiary diagnosis International Classification of	
	Disease version 10 (ICD10) diagnosis code of A08.0	
	AGE case definition – inpatient FCE with a primary or subsidiary	
	diagnosis ICD10 code of A08A09	
Emergency department	Attendance with a primary or secondary diagnosis code Z:III	
attendances	Gastrointestinal conditions-Other (those subsequently admitted	
	excluded to prevent duplication in hospital admissions)	
GP Consultations	GP consultations (Read codes in parenthesis): Diarrhoea and vomiting	
	(19G); Diarrhoea symptom NOS (19F6), Viral Gastroenteritis (A07y0),	
	Diarrhoea (19F2); Gastroenteritis - presumed infectious origin (A0812),	
	Diarrhoea of presumed infectious origin (A083); Infantile viral	
	gastroenteritis (A07y1); Infectious gastroenteritis (A0803); Enteritis due	
	to rotavirus (A0762); and, Infectious diarrhoea (A082). Viral gastro-	
	enteritis will be used as the primary case definition but	
	diarrhoea/vomiting will be used for a secondary indicator of burden.	

BMJ Open

	Community consultations	There is no coding system for diagnosis in Walk-in-Centre data.
	(Walk-in-Centres)	Therefore the description of patient symptoms field will be queried
		using the following key words: diarrhoea, vomiting, GI and
		gastroenteritis. A Soundex script will be used to allow for spelling
		inaccuracies.
	Laboratory detections	Detection of rotavirus in a faecal specimen by a standard assay.
		Detection of other AGE causative organisms

181	Data sources such as HES and laboratory detections will be influenced by testing practices; for instance
182	testing of some organisms is more likely to occur at certain times of the year. In the hospital admission data
183	set it is possible that some cases of RVGE will not be coded as rotaviral enteritis (ICD10: A08.0) and may be
184	classified as other-unspecified either due to an absence of laboratory confirmation or misclassification /
185	miscoding. In order to attempt to quantify this information bias the investigator team will perform quality
186	control on hospital admissions and laboratory detections at the lead NHS Trust hospital site (Alder Hey).
187	Using a sample of cases from at least 3 years, those cases with a laboratory confirmation will be checked
188	against clinical records and clinic coding and those coded as ICD10 A08.0 rotaviral enteritis will be cross-
189	matched against laboratory detections. Based on the results of this assessment, it may be necessary to
190	adjust the recorded number of hospital admissions for any ascertainment bias identified.

191 Ethical considerations

Quality control

The study has been approved by NHS Research Ethics Committee, South Central-Berkshire REC Reference:
14/SC/1140. Data sharing agreement will be obtained between PHE, participating NHS Trusts and the
University of Liverpool. Research governance approval will be sought form all participating NHS Trusts.

195 Data analysis

2	19
3 4	19
5 6 7	19
7 8 9	19
10 11	20
12 13	20
14 15	20
16 17	20
18 19 20	20
20 21 22	20
23 24	20
25 26	20
27 28	20
29 30	20
31 32	21
33 34 35	21
36 37	21
38 39	
40 41	21
42 43	21
44 45	21
46 47	21
48 49	21
50 51 52	21
52 53 54	21
55 56	22
57 58	22
59 60	

1

96 Changes in trends of primary care consultations, community consultations, ED attendances, hospitalisations 7 and rotavirus detections will be explored using interrupted time series analysis. Moving averages will be 8 examined to highlight any long-term trends whilst smoothing out any short-term fluctuations. Standardized 99 population based rates for a minimum of a three-year period prior to vaccination and year on year after 00 vaccination (for three years) will be compared. For the regression analysis, Poisson regression will be used.)1 We will first compute monthly population based rates that are "expected" to occur in the absence of a)2 rotavirus vaccination programme by fitting the model to pre-vaccine data. We will then adjust for)3 seasonality. The model will be used to estimate "expected" population based rates after vaccination and we)4 will then compare with "observed" population based rates. We will then calculate rate ratios and assess the)5 magnitude of decline in rates. Using a Poisson regression model, and including demographic and vaccine)6 uptake indicators we would be able to predict impact of vaccination on the AGE and RVGE indicators at)7 various services and vaccine uptake levels. Potential data biases will be controlled for by the access and 8 analysis multiple health data sources over a minimum of six years.)9 Environmental factors which may influence rotavirus incidence and seasonality are difficult to identify or 0. indeed quantify. To account for any potential environmental confounders, correlation of laboratory

211 confirmations of viral gastroenteritis causing organisms (e.g. norovirus, astrovirus) with rotavirus laboratory

212 confirmations will be established. If a significant correlation between any other viral gastroenteritis and

213 rotavirus can be identified, the resulting correlation coefficients will be used to estimate relative

214 contribution of vaccination and undefined environmental factors to any changes in rotavirus incidence.

215 Furthermore we will explore a potential reciprocal increase in other viral agents (e.g. norovirus) due to a

216 decrease in circulating rotavirus, and potential increase in susceptible individuals particularly in those under

217 5 years of age.

218 **Power calculation**

Based on hospital admissions for RVGE in 2012 obtained from HES data, the estimated rate of RVGE
hospitalisation is approximately 1 per 1,000 children under age 5 years in England.[19] Assuming high
vaccine uptake rates (i.e. 95%), similar to uptake of other routine childhood vaccines in Merseyside, we used

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

a one sample comparison of proportions for a two sided test to calculate the power estimates (Table 2).
Studies from other high income countries on the population effects of rotavirus vaccination have shown
reductions in hospital admissions of over 50% in children under 5 years of age [14]. Assuming a similar
reduction in Merseyside, this study has over 90% power to detect a significant change in RVGE hospital
admissions.

227 Table 2: Predicted power of study for main outcome (hospitalisation rate) in Merseyside and selected sub-

districts.

Area	Population	Assumed reduction in rotavirus hospitalisation rate				
	(children <5 years)	25%	30%	40%	50%	75%
Liverpool	27000	0.22	0.31	0.56	0.82	1
Liverpool and Sefton	41000	0.34	0.48	0.78	0.96	1
Liverpool, Sefton and Knowsley	50000	0.41	0.58	0.87	0.99	1
Merseyside	80000	0.63	0.8	0.98	1	1

The study is also powered for detecting an indirect effect in adults. Using an AGE hospital admission rate of 7 per 1,000 population aged 15+ years [19] we would expect power to be at least 0.97 for Merseyside at assumed hospitalisation rate reductions post vaccination of 5%, 8%, and 10%. Additionally, for GP consultations in the children under five, using case definitions defined above a power of 0.89 and 1 can be achieved, for detecting a significant change in GP consultations. For assumed consultation rate reductions post vaccination of 5% and 10% respectively. No formal power calculations have been undertaken for other end-points under study.

237 Timeline

238 The study will be conducted over a three year period beginning in April 2014. Prior to study commencement,

r administrative procedures will be undertaken including data sharing agreements, consultation with data

240 providers, database development for storing all sourced data, data analysis and report writing (including

241 interim yearly, final and peer review papers).

242 Project governance

A stakeholder group within Merseyside will be established to enable effective achievement of the project
objectives and ownership by the professional community. The stakeholder group will include representatives
from: Liverpool Health Partners; [30] Liverpool Community Health NHS Trust; [31] NHS England Merseyside
Area Team Screening and Immunisation Team; [32] Alder Hey Children's NHS Foundation Trust [33] and Public
Health England [34]-Liverpool.

248 Dissemination of research findings

The findings will be presented at professional and scientific conferences. The results will also be published in peer review publications. Interim and final reports will be submitted to the funders and the stakeholder group.

DISCUSSION

This study will enable demonstration of a complete health system perspective of the impact of rotavirus vaccination on the burden of disease in Merseyside, UK. It aims to study both direct and indirect effects of routine rotavirus vaccination. The study will also enable data on vaccine efficacy to infer the relative contribution of RVGE to AGE primary care, and emergency care consultations. Furthermore as data will be linked to specific geographical units, for which information on socioeconomic deprivation and vaccine uptake is available, we will be able to explore the association of these with disease burden. Quality control procedures contained within the study will provide a means of adjusting analysis for information bias and also enable identification of the key data collection issues that require improvement to maximise the usefulness of this surveillance approach. It is also hoped that this study will provide a learning resource and template for similar ecological approaches to examine effectiveness of other vaccines in the UK in the future. Strengths

A whole health system approach in a geographically defined area provides a number of strengths. Using data
sets from a range of health care providers within a health economy will allow us to examine the relative
impact of vaccination on the various health providers rather than the individual. The use of multiple data

BMJ Open

sources to measure independent indicators of vaccination effect will also provide robustness, enabling easieridentification of outliers from overall trends.

