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Cell culture and purification 

Fetal livers were harvested from E14.5 pregnant mice and used as a source of all cell 

populations in this study. For purification of primary mouse fetal erythroblasts, the fetal 

liver cell suspension was labeled with a PE-conjugated anti-Ter119 antibody. EasySep 

PE Selection Kit (#18554) was then used to purify Ter119-positive, PE-labeled 

erythroblasts.  

For MEG production, we used the mouse CD117 (cKit) EasySep selection kit (#18757) 

to purify cKit-positive hematopoietic progenitors in full accordance with the 

manufacturer’s recommendations. The cKit-positive cells were incubated for 4-6 days in 

a cell culture medium containing mouse stem cell factor (mSCF) and thrombopoietin 

(TPO) to promote expansion of MEG progenitors. The cells were then washed and 

incubated for 5 more days in a cell culture medium in the presence of TPO alone to 

promote terminal MEG differentiation. EasySep PE Selection Kit (#18554) was used to 

purify CD14-positive MEG labeled with a PE-conjugated anti-CD41 antibody.   

For purification of HSPC, the E14.5 fetal liver cell suspension was enriched for 

hematopoietic progenitors using EasySep Hematopoietic Progenitor Cell Enrichment Kit 

(#19756). Briefly, fetal liver cell suspension was stained with biotinylated antibodies 

against lineage antigens (CD5, CD11b, CD19, CD45R, Ly-6G/C, Ter119, CD71), 

followed by removal of lineage-positive cells using a magnetic bead protocol. The 

resulting population was stained with an APC-conjugated anti-Sca-1 antibody, and the 

Sca1-positive hematopoietic progenitors (HSPC) were purified by FACS sorting. Non-

viable cells and cellular debris were excluded based on forward and side scatter 

characteristics. 

 

Transcriptome analysis  

mRNA was extracted with phenol-chlorophorm and further purified using Qiagen 

RNeasy purification kit.  GeneChip® Mouse Gene 1.0 ST Arrays were used to 

interrogate genome-wide mRNA expression of HSPC, MEG and ERY cells using 4 

biological replicates for each cell type. The raw hybridization data were corrected for 

background, quantile-normalized and log2-transformed using RMA (Irizarry et al., 2003). 

Probesets were then filtered to keep only those that had expression values more than 

8.69 for at least 1 sample. This cutoff value was calculated as 95th percentile of the 
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distribution of expression values for negative control probes across all samples. The 

filtering resulted in 8684 probesets. All probesets were then tested for differential 

expression between each pair of groups and corrected for multiple testing by the 

Benjamini-Hochberg approach. Then, we removed 1171 probesets to keep only those 

that represented unique transcripts, preferentially discarding redundant probesets with 

the smallest significant fold change between the three cell types. The filtering resulted in 

a final list of 7513 probesets significantly expressed in at least one sample of at least 

one cell type. We used the HSPC transcriptome as a reference point to define the 

developmental changes in gene expression during mono-lineage differentiation. For 

MEG vs. HSPC and ERY vs. HSPC comparisons, genes that significantly (FDR < 5%) 

changed more than 2-fold relative to the expression level in HSPC were considered to 

be developmentally up- or down-regulated. Genes whose expression was altered 

insignificantly (nominal p > 0.05) or less than 1.2-fold were considered to be unchanged 

(Figure 2A). Genes that changed between 1.2 and 2-fold were considered 

indeterminable and not examined further in this study. Differential expression of selected 

signature genes was confirmed by TaqMan RT-PCR (Supplemental Figure7). 

A heatmap for a list of genes was composed using hierarchical clustering with Spearman 

correlation distance to cluster genes (Supplemental Figure 7A), or using predefined 

gene clustering with genes separated into 9 groups according to the bilineage MEG/ERY 

pattern of expression relative to that of HPSC (Figure 3A). Heatmap color intensities 

were proportional to the value calculated as a ratio between the gene expression in a 

single sample and the geometric mean expression of the gene across a set of samples.  