Since there is annual variability in the number of rotavirus cases, it is imperative to conduct surveillance of rotavirus incidence over a number of years pre- and post- vaccine introduction. This study will provide a mechanism to do this as it will cover three rotavirus seasons post vaccine introduction. Thus cofounding caused by yearly variance in rotavirus numbers will be minimised.

273 There are limited published data describing the indirect effect of routine vaccination on un-vaccinated older 274 children and adults and the majority of studies have focused on hospital admissions. As this study will collect

275 data for all ages and cover RVGE and AGE incidence 3 years post-vaccination it will provide sufficient data for

276 measurement of the indirect effect on hospital admissions. Additionally, whilst the majority of studies into

277 the indirect effect of vaccination have focused on hospital admissions, this study will examine indirect effects

in EDs and community settings. This is particularly important as it is perhaps more likely that

279 moderate/severe RVGE in un-vaccinated older children and adults will be treated at EDs and through

280 community consultations.

281 Another potential strength of the study is the ability to conduct analysis at small community (LSOA) level.

282 This will enable small area socio-demographic information such as socioeconomic deprivation to be included

283 in the analyses as a covariate at the lowest possible unit of analyses other than the individual. Thus, allowing

the exploration of the association between socioeconomic deprivation, burden of RVGE / AGE and vaccine

285 uptake whilst limiting the ecological fallacy of analysis.

As many of the data sources included in this study do not include specific RVGE classification, we will be using AGE as an outcome measure for most data sets. Laboratory detection data which are organism specific will allow us to adjust these measures based on the seasonal contribution of organisms other than rotavirus such as norovirus. For example RVGE seasonality is fairly constant but that of norovirus tends to vary over the winter and spring months in the UK. These AGE indicators can therefore be adjusted for changes in norovirus seasonality (Figure 3)[35] to give a better proxy of the contribution of rotavirus to overall GI causes and the relative impact of rotavirus vaccination

293 Limitations

The gold standard for measurement of vaccine efficacy is the randomised controlled trial. However, this ecological study will investigate the impact of vaccination on population disease burden within a health system; therefore an ecological study is appropriate. Conversely it is recognised an ecological approach cannot show individual level effects of vaccine and can only infer the impact of the vaccine at the population level without causation. Additionally, a key focus of this study will be to quantify variation in the outcomes measured according to vaccine uptake levels and socioeconomic deprivation. Confounding may be an issue since cases living in areas with low vaccine uptake or high socioeconomic deprivation may also have other characteristics that will affect the risk of RVGE or AGE.

For measures of AGE activity in community settings (e.g. GP and Walk-in-Centre), we will use syndromic
 indicators that are non-specific to rotavirus e.g. diarrhoea, vomiting. An inherent issue is that the ability to
 detect effect on these is likely to be limited to large effects rather than small variations.

A further limitation of the study is that investigators will not collect data directly as all data are secondary, with consequent risk of bias.. There is potential for clinical coding to lead to misclassification of disease, and this misclassification may vary by different data sources. We will describe these biases through quality control and subsequently adjust for them at the analysis stage. The use of multiple data sets for outcome indicators limits these issues by improving robustness.

It is likely that there have been changes in data collection methods over the study period, for example changes to the assay used for rotavirus laboratory testing, leading to testing bias. One way to adjust for this in the analysis is to pool data over a number of years to smooth fluctuations caused by changes in testing methods. The investigators will identify changes through contact with rotavirus testing laboratories and NHS Trusts, so that changes may be described and where possible assist appropriate analytical adjustments. It is also feasible that the introduction of vaccination may also trigger changes in clinician requests for rotavirus and other AGE diagnostic testing, particularly in the vaccination age group. Any possible testing bias will be assessed at the lead NHS Trust via comparisons with pre-vaccine testing probabilities.

BMJ Open

e reported the
This study will
ect impact of
€]

Contributions

DH participated in the design of the study, will oversee the study co-ordination, data collection and analysis, and wrote the manuscript. RV conceived of the study and participated in its design; and will contribute to study co-ordination and analysis. MIG conceived of the study and participated in its design; and will contribute to study co-ordination. NF conceived of the study and participated in its design; and will oversee study co-ordination and contribute to analyses. NC conceived of the study, participated in its design and will contribute to study co-ordination. All authors were involved in revising the manuscript and read and approved the final manuscript. Acknowledgements The authors gratefully acknowledge the effort and assistance provided by all the research and development staff, laboratory technicians, data entry staff and support staff at the collaborating sites. Funding This study is in part supported (approximately 35% of total cost) by GlaxoSmithKline Biologicals SA.

GlaxoSmithKline Biologicals SA was provided the opportunity to review a preliminary version of this

manuscript for factual accuracy but the authors are solely responsible for final content and interpretation.

The authors received no financial support or other form of compensation related to the development of the manuscript..

Competing interests

Financial competing interests

1 2	342	The	e Rotarix [™] vaccine used in the UK national immunisation programme evaluated by this study is developed	
3 4 5	343	anc	l licensed by GlaxoSmithKline Biologicals. NC is in receipt of research grant support from GSK Biologicals	
5 6 7	344	(to University of Liverpool) and has received honoraria for participation in GSK Rotavirus Vaccine Advisory		
8 9	345	Воа	ard Meetings.	
10 11 12	346	Noi	n-financial competing interests	
13 14 15	347	The	e authors declare that they have no non-financial competing interests.	
16 17 18	348	Pee	er review The protocol was peer reviewed externally and internally prior to sponsor and ethical approval.	
19 20 21	349	Eth	ics approval The study has been approved by NHS Research Ethics Committee, South Central-Berkshire	
22 23	350	REC	C Reference: 14/SC/1140	
24 25 26 27	351	Re	ferences	
28 29 30 31 32	352 353 354 355	1	Tate JE, Burton AH, Boschi-Pinto C, <i>et al.</i> 2008 estimate of worldwide rotavirus-associated mortality in children younger than 5 years before the introduction of universal rotavirus vaccination programmes: a systematic review and meta-analysis. <i>Lancet Infect Dis</i> 2012; 12 :136–41. doi:10.1016/S1473-3099(11)70253-5	
33 34 35 36 27	356 357 358	2	Tam CC, Rodrigues LC, Viviani L, <i>et al.</i> Longitudinal study of infectious intestinal disease in the UK (IID2 study): incidence in the community and presenting to general practice. <i>Gut</i> 2012; 61 :69–77. doi:10.1136/gut.2011.238386	
38 39 40	359 360	3	Harris JP, Jit M, Cooper D, <i>et al.</i> Evaluating rotavirus vaccination in England and Wales. Part I. Estimating the burden of disease. <i>Vaccine</i> 2007; 25 :3962–70. doi:10.1016/j.vaccine.2007.02.072	
41 42 43	361 362	4	Cunliffe NA, Booth JA, Elliot C, <i>et al</i> . Healthcare-associated viral gastroenteritis among children in a large pediatric hospital, United Kingdom. <i>Emerg Infect Dis</i> 2010; 16 :55–62. doi:10.3201/eid1601.090401	
44 45 46 47	363 364 365	5	Pockett RD, Adlard N, Carroll S, <i>et al.</i> Paediatric hospital admissions for rotavirus gastroenteritis and infectious gastroenteritis of all causes in England: an analysis of correlation with deprivation. <i>Curr Med Res Opin</i> 2011; 27 :777–84. doi:10.1185/03007995.2011.555757	
48 49 50	366 367	6	Iturriza-Gómara M, Cunliffe N. Rotavirus vaccine: a welcome addition to the immunisation schedule in the UK. <i>BMJ</i> 2013; 346 :f2347.	
51 52 53 54	368 369 370	7	Nakagomi O, Iturriza-Gomara M, Nakagomi T, <i>et al.</i> Incorporation of a rotavirus vaccine into the national immunisation schedule in the United Kingdom: a review. <i>Expert Opin Biol Ther</i> 2013; 13 :1613–21. doi:10.1517/14712598.2013.840285	
55 56 57 58 59 60	371 372	8	Soares-Weiser K, Goldberg E, Tamimi G, <i>et al.</i> Rotavirus vaccine for preventing diarrhoea. <i>Cochrane Database Syst Rev</i> 2004;:CD002848. doi:10.1002/14651858.CD002848.pub2	

1 2 3	373 374	9	World Health Organization. Rotavirus vaccines. <i>Relevé Épidémiologique Hebd Sect Hygiène Secrétariat</i> Société Nations Wkly Epidemiol Rec Health Sect Secr Leag Nations 2007; 82 :285–95.
4 5 6	375 376	10	Soares-Weiser K, Maclehose H, Bergman H, <i>et al.</i> Vaccines for preventing rotavirus diarrhoea: vaccines in use. <i>Cochrane Database Syst Rev</i> 2012; 11 :CD008521. doi:10.1002/14651858.CD008521.pub3
7 8 9	377 378	11	Rotavirus vaccines WHO position paper: January 2013 - Recommendations. <i>Vaccine</i> 2013; 31 :6170–1. doi:10.1016/j.vaccine.2013.05.037
10 11 12 13 14	379 380 381	12	World Health Organization. Rotavirus vaccines. WHO position paper – January 2013. <i>Relevé Épidémiologique Hebd Sect Hygiène Secrétariat Société Nations Wkly Epidemiol Rec Health Sect Secr Leag Nations</i> 2013; 88 :49–64.
15 16 17 18	382 383 384	13	PATH. Country introductions Maps and list – Rotavirus Vaccine Access and Delivery - PATH. http://sites.path.org/rotavirusvaccine/rotavirus-advocacy-and-communications-toolkit/country- introduction-maps-and-list/ (accessed 7 Jul2014).
19 20 21	385 386	14	Parez N, Giaquinto C, Du Roure C, <i>et al.</i> Rotavirus vaccination in Europe: drivers and barriers. <i>Lancet Infect Dis</i> 2014; 14 . doi:10.1016/S1473-3099(14)70035-0
22 23 24 25 26	387 388 389 390	15	Health and Social Care Information Centre. NHS Immunisation Statistics, England -2012-13. England: : Health and Social Care Information Centre 2013. http://www.hscic.gov.uk/searchcatalogue?q=title%3A%22NHS+Immunisation+Statistics%22&area=&siz e=10&sort=RelevanceDesc (accessed 17 Apr2014).
27 28 29	391 392	16	Public Health England. Early evidence of the impact of the national rotavirus immunisation programme. Health Prot Rep Wkly Rep 2014; 8 .
30 31 32 33	393 394	17	Patel MM, Glass R, Desai R, <i>et al.</i> Fulfilling the promise of rotavirus vaccines: how far have we come since licensure? <i>Lancet Infect Dis</i> 2012; 12 :561–70. doi:10.1016/S1473-3099(12)70029-4
34 35 36	395 396	18	Lopman BA, Curns AT, Yen C, <i>et al</i> . Infant rotavirus vaccination may provide indirect protection to older children and adults in the United States. <i>J Infect Dis</i> 2011; 204 :980–6. doi:10.1093/infdis/jir492
37 38 39 40 41	397 398 399 400	19	Health and Social Care Information Centre. Hospital Episode Statistics. Admitted Patient Care, England - 2012-13: Diagnosis. Health Soc. Care Inf. Cent. 2014.http://www.hscic.gov.uk/searchcatalogue?productid=13264&q=title%3a%22Hospital+Episode+Sta tistics%2c+Admitted+patient+care+-+England%22&sort=Relevance&size=10&page=1#top
42 43 44 45	401 402 403	20	Braeckman T, Van Herck K, Meyer N, <i>et al.</i> Effectiveness of rotavirus vaccination in prevention of hospital admissions for rotavirus gastroenteritis among young children in Belgium: case-control study. <i>BMJ</i> 2012; 345 :e4752.
46 47 48 49	404 405 406	21	Bayard V, DeAntonio R, Contreras R, <i>et al.</i> Impact of rotavirus vaccination on childhood gastroenteritis- related mortality and hospital discharges in Panama. <i>Int J Infect Dis</i> 2012; 16 :E94–E98. doi:10.1016/j.ijid.2011.09.003
50 51 52 53 54	407 408 409	22	Buttery JP, Lambert SB, Grimwood K, <i>et al.</i> Reduction in rotavirus-associated acute gastroenteritis following introduction of rotavirus vaccine into Australia's National Childhood vaccine schedule. <i>Pediatr Infect Dis J</i> 2011; 30 :S25–29. doi:10.1097/INF.0b013e3181fefdee
55 56 57	410 411	23	Cortese MM, Immergluck LC, Held M, <i>et al.</i> Effectiveness of monovalent and pentavalent rotavirus vaccine. <i>Pediatrics</i> 2013; 132 . doi:10.1542/peds.2012-3804
58 59 60	412 413	24	Field EJ, Vally H, Grimwood K, <i>et al.</i> Pentavalent rotavirus vaccine and prevention of gastroenteritis hospitalizations in Australia. <i>Pediatrics</i> 2010; 126 :e506–512. doi:10.1542/peds.2010-0443

1 2 3 4	414 415 416	25 Rissardo L, Karina, Furlan MCR, Marcon S, Silva, <i>et al.</i> Hospital morbidity before and after vaccination program against rotavirus in the state of ParanÃi-Brazil: descriptive- ecological study [Portuguese]. Online Braz J Nurs 2010; 9 :1–1.				
5 6 7	417 418	Pendleton A, Galic M, Clarke C, <i>et al.</i> Impact of rotavirus vaccination in Australian children below 5 years of age A database study. <i>Hum Vaccines Immunother</i> 2013; 9 :1617–25. doi:10.4161/hv.24831				
o 9 10 11	419 420	Paulke-Korinek M, Kollaritsch H, Aberle SW, <i>et al.</i> Sustained low hospitalization rates after four years of rotavirus mass vaccination in Austria. <i>Vaccine</i> 2013; 31 :2686–91. doi:10.1016/j.vaccine.2013.04.001				
12 13 14 15 16	421 422 423 424	Department for Communities and Local Government. The English Indices of Deprivation 2010. England: : Department for Communities and Local Government 2011. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/6871/1871208.pdf (accessed 14 Jan2014).				
17 18 19 20	425 426 427	Office for National Statistics. Super Output Area Population Estimates - Mid-2011 (Census Based). Off. Natl. Stat. 2013.http://www.ons.gov.uk/ons/rel/sape/soa-mid-year-pop-est-engl-wales-exp/mid-2011 census-based-/stbsuper-output-areamid-2011.html (accessed 17 Apr2014).				
21 22	428	Liverpool Health Partners. http://www.liverpoolhealthpartners.org.uk/index.html				
23 24	429	Liverpool Community Health NHS Trust. http://www.liverpoolcommunityhealth.nhs.uk/				
25 26	430	NHS England Merseyside Area Team. http://www.england.nhs.uk/north/mers-at/				
27 28	431	Alder Hey Children's NHS Foundation Trust. http://www.alderhey.nhs.uk/				
29 30	432	Public Health England. https://www.gov.uk/government/organisations/public-health-england				
31 32 33	433 434	Jit M, Edmunds WJ. Evaluating rotavirus vaccination in England and Wales. Part II. The potential cost- effectiveness of vaccination. <i>Vaccine</i> 2007; 25 :3971–9. doi:10.1016/j.vaccine.2007.02.070				
34 35 36 37 38	435 436 437	Public Health England, Field Epidemiology Service North West. North West Infectious Intestinal Disease Activity Winter 2013/14 Bulletin: Week 44. Public Health England 2013. http://www.hpa.org.uk/webc/HPAwebFile/HPAweb_C/1317140237031				
39 40	438					
41 42 43	439	dditional figure titles and legends				
44 45 46	440	gure 1. Socioeconomic deprivation in Merseyside				
47 48 40	441	oduced using the English Indices of Deprivation 2010, national quintiles for the Index of Multiple				
50 51 52	442	privation [19].				
52 53 54	443	ure 2. Schematic of study data sources and outcome measures				
55 56 57	444	ta sources cover a variety of health care providers at different levels of the health system. This shows				
58 59 60	445	m which data sources outcome measures will be obtained.				