 

Chromatin immunoprecipitation and massive parallel DNA sequencing  

For each transcription factor-cell type combination, ChIP-seq was performed on two to 

four biological replicates. We used the approach of irreproducible discovery rate at a 

threshold of 0.02 to determine the number n of reproducible peaks in the replicate 

datasets (Landt et al., 2012; Li et al., 2011). Peaks were called on the combined reads 

from all replicates and the top n peaks were taken as the set of high confidence peaks. 

This is a very conservative method for thresholding, and we also generated a larger set 

of quality peaks, called the reduced stringency peaks, by applying a threshold based on 

the p-value of the least significant peak in the top 90% of reproducible peaks (the 

threshold p-values ranged from 10-80 to 10-160; a detailed description is presented below) 
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The high stringency set of peaks was used for all analyses, and for cases in which the 

smaller number of peaks could affect the interpretation, the analysis was repeated for 

the larger set of reduced stringency peaks. For all samples except GATA2 in 

megakaryocytes two to four biological replicates were performed.  

 

Antibodies used 

(1) TAL1: Santa Cruz Biotechnology, sc-12984 (2) GATA1: Santa Cruz Biotechnology, 

sc-265 (3) FLI1: Santa Cruz Biotechnology, sc-356 (4) GATA2: Santa Cruz 

Biotechnology, sc-9008 (5) H3K4me1: Abcam, ab8895 (6) H3K4me3: Millipore catalog 

number 07-473 (7) H3K27me3: Millipore catalog number 07-449 

 

ChIP 

ChIP assay was performed as previously described (Welch et al., 2004). Briefly, 75 

million cells in PBS were crosslinked for 10 mins by adding formaldehyde at a final 

concentration of 0.4% and glycine was added at a final concentration of 125mM to 

quench cross-linking. For megakaryocytes, which are multiploid (6–64N), ~12 million 

cells in PBS were used for each ChIP assay. Cells were then lysed followed by nuclear 

lysis and sonication to shear the cross-linked chromatin. A Misonix S-4000 sonicator 

was used to shear samples in 8 repeats of 30 cycles of 1 sec. on, 1 sec. off sonication at 

output power 30. Fragments in the size range of 200-400bp were obtained. Sonicated 

chromatin was pre-cleared overnight at 4°C with 20 µg appropriate non-immune sera 

(IgG) on protein G agarose beads. 20 µg of the appropriate ChIP antibody were also 

pre-bound to protein G agarose beads overnight at 4°C. For binding, pre-cleared 

chromatin was added to the antibody:bead complex and incubated with rotation at 4°C 

for 2 – 4 hours. 200 µL of pre-cleared chromatin was saved for use as input. After 

binding, the beads were washed with wash buffers, high-salt buffer and TE. DNA:protein 

complexes were eluted from beads into an elution buffer (1% SDS, 100mM NaHCO3). 

After adding 5M NaCl to ChIP and input samples, they were incubated overnight at 65 

°C with 1µg RNase A. To digest protein, each sample was treated with 60 µg Proteinase 

K for 2 hours at 45 °C and immunoprecipitated DNA was finally extracted using the 

Qiagen PCR Purification Kit.  

 

Illumina Library Preparation 
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All samples including input were processed for library construction for Illumina 

sequencing using Illumina’s ChIP-seq Sample Preparation Kit. DNA fragments were 

repaired to generate blunt ends and a single ‘A’ nucleotide was added to each end. 

Double-stranded Illumina adaptors were ligated to the fragments. Ligation products were 

amplified by 18 cycles of PCR, and the DNA between 250-350 bp was gel purified. 

Completed libraries were quantified with Quant-iT dsDNA HS Assay Kit. The DNA library 

was sequenced on the Illumina Genome Analyzer II sequencing system, and more 

recently on the HiSeq. Cluster generation, linearization, blocking and sequencing primer 

reagents were provided in the Illumina Cluster Amplification kits. 