1 2 3	446	Figure 3. Laboratory detections of rotavirus and norovirus in the North West, England, 2009/10-2013-14
4 5	447	Laboratory reports are from LabBase2 system at Public Health England [35], showing variation in the
6 7 8	448	norovirus season as compared to the rotavirus season.
3 4 5 6 7 8 9 10 1 12 3 4 4 5 6 7 8 9 10 1 12 3 4 4 5 6 7 8 9 10 1 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	447 448 449	Laboratory reports are from LabBase2 system at Public Health England [35], showing variation in the norovirus season as compared to the rotavirus season.
54 55 56 57		
57 58 59 60		

Merseyside, UK using data from multiple health systems: a study protocol
Dan Hungerford ^{1,4} – <u>d.hungerford@liverpool.ac.uk,</u> 0151 795 9609 (corresponding author)
Dr Roberto Vivancos ⁴ – <u>roberto.vivancos@phe.gov.uk</u>
Professor Neil French ^{1,3} – french@liverpool.ac.uk
Dr Miren Iturriza-Gomara ¹ – <u>miren@liverpool.ac.uk</u>
Professor Nigel Cunliffe ^{1,2} – <u>nigelc@liverpool.ac.uk</u>
1. Department of Clinical Infection, Microbiology & Immunology, Institute of Infection and Global Health,
University of Liverpool, The Ronald Ross Building, 8 West Derby Street, Liverpool, L69 7BE, UK
2. Alder Hey Children's NHS Foundation Trust, Eaton Rd, Liverpool, L12 2AP, UK
3. Royal Liverpool and Broadgreen University Hospitals NHS Trust, Prescot St, Liverpool, L7 8XP, UK
4. Public Health England, Field Epidemiology Services, 5 th Floor Rail House, Lord Nelson Street, Liverpool, L1
1JF, UK
Keywords
Rotavirus; Vaccination; Gastroenteritis; Epidemiology; Immunity, Herd
Word Count
3, 577-<u>624</u> (excluding footnotes)

 BMJ Open

22 ABSTRACT

23 Introduction

24	Rotavirus is the most common cause of severe gastroenteritis in infants and young children worldwide.
25	Currently 67 countries include rotavirus vaccine in childhood immunisation programmes, but uptake in
26	Western Europe has been slow. In July 2013 rotavirus vaccine was introduced into the UK's routine
27	childhood immunisation programme. Prior to vaccine introduction in the UK rotavirus was estimated to
28	result in 750,000 diarrhoea episodes and 80,000 GP consultations each year, together with 45% and 20% of
29	hospital admissions and emergency department attendances for acute gastroenteritis, in children under five-
30	years of age. It is therefore important to assess vaccine impact in the UK. This paper describes a protocol for
31	an ecological study to that will assess rotavirus vaccine impact in the UK, to support continued vaccination
32	and inform rotavirus immunisation policy in the UK and in other Western European countries.
33	Methods and analysis
34	In Merseyside, UK we will conduct an ecological study using a "before and after" approach to examine
35	changes in gastroenteritis and rotavirus incidence following the introduction of rotavirus vaccination. Data
36	will be collected on mortality, hospital admissions, nosocomial infection, emergency department
37	attendances, GP consultations and community health consultations to capture all healthcare providers in the
38	region.that people access with symptoms of rotavirus and acute gastroenteritis and rotavirus gastroenteritis.
39	We will assess both the direct and indirect (herd) effects of the vaccine on the study population.
40	Comparisons of outcome indicator rates will be made in relation to vaccine uptake and the association with
41	socioeconomic status.deprivation examined.
42	Ethics and dissemination
43	The study has been approved by NHS Research Ethics Committee, South Central-Berkshire REC Reference:
44	14/SC/1140-approval has been granted. The Study outputsfindings will be disseminated through scientific
45	conferences and peer-reviewed publications. The <u>study findings</u> will enable demonstrateion of the impact of
46	rotavirus vaccination on the burden of disease from a complete health system perspective. of the impact of
	n

46 rotavirus vaccination on the burden of disease from a complete health system perspective. of the For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

47 rotavirus vaccination on the burden of disease. It will also identify key areas that require improved data
48 collection tools to maximise the usefulness of this surveillance approach and <u>will</u> provide a template for
49 ecological methodology vaccine evaluations <u>usingin ecological methods in</u> the UK.

50 STRENGTHS AND LIMITATIONS

- Strengths include use of data from multiple health systems that will allow examination of the
 relative impact of vaccination on the various health providers and communities rather than the
 individual. These multiple data sources will provide robustness, enabling easier identification of
 outliers from overall trends.
 - The study will <u>includecover</u> all ages for rotavirus and all cause gastroenteritis incidence <u>for</u> three years post-vaccination, <u>thereby</u> minimising cofounding caused by yearly variance in rotavirus numbers.
- Additionally <u>the study</u>^{it} is powered to measure the <u>indirect (herd)</u> effect on hospital admissions and whilst the majority of studies have focused on this, this study will also provide evidence for the indirect effect in emergency departments and community settings.
- The study is-will be limited by the ecological before and after design, and the difficulties of ascribing causality to vaccine, as well as the inherent risks of bias and confounding in observational studies particularly due to underlying secular trends.
- Us<u>e ofing</u> syndromic indicators that are non-specific to rotavirus <u>will limits</u> the study to measuring large effects rather than small variations <u>for emergency departments and community health</u> outcome measures.

INTRODUCTION

Rotavirus is the most common cause of severe gastroenteritis in infants and young children, responsible for
an estimated annual 453,000 deaths worldwide among children under age 5 years, with over 90% of deaths
occurring in the developing countries.[1] In the UK, rotavirus gastroenteritis (RVGE) is seasonal and most
cases occur between February and April each year. Rotavirus is estimated to result in 750,000 diarrhoea
episodes and 80,000 GP consultations each year in the UK,[2] together with 45% and 20% of hospital

1 2	73
3 4	74
5 6 7	75
7 8 0	76
9 10 11	77
12 13	78
14 15	79
16 17	80
18 19 20	81
21 22	82
23 24 25	83
25 26 27	84
28 29	85
30 31	86
32 33	87
34 35 36	88
30 37 38	89
39 40	90
41 42	91
43 44	92
45 46	93
47 48 49	94
50 51	95
52 53 54	96
55 56	97
57 58	98
59 60	99

73	admissions and emergency department (ED) attendances for acute gastroenteritis (AGE), respectively in
74	children under 5 years of age.[3] The economic cost of RVGE to the health service is estimated to be
75	approximately £14 million per year in England and Wales.[3] At Alder Hey Children's NHS Foundation Trust,
76	Liverpool, UK rotavirus is a major cause of community-acquired and healthcare-associated diarrhoea; in a 2-
77	year prospective study among hospitalised children, rotavirus was detected by RT-PCR in 43% of community-
78	acquired and in 31% of healthcare-associated gastroenteritis cases.[4] AGE hospital admissions are known to
79	have a positive correlation with socioeconomic deprivation [5] and globally the burden of severe RVGE is
30	much higher in low-income countries. However, no statistical correlation between RVGE in infants-has not
31	<u>yet been correlated with and socioeconomic</u> deprivation has been shown to exist in the UK.
32	In July 2013, the Department of Health introduced <u>a</u> rotavirus vaccine into the UK's <u>routine</u> childhood
33	immunisation programme.[6,7] The live-attenuated, two-dose oral monovalent vaccine (Rotarix [™] ,
34	GlaxoSmithKline Biologicals, Belgium) is administered at two and three months of age. Clinical trials in
35	Europe and the Americas with both currently licensed rotavirus vaccines (Rotarix [™] and a pentavalent vaccine
36	RotaTeq™ developed by Merck), led to a WHO recommendation in 2007 to vaccinate children in these
37	regions.[8–10] Subsequent trials in Africa and Asia led to an extension of the recommendation to include all
38	children worldwide.[10–12] At present more than 60 countries include a rotavirus vaccine in childhood
39	immunisation programmes.[13] Uptake Introduction of rotavirus vaccination in Western Europe has been
90	slow however, with only Austria, Belgium, Finland, Luxemburg and most recently the UK having rolled out
91	universal rotavirus vaccination programmes to date.[14] Based on the uptake of other routine childhood
92	vaccinations in UK _z ; vaccine <u>coverage</u>uptake of over 90% would be expected for rotavirus
93	vaccineimmunisation;, [15] and initial uptake figures for England indicate support this with 93% uptake for
94	first dose and 88% for the second dose <u>of rotavirus vaccine</u> .[16]
95	Clinical trials in middle and high income countries demonstrated high (> 85%) efficacy against severe
96	rotavirus gastroenteritis.[10] The introduction of rotavirus vaccines in the immunisation programmes of
97	these countries has demonstrated direct benefits on a par with those observed in clinical trials, with
98	significant reductions in diarrhoea hospitalisations.[17] An unanticipated but beneficial consequence of
99	rotavirus vaccination has beenis the reduction of rotavirus disease in unvaccinated individuals (herd
	4

protection), likely due to reduced virus transmission. Such "indirect benefits" include reduced disease in
non-vaccinated older children and adults who were not thought to sustain a significant burden of rotavirus
disease.[18] In the UK the burden of RVGE in older children and adults is difficult to estimate but admissions
for viral gastroenteritisAGE are 2 per 1,000 population in 5-14 year olds and 7 per 1,000 in those 15+
years.[19] Hence monitoring changes in AGE incidence in non-vaccinated older children and adults is critical
to assess indirect impact.

Ecological rotavirus vaccine effectiveness studies have primarily focused on mortality, hospitalisations and laboratory detections as a measure of burden. [20–27] Severe cases of rotavirus infection will often end up in hospital and receive full diagnostic evaluations. However, many cases of rotavirus infection particularly in older children and adults will not attend hospital but will be seen by primary and community healthcare providers. Therefore in order to better understand the burden of RVGE and AGE on all ages and the impact of routine immunisation on the health system, it is crucial to examinestudy routine data sources for all health service providers in a defined study area. Taking advantage of a range of regional healthcare facilities in Merseyside, EnglandUK, we describe a protocol for an ecological study which will useing a "before and after" approach that will allow allowing comprehensive evaluation of the direct and indirect vaccine impact following its introduction the introduction of the monovalent rotavirus vaccine into the UK's routine childhood immunisation programme. We will Whilst investigateing the relationshipcorrelation betweenof socioeconomic deprivation, and vaccineation uptake and diseasewith burden. These data will provide evidence to support future rotavirus vaccination in the UK and will inform rotavirus immunisation policy in other Western European countries.[6]

120 METHODS

121 Study aim

Routine data sources will be used to estimate the direct and indirect effects of <u>monovalent</u>rotavirus vaccination on gastroenteritis indicators in the population of Merseyside<u>, UK</u>, and the<u>ir</u> relationship of such effects-to vaccine coverage and socio-demographic indicators. We also hope to identify the key areas that

1 2	125	require extended and improved data collection tools to maximise the usefulness of this surveillance
3 4 5	126	approach. The main outcome measures are:
6 7 8 9 10 11 12 13 14	127	Laboratory detections of rotavirus in faecal samples
	128	Admissions to hospital for RVGE or AGE
	129	Attendances to EDs for AGE
	130	Number of nosocomially-acquired cases of RVGE
15 16	131	• General practice (GP) and community consultations for diarrhoea and AGE in children less than 5 and in
17 18	132	all ages
19 20 21	133	Routine rotavirus vaccine coverage mapping by small area geography
21 22 23	134	• Relative contribution of direct (those vaccinated) and indirect (not vaccinated) effects to overall vaccine
23 24 25 26 27	135	benefit in health system usage for both RVGE and AGE
	136	Relationship between <u>socioeconomic</u> deprivation, vaccine uptake and RVGE / AGE incidence
20 29 30 31	137	Study setting and location
32 33 34 35 36 37 38 39 40	138	The study will be conducted in the large metropolitan area of Merseyside in North West England which
	139	contains the city of Liverpool. Merseyside has a population of nearly 1.4 million people, with approximately
	140	80,000 of its population under 5 years of age. <u>Socioeconomic d</u> eprivation within Merseyside is variable but
	141	over 60% of its population live in a more <u>socioeconomically</u> deprived area than the England average (Figure
41 42	142	1).[28] Vaccination uptake for most routine childhood vaccinations is also variable in small areas, but
43 44	143	overall Merseyside has uptake above the average for England.[15] <u>Healthcare for the population is self-</u>
45 46	144	contained with the region and including a specialist paediatric hospital. Further detail of healthcare provision
47 48 49	145	is provided below.
50 51 52 53	146	Study overview and choice of study designs
54 55 56	147	The study is will employ an be ecological in design, utilising routine health surveillance data before and after
50 57 58	148	rotavirus vaccine introduction. The evaluation design-incorporates interrupted time-series analyses of
59 60	149	outcome indicators across the study population. Comparisons of outcome indicator rates will be made
00		6 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

between communities with high vaccine uptake and those with lower vaccine uptake and the relationship
with <u>socioeconomic</u> deprivation. The ecological study approach allows <u>population based</u> rates of outcomes
to be compared in space and time using vaccine uptake and community level <u>socioeconomic</u> deprivation as
covariates.

154 Study data

155The National Health Service (NHS) in England and other government service agencies collect a range of156administrative and health care related data which is held at both local service level and centrally. Figure 2157outlines the data sources that will be used for the evaluation and table 1 shows the case definitions.158Hospital admission and ED attendance data will be obtained from hospital episode statistics (HES),[19] which159record all inpatient admissions in NHS hospitals in England, and directly from NHS Trusts which cover the160population of Merseyside The study will therefore measure hospitalisations and ED attendances for residents161of Merseyside receiving care in hospitals throughout England.

The study will obtain GP consultation datas for diarrhoea or gastroenteritis from Clinical Commissioning
Groups covering Merseyside or from government held sentinel surveillance systems. Community
consultations for diarrhoea and gastroenteritis at "Walk-in Centres" will be sourced from NHS Community
Health Trusts. Walk-in Centres are primarily nurse-led primary care facilities for illness and injuries without
need for prior appointment.

The infection control team <u>Rotavirus gastroenteritis</u> at Alder Hey Children's NHS Foundation Trust <u>(Alder</u>
 <u>Hey)</u> in Liverpool <u>is</u> classifie<u>d</u>s rotavirus cases as community acquired or healthcare associated (nosocomial).
 Alder Hey's <u>NHS Foundation Trust's</u> footprint covers the majority of Merseyside's children, so these data will
 enable evaluation of the effect of rotavirus vaccination on nosocomial rotavirus infection in children across
 Merseyside.

Laboratory detections of rotavirus from Public Health England Laboratory surveillance covering Merseyside
 residents will be included in the analysis. Other causative agents of AGE identified through laboratory testing
 including, for example, norovirus, adenovirus, astrovirusand astrovirus will also be extracted for analysis.

BMJ Open

1 2	175	Each data set will cover at least three-years either side of vaccine introduction. All data will be pseudo-			
3 4	176	anonymised to allow dist	inction of records but no linking of data_sets or identification of individuals will be		
5 6 7	undertaken. All data will be either geo-coded from postcode to small statistical geographica				
7 8 9	178	units termed Lower Supe	r Output Areas (LSOA) or sourced with this geography. LSOAs consist of		
10 11	179	179 approximately 1,500 persons and depenominator populations will be derived from the Office of Nat			
12 13	180	Statistics (ONS) mid-year	population-estimates by LSOA.[29] Indicators of <u>socioeconomic</u> deprivation at LSOA		
14 15	181	level will <u>be</u> <u>measured</u> us	sing the English Indices of Deprivation. The UK Department for Communities and		
16 17	182	Local Government produ	ce the English indices of Deprivation using census and other local administrative		
18 19 20	18 19 183 <u>databe sourced from the Department for Communities and Local Government</u> .[28] Rotaviru				
20 21 22	184	uptake data will be sourc	ced from the Child Health Information System (CHIS) which is held by community		
23 24	rseyside. Records of doses of vaccinations given as part of the UK childhood vaccine				
25 26	186	schedule are recorded in CHIS for each child.			
27 28 29 30	187	Table 1: Case definitions by health data set			
31 32		Data set	Case definition		
33 34		Nosocomial and	Nosocomial – Laboratory confirmed rotavirus case. Gastroenteritis		
35 36 27		community acquired	symptoms beginning more than two days after admission		
38 30			Community acquired – Laboratory confirmed rotavirus case.		
40 41		Gastroenteritis symptoms starting within two days of admission			
42 43		Hospital admissions	Rotavirus case definition - Inpatient finished consultant episodes (FCE)		
44 45			with a primary or subsidiary diagnosis International Classification of		
46 47			Disease version 10 (ICD10) diagnosis code of A08.0		
48 49			AGE case definition – inpatient FCE with a primary or subsidiary		

Emergency department

attendances

excluded to prevent duplication in hospital admissions)

Attendance with a primary or secondary diagnosis code Z:III

Gastrointestinal conditions-Other (those subsequently admitted

diagnosis ICD10 code of A08 -- A09

	GP Consultations	GP consultations (Read codes in parenthesis): <u>Diarrhoea and vomiting</u>
		(19G); Diarrhoea symptom NOS (19F6), Viral Gastroenteritis (A07y0),
		Diarrhoea (19F2); Gastroenteritis - presumed infectious origin (A0812),
		Diarrhoea of presumed infectious origin (A083); Infantile viral
		gastroenteritis (A07y1); Infectious gastroenteritis (A0803); Enteritis due
		to rotavirus (A0762); and, Infectious diarrhoea (A082) vomiting (1992.),
		diarrhoea (19F2) and viral gastro-enteritis (A07y0). Viral gastro-enteritis
		will be used as the primary case definition but diarrhoea/vomiting will
	C C	be used for a secondary indicator of burden.
	Community consultations	There is no coding system for diagnosis in Walk-in-Centre data.
	(Walk-in-Centres)	Therefore the description of patient symptoms field will be queried
		using the following key words: diarrhoea, vomiting, GI and
		gastroenteritis. A Soundex script will be used to allow for spelling
		inaccuracies.
	Laboratory detections	Detection of rotavirus in a faecal specimen by a standard assay.
		Detection of other AGE causative organisms
)	Quality control	
	Data sources such as HES a	ind laboratory detections will be influenced by testing practices; for instance
	testing of some organisms	is more likely to occur at certain times of the year. In the hospital admission da
	set it is possible that some	cases of RVGE will not be coded as rotaviral enteritis (ICD10: A08.0) and may b
	classified as other-unspeci	fied either due to an absence of laboratory confirmation or misclassification /
	miscoding. In order to atte	mpt to quantify this information bias the investigator team will perform qualit
	control on hospital admissi	ions and laboratory detections at the lead NHS Trust hospital site (Alder Hey).
	Using a sample of cases fro	om at least 3 years, those cases with a laboratory confirmation will be checked
	against clinical records and	I clinic coding and those coded as ICD10 A08.0 rotaviral enteritis will be cross-

1 2	198	matched against laboratory detections. Based on the results of thise assessmentaudit, it may be
3 4	199	necessaryapplicable to adjust the recorded number of hospital admissions for any ascertainment bias
5 6 7	200	identified.
7 8 9 10	201	Ethical considerations
11 12	202	The study has been approved by NHS Research Ethics Committee, South Central-Berkshire REC Reference:
13 14 15	203	14/SC/1140We do not foresee a requirement to obtain ethical approval for this ecological study, as analysis
15 16 17	204	will be conducted using routinely collected aggregated data. DHowever, a data sharing agreement will be
18 19	205	obtained between PHE, participating NHS Trusts and the University of Liverpool. Research governance
20 21	206	approval will be sought form all participating NHS Trusts. Ethics approval for quality control of data will be
22 23	207	sort from NHS Research Ethics Committee if required.
24 25 26 27	208	Data analysis
28 29	209	Changes in trends of primary care consultations, community consultations, ED attendances, hospitalisations
30 31	210	and rotavirus detections will be explored using interrupted time series analysis. Moving averages will be
32 33	211	examined to highlight any long-term trends whilst smoothing out any short-term fluctuations. Standardized
34 35 36	212	population based rates for a minimum of a three-year period prior to vaccination and year on year after
37 38	213	vaccination (for three years) will be compared. For the regression analysis, Poisson regression will be used.
39 40	214	We will first compute monthly population based rates that are "expected" to occur in the absence of a
41 42	215	rotavirus vaccination programme by fitting the model to pre-vaccine data. We will then adjust for
43 44	216	seasonality. The model will be used to estimate "expected" population based rates after vaccination and we
45 46	217	will then compare with "observed" population based rates. We will then calculate rate ratios and assess the
47 48 40	218	magnitude of decline in rates. Using a Poisson regression model, and including demographic and vaccine
49 50 51	219	uptake indicators we would be able to predict impact of vaccination on the AGE and RVGE indicators at
52 53	220	various services and vaccine uptake levels. Potential data biases will be controlled for by the access and
54 55 56 57	221	analysis multiple health data sources over a minimum of six years.

Environmental factors which may influence rotavirus incidence and seasonality are difficult to identify or indeed quantify. To account for any potential environmental confounders, correlation of laboratory confirmations of viral gastroenteritis causing organisms (e.g. norovirus, astrovirus) with rotavirus laboratory confirmations will be established. If a significant correlation between any other viral gastroenteritis and rotavirus can be identified, the resulting correlation coefficients will be used to estimate relative contribution of vaccination and undefined environmental factors to any changes in rotavirus incidence. Furthermore we will explore a potential <u>"rebound" effect on anreciprocal</u> increase in other viral agents (e.g. norovirus) due to a decrease in circulating rotavirus, and potential increase in susceptible individuals particularly in those under 5 years of age. Power calculation Based on hospital admissions for RVGE in 2012 obtained from HES data, the estimated rate of RVGE hospitalisation is approximately 1 per 1,000 children under age 5 years in England. [19] Assuming reductions in this rate between 25% and 75%, with and high vaccine uptake rates (i.e. 95%), similar to uptake of other routine childhood vaccines in Merseyside, we used a one sample comparison of proportions for a two sided test to calculated the power estimates shown in (<u>T</u>table 2). Studies from other high income countries on the population effects of rotavirus vaccination have shown reductions in hospital admissions of over 50% in children under 5 years of age [14]. Assuming Supposing a similar reduction in Merseyside, this study has is powered at over 90% power to detect a significant change in RVGE hospital admissions.

Table 2: Predicted power of study for main outcome (hospitalisation rate) in Merseyside and selected sub districts.

Area	Population	Assumed reduction in rotavirus hospitalisation rate				
	(children <5 years)	25%	30%	40%	50%	75%
Liverpool	27000	0.22	0.31	0.56	0.82	1
Liverpool and Sefton	41000	0.34	0.48	0.78	0.96	1
Liverpool, Sefton and Knowsley	50000	0.41	0.58	0.87	0.99	1
Merseyside	80000	0.63	0.8	0.98	1	1

	242	
	243	The study is also powered for detecting an indirect effect in adults. Using an AGE hospital admission rate of 7
	244	per 1,000 population aged 15+ years [19] we would expect power to be at least 0.97 for Merseyside at
2	245	assumed hospitalisation rate reductions post vaccination of 5%, 8%, and 10%. Additionally, for GP
) 1 2	246	consultations in the children under five, using case definitions defined above a power of 0.89 and 1 can be
2 3 4	247	achieved, for detecting a significant change in GP consultations. For assumed consultation rate reductions
5	248	post vaccination of 5% and 10% respectively. No formal power calculations have been undertaken for other
7 3	249	end-points under study.
9 0 1 2	250	Timeline
3 4	251	The study will be conducted over a three year period beginning in April 2014. Prior to study commencement,
5	252	which includes time for administrative procedures willto be undertaken includingsuch as data sharing
7 3	253	agreements, consultation with data providers, database development for storing all sourced data, data
9) 1	254	analysis and report writing (including interim yearly, final and peer review papers).
2 3 4	255	Project governance
5 6 7	256	A stakeholder group within Merseyside will be established to enable effective achievement of the project
7 3 9	257	objectives and ownership by the professional community. The stakeholder group will include representatives
) 1	258	from: Liverpool Health Partners;[30] Liverpool Community Health NHS Trust;[31] NHS England Merseyside
2 3	259	Area Team Screening and Immunisation Team; [32] Alder Hey Children's NHS Foundation Trust [33] and Public
4 5	260	Health England[34]-Liverpool.
5 7 3 9	261	Dissemination of research findings
) 1	262	The findings will be presented at professional and scientific conferences. The results will also be published in
2 3	263	peer review publications. Interim and final reports will be submitted to the funders and the stakeholder
4 5	264	group.
5 7 3 9	265	DISCUSSION
J		12 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

This study will enable demonstration of a complete health system perspective of the impact of rotavirus vaccination on the burden of disease in Merseyside, UK. It aims to study both direct and indirect effects of routine rotavirus vaccination. The study will also enable data on vaccine efficacy to infer the relative contribution of RVGE to AGE primary care, and emergency care consultations. Furthermore as data will be linked to specific geographical units, for which information on socioeconomic deprivation and vaccine uptake is available, we will be able to explore the association of these with overall vaccine effectiveness disease burden. Quality control procedures audits contained within the study will provide a means of adjusting analysis for information bias and also enable identification of the key data collection issues that require improvement to maximise the usefulness of this surveillance approach. It is also hoped that this study will provide a learning resource and template for similarfuture ecological approaches to examine vaccine effectiveness of other vaccines studies in the UK in the future.

277 Strengths

A whole health system approach in a geographically defined area provides a number of strengths. Using data sets from a range of health care providers within a health economy will allow us to examine the relative impact of vaccination on the various health providers rather than the individual. The use of multiple data sources to measure independent indicators of vaccination effect will also provide robustness, enabling easier identification of outliers from overall trends.

Since there is annual variability in the number of rotavirus cases, it is imperative to conduct surveillance of
rotavirus incidence over a number of years pre- and post- vaccine introduction. This study will provide a
mechanism to do this as it will cover three rotavirus seasons post vaccine introduction. Thus cofounding
caused by yearly variance in rotavirus numbers will be minimised.

There are limited published data describing the indirect effect of routine vaccination on un-vaccinated older
children and adults (herd protection) and the majority of studies have focused on hospital admissions. As
this study will collect data for all ages and cover RVGE and AGE incidence 3 years post-vaccination it will
provide sufficient data for measurement of the herd-indirect effect on hospital admissions. Additionally,
whilst the majority of studies into the indirect effect of vaccination have focused on hospital admissions. this

BMJ Open

1 2	292	study will <u>examine provide evidence for impact on the</u> -indirect effect <u>s</u> in emergency departments<u>EDs</u> and
3 4	293	community settings. This is particularly important as it is perhaps more likely that moderate/severe RVGE in
5 6 7	294	un-vaccinated older children and adults will be treated at emergency departmentsEDs and through
7 8 9	295	community consultations.
10 11	296	Another potential strength of the study is the ability to conduct analysis at small community (LSOA) level.
12 13	297	This will enable small area socio-demographic information such as <u>socioeconomic</u> deprivation to be included
14 15 16	298	in the analyses as a covariate at the lowest possible unit of analyses other than the individual. Thus, allowing
17 18	299	the exploration of the association between socioeconomic deprivation, burden of RVGE / AGE and vaccine
19 20	300	uptake whilst limiting the ecological fallacy of analysis.
21 22 23	301	As many of the data sources included in this study do not include specific RVGE classification, we are-will be
24 25	302	using AGE as an outcome measure for most data_sets. Laboratory detections data which are organism
26 27	303	specific will allow us to adjust these measures based on the seasonal contribution of organisms other than
28 29	304	rotavirus such as norovirus. For example RVGE seasonality is fairly constant but that of norovirus tends to
30 31	305	vary over the winter and spring months in the UK. These AGE indicators can therefore be adjusted for
32 33	306	changes in norovirus seasonality (Figure 3)[35] to give a better proxy of the contribution of rotavirus to
34 35 36	307	overall GI causes and the relative impact of rotavirus vaccination
37 38 39	308	Limitations
40 41	309	The gold standard for measurement of vaccine efficacy is the randomised controlled trial. However, this
42 43	310	ecological study will investigate the impact of vaccination on population disease burden within a health
44 45	311	system; therefore an ecological study is appropriate. Conversely it is recognised an ecological approach
46 47 48	312	cannot show individual level effects of vaccine and can only infer the impact of the vaccine at the population
49 50	313	level without causation. Additionally, a key focus of this study is will be to quantify variation in the outcomes
51 52	314	measured according to vaccine uptake levels and socioeconomic deprivation. Confounding may be an issue
53 54	315	since cases living in areas with low vaccine uptake or high socioeconomic deprivation may also have other
55 56 57	316	characteristics that will affect the risk of RVGE or AGE.

For measures of AGE activity in community settings (e.g. GP and Walk-in-Centre), we will use syndromic
indicators that are non-specific to rotavirus e.g. diarrhoea, vomiting. An inherent issue is that the ability to
detect effect on these is likely to be limited to large effects rather than small variations.

A further limitation of the study is that investigators <u>will not collect data-be</u> in control of directly data collection as all data are secondary, <u>with and the</u> consequent risk of bias<u></u> that this brings. There is potential for clinical coding to lead to misclassification of disease, and this misclassification may vary by different data sources. We will describe these biases through quality control and subsequently adjust for them at the analysis stage. The use of multiple data sets for outcome indicators limits these issues by improving robustness.

It is likely that there have been changes in data collection methods over the study period, for example changes to the assay used for rotavirus laboratory testing, leading to testing bias. One way to adjust for this in the analysis is to pool data over a number of years to smooth fluctuations caused by changes in testing methods. The investigators will identify changes through contact with rotavirus testing laboratories and NHS Trusts, so that changes may be described and where possible assist appropriate analytical adjustments. It is also feasible that the introduction of vaccination may also trigger changes in clinician requests for rotavirus and other AGE diagnostic testing, particularly in the vaccination age group. Any possible testing bias will be assessed at the lead NHS Trust via comparisons with pre-vaccine testing probabilities.

The study currently <u>does-will</u> not include any economic component<u>.</u> which given the cost of rotavirus to the health service is essential. However, previous studies have reported the likely cost-effectiveness of rotavirus vaccination for the population under 5 years of age.[36] This study <u>would-will</u> provide the results and data necessary for economic evaluation based on the direct and indirect impact of rotavirus vaccination.

338 FOOTNOTES

339 Contributions

340 DH participated in the design of the study, will oversee the study co-ordination, data collection and analysis,
 341 and wrote the manuscript. RV conceived of the study and participated in its design; and will contribute to

1 2	342	study co-ordination and analysis. MIG conceived of the study and participated in its design; and will
3 4	343	contribute to study co-ordination. NF conceived of the study and participated in its design; and will oversee
5 6	344	study co-ordination and contribute to analyses. NC conceived of the study, participated in its design and will
7 8 9	345	contribute to study co-ordination. All authors were involved in revising the manuscript and read and
10 11	346	approved the final manuscript.
12 13	347	Acknowledgements The authors gratefully acknowledge the effort and assistance provided by all the
15	348	research and development staff, laboratory technicians, data entry staff and support staff at the
10 17 18	349	collaborating sites. This work is support by the GlaxoSmithKline Biologicals. The funding body had no role in
19 20	350	the study design, the collection, analysis and interpretation of data, the writing of the manuscript, or the
21 22 22	351	decision to submit the manuscript for publication.
23 24 25 26	352	Funding
27 28	353	This study will beis in part supported (approximately 35% of total cost) by GlaxoSmithKline Biologicals SA.
29 30	354	GlaxoSmithKline Biologicals SA was provided the opportunity to review a preliminary version of this
31 32 33	355	manuscript for factual accuracy but the authors are solely responsible for final content and interpretation.
34 35	356	The authors received no financial support or other form of compensation related to the development of the
36 37	357	manuscript. This work is to be partially supported by GlaxoSmithKline Biologicals, Belgium, including salary
38 39	358	contributions to the lead author DH and resources for quality control of data sources.
40 41	250	Competing interests
42 43	229	
44 45	360	Financial competing interests
46 47 48	361	The Rotarix [™] vaccine used in the UK national immunisation programme evaluated by this study is developed
49 50	362	and licensed by GlaxoSmithKline Biologicals. NC is in receipt of research grant support from GSK Biologicals
51 52	363	(to University of Liverpool) and has received honoraria for participation in GSK Rotavirus Vaccine Advisory
53 54 55	364	Board Meetings.
56 57 58 59	365	Non-financial competing interests
60		16
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

366 The authors declare that they have no non-financial competing interests.

Peer review The protocol was peer reviewed externally and internally prior to sponsor and ethical approval.

368 Ethics approval The study has been approved by NHS Research Ethics Committee, South Central-Berkshire

369 <u>REC Reference: 14/SC/1140The study has received NHS ethics approval.</u>

References

Tate JE, Burton AH, Boschi-Pinto C, *et al.* 2008 estimate of worldwide rotavirus-associated mortality in
 children younger than 5 years before the introduction of universal rotavirus vaccination programmes: a
 systematic review and meta-analysis. *Lancet Infect Dis* 2012;**12**:136–41. doi:10.1016/S1473 3099(11)70253-5

- Tam CC, Rodrigues LC, Viviani L, *et al.* Longitudinal study of infectious intestinal disease in the UK (IID2
 study): incidence in the community and presenting to general practice. *Gut* 2012;**61**:69–77.
 doi:10.1136/gut.2011.238386
- 379 3 Harris JP, Jit M, Cooper D, *et al.* Evaluating rotavirus vaccination in England and Wales. Part I. Estimating
 380 the burden of disease. *Vaccine* 2007;**25**:3962–70. doi:10.1016/j.vaccine.2007.02.072
- 3814Cunliffe NA, Booth JA, Elliot C, et al. Healthcare-associated viral gastroenteritis among children in a large382pediatric hospital, United Kingdom. Emerg Infect Dis 2010;16:55–62. doi:10.3201/eid1601.090401

- 386 6 Iturriza-Gómara M, Cunliffe N. Rotavirus vaccine: a welcome addition to the immunisation schedule in the UK. *BMJ* 2013;**346**:f2347.
- 388 7 Nakagomi O, Iturriza-Gomara M, Nakagomi T, *et al.* Incorporation of a rotavirus vaccine into the national immunisation schedule in the United Kingdom: a review. *Expert Opin Biol Ther* 2013;13:1613–21. doi:10.1517/14712598.2013.840285
- 6
3913918
Soares-Weiser K, Goldberg E, Tamimi G, et al. Rotavirus vaccine for preventing diarrhoea. Cochrane
Database Syst Rev 2004;:CD002848. doi:10.1002/14651858.CD002848.pub2
- 3939World Health Organization. Rotavirus vaccines. Relevé Épidémiologique Hebd Sect Hygiène Secrétariat394Société Nations Wkly Epidemiol Rec Health Sect Secr Leag Nations 2007;82:285–95.
- 339510Soares-Weiser K, Maclehose H, Bergman H, et al. Vaccines for preventing rotavirus diarrhoea: vaccines3396in use. Cochrane Database Syst Rev 2012;11:CD008521. doi:10.1002/14651858.CD008521.pub3
- 397 11 Rotavirus vaccines WHO position paper: January 2013 Recommendations. *Vaccine* 2013;**31**:6170–1.
 398 doi:10.1016/j.vaccine.2013.05.037

Pockett RD, Adlard N, Carroll S, *et al.* Paediatric hospital admissions for rotavirus gastroenteritis and
 infectious gastroenteritis of all causes in England: an analysis of correlation with deprivation. *Curr Med Res Opin* 2011;**27**:777–84. doi:10.1185/03007995.2011.555757

1 2 3 4	399 400 401	12	World Health Organization. Rotavirus vaccines. WHO position paper – January 2013. <i>Relevé</i> Épidémiologique Hebd Sect Hygiène Secrétariat Société Nations Wkly Epidemiol Rec Health Sect Secr Leag Nations 2013; 88 :49–64.
5 6 7 8 9	402 403 404	13	PATH. Country introductions Maps and list – Rotavirus Vaccine Access and Delivery - PATH. http://sites.path.org/rotavirusvaccine/rotavirus-advocacy-and-communications-toolkit/country- introduction-maps-and-list/ (accessed 7 Jul2014).
10 11 12	405 406	14	Parez N, Giaquinto C, Du Roure C, <i>et al</i> . Rotavirus vaccination in Europe: drivers and barriers. <i>Lancet Infect Dis</i> 2014; 14 . doi:10.1016/S1473-3099(14)70035-0
13 14 15 16 17	407 408 409 410	15	Health and Social Care Information Centre. NHS Immunisation Statistics, England -2012-13. England: : Health and Social Care Information Centre 2013. http://www.hscic.gov.uk/searchcatalogue?q=title%3A%22NHS+Immunisation+Statistics%22&area=&siz e=10&sort=RelevanceDesc (accessed 17 Apr2014).
18 19 20	411 412	16	Public Health England. Early evidence of the impact of the national rotavirus immunisation programme. <i>Health Prot Rep Wkly Rep</i> 2014; 8 .
21 22 23	413 414	17	Patel MM, Glass R, Desai R, <i>et al.</i> Fulfilling the promise of rotavirus vaccines: how far have we come since licensure? <i>Lancet Infect Dis</i> 2012; 12 :561–70. doi:10.1016/S1473-3099(12)70029-4
24 25 26 27	415 416	18	Lopman BA, Curns AT, Yen C, <i>et al</i> . Infant rotavirus vaccination may provide indirect protection to older children and adults in the United States. <i>J Infect Dis</i> 2011; 204 :980–6. doi:10.1093/infdis/jir492
28 29 30 31	417 418 419 420	19	Health and Social Care Information Centre. Hospital Episode Statistics. Admitted Patient Care, England - 2012-13: Diagnosis. Health Soc. Care Inf. Cent. 2014.http://www.hscic.gov.uk/searchcatalogue?productid=13264&q=title%3a%22Hospital+Episode+Sta tistics%2c+Admitted+patient+care+-+England%22&sort=Relevance&size=10&page=1#top
32 33 34 35 36	421 422 423	20	Braeckman T, Van Herck K, Meyer N, <i>et al.</i> Effectiveness of rotavirus vaccination in prevention of hospital admissions for rotavirus gastroenteritis among young children in Belgium: case-control study. <i>BMJ</i> 2012; 345 :e4752.
37 38 39 40	424 425 426	21	Bayard V, DeAntonio R, Contreras R, <i>et al.</i> Impact of rotavirus vaccination on childhood gastroenteritis- related mortality and hospital discharges in Panama. <i>Int J Infect Dis</i> 2012; 16 :E94–E98. doi:10.1016/j.ijid.2011.09.003
41 42 43 44	427 428 429	22	Buttery JP, Lambert SB, Grimwood K, <i>et al.</i> Reduction in rotavirus-associated acute gastroenteritis following introduction of rotavirus vaccine into Australia's National Childhood vaccine schedule. <i>Pediatr Infect Dis J</i> 2011; 30 :S25–29. doi:10.1097/INF.0b013e3181fefdee
45 46 47	430 431	23	Cortese MM, Immergluck LC, Held M, <i>et al</i> . Effectiveness of monovalent and pentavalent rotavirus vaccine. <i>Pediatrics</i> 2013; 132 . doi:10.1542/peds.2012-3804
48 49 50	432 433	24	Field EJ, Vally H, Grimwood K, <i>et al</i> . Pentavalent rotavirus vaccine and prevention of gastroenteritis hospitalizations in Australia. <i>Pediatrics</i> 2010; 126 :e506–512. doi:10.1542/peds.2010-0443
51 52 53 54 55	434 435 436	25	Rissardo L, Karina, Furlan MCR, Marcon S, Silva, <i>et al.</i> Hospital morbidity before and after vaccination program against rotavirus in the state of ParanÃi-Brazil: descriptive- ecological study [Portuguese]. <i>Online Braz J Nurs</i> 2010; 9 :1–1.
56 57 58 59	437 438	26	Pendleton A, Galic M, Clarke C, <i>et al.</i> Impact of rotavirus vaccination in Australian children below 5 years of age A database study. <i>Hum Vaccines Immunother</i> 2013; 9 :1617–25. doi:10.4161/hv.24831
60			18

1 2 3	439 440	27	Paulke-Korinek M, Kollaritsch H, Aberle SW, <i>et al.</i> Sustained low hospitalization rates after four years of rotavirus mass vaccination in Austria. <i>Vaccine</i> 2013; 31 :2686–91. doi:10.1016/j.vaccine.2013.04.001
4 5	441	28	Department for Communities and Local Government. The English Indices of Deprivation 2010. England: :
6	442		Department for Communities and Local Government 2011.
7	443		https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/6871/1871208.pdf
8 9	444		(accessed 14 Jan2014).
10	445	29	Office for National Statistics, Super Output Area Population Estimates - Mid-2011 (Census Based), Off.
11	446		Natl. Stat. 2013. http://www.ons.gov.uk/ons/rel/sape/soa-mid-year-pop-est-engl-wales-exp/mid-2011
12 13	447		census-based-/stbsuper-output-areamid-2011.html (accessed 17 Apr2014).
14 15	448	30	Liverpool Health Partners. http://www.liverpoolhealthpartners.org.uk/index.html
16 17	449	31	Liverpool Community Health NHS Trust. http://www.liverpoolcommunityhealth.nhs.uk/
18 19	450	32	NHS England Merseyside Area Team. http://www.england.nhs.uk/north/mers-at/
20 21	451	33	Alder Hey Children's NHS Foundation Trust. http://www.alderhey.nhs.uk/
22 23	452	34	Public Health England. https://www.gov.uk/government/organisations/public-health-england
24	152	25	lit M. Edmunds WI. Evaluating rotavirus vaccination in England and Wales. Part II. The potential cost-
25	455	22	offectiveness of vascination. Vascina 2007; 25 :2071. 0. doi:10.1016/j.vascina.2007.02.070
26	454		
27	155	26	Public Health England, Field Enidemialogy Service North West, North West Infectious Intestinal Disease
28	455	50	Activity Winter 2012/14 Pulloting Wook 44, Public Hoalth England 2012
29	450		Activity Willer 2015/14 Bulletin. Week 44. Public Realth England 2015.
30	457		http://www.hpa.org.uk/webc/hPAwebrile/hPAweb_c/131/14023/031
31	158		
32	450		
১১ 3∕।	450	لم ۸	ditional figure titles and legende
35	459	Au	unional ligure unes and legends
36			
37	460		
38	460	Fig	ure 1. <u>Socioeconomic deprivation indices of multiple deprivation in Merseyside</u>
39			
40	461	Pro	duced using the English Indices of Deprivation 2010, pational quintiles for the lindex of Megultiple
41	401	110	duced using the English maters of Deprivation 2010, hattonal quintiles for the index of minutiple
42	162	Dde	anrivation [19]
43	402		-privation [15].
44 45			
40	463	Fig	ire 2. Schematic of study data sources and outcome measures
40 47	105		
47 10			
40 10	464	Dat	a sources cover a variety of health care providers at different levels of the health system. This shows
49 50			
50 51	465	fro	n which data sources outcome measures will be obtained.
52			
53			
54	466	Fig	ure 3. Laboratory detections of rotavirus and norovirus in the North West, England, 2009/10-2013-14
55			, , , , , , , , , , , , , , , , , , ,
56			
57	467	Lab	oratory reports are from LabBase2 system at Public Health England [35], showing variation in the
58			
59	468	nor	ovirus season as compared to the rotavirus season.
60			·
			19 For noor roviou only - http://bmionon.hmi.com/sita/shout/guidalinos yhtml
			i or peer review only - mup.//binjopen.binj.com/site/about/guidennes.xntini

Produced using the English Indices of Deprivation 2010, national quintiles for the index of multiple deprivation [19]. 210x148mm (300 x 300 DPI)

Laboratory reports are from LabBase2 system at Public Health England [35], showing variation in the norovirus season as compared to the rotavirus season. 90x67mm (300 x 300 DPI)