 

Data processing, peak calls, assessment of quality and reproducibility of ChIP-seq 

data 

 

Data processing and peak calling 

Raw ChIP-seq reads were first groomed using FASTQ Groomer on Galaxy 

(Blankenberg et al., 2010; Giardine et al., 2005; Goecks et al., 2010). This program 

verifies that each base call has a corresponding quality value, and that the quality value 

is in the Sanger Phred+33 format. Groomed reads were then mapped to mouse mm9 

genome using Bowtie (Langmead et al., 2009) using the parameters –m = -1 (no limit), -

k = 1, and –best, thus allowing reads to map to multiple locations, but reporting only the 

single, best alignment. This option was chosen to allow reads to map in duplicated 

regions such as those containing the Hba genes. The mapped reads for a transcription 

factor as well as input reads for the appropriate cell line are then passed to MACS 

(Zhang et al., 2008) for peak calling using an mfold of 12, p-value threshold of 1e-05 and 

bw set to half the ChIP DNA fragment length as measured on an Agilent Bioanalyzer. To 

insure that all of the experiments were processed consistently, all of the above steps 

were performed as part of a Galaxy workflow, which can be found at 

https://main.g2.bx.psu.edu/u/csm165/w/prototypehardisonchip-seqworkflow---mm9-

canonical-male 

 

Quality assessment 

Another method for measuring the quality of a ChIP-seq experiment, Cross-Correlation, 

was developed by Anshul Kundaje et al (Kundaje et al., submitted) (Landt et al., 2012). 

This analysis uses the cross-correlation profile of the mapped reads from a given 
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experiment to highlight the extent of enrichment achieved by immunoprecipitation. A well 

enriched sample that has been sequenced to sufficient depth should show a peak in the 

cross-correlation profile at a distance equivalent to the average fragment length of the 

sample, as positive and negative strand reads pile up on either side of the position 

occupied by a transcription factor. A sample that is poorly enriched will show a peak at 

approximately the length of the reads generated by the sequencer. A ratio of the heights 

of the peaks at these two positions, the rPhc, can be used as metric for identifying the 

extent of enrichment an experiment achieved. Results of this assessment are 

summarized in the table below. Larger values of rPhc indicate higher quality 

experiments. A summary of the datasets, including number of mapped reads and quality 

assessment metrics is presented in the table below (Supplemental Methods Table 1). 

  



 7 

 
Supplemental Methods Table 1. A summary of ChIP-Seq experiments and data 

analysis. 

 

Consistency analysis for measuring reproducibility between replicates 

 

For all ChIP-seq experiments other than GATA2 in megakaryocytes, a minimum of two 

biological replicates were sequenced. To assess the level of reproducibility between our 

replicates, we used a recently published method, called irreproducible discovery rate 

analysis (IDR), which was designed for analysis of consistency between replicates in 

high-throughput experiments (Li et al., 2011). This method not only reveals the degree of 

Sample! Platform! Mapped.reads! rPhc! Qtag!

ERY!TAL1/SCL! ! ! ! !

Replicate1! GAIIx! +!
HiSeq!

126,692,402! 1.49! 1!

Replicate2! HiSeq! 97,409,304! 1.36! 1!

ERY!GATA1!! ! ! ! !

Replicate1! GAIIx! 33,444,157! 1.54! 2!

Replicate2! HiSeq! 77,520,334! 1.05! 1!

MEG!TAL1!! ! ! ! !

Replicate1! GAIIx! 14,026,574! 2.05! 2!

Replicate2! HiSeq! 105,068,277! 1.00! 1!

Replicate3! HiSeq! 125,755,601! 1.21! 1!

Replicate4! HiSeq! 55,085,957! 0.91! 0!

MEG!GATA1! ! ! ! !

Replicate1! GAIIx! 29,561,738! 1.10! 1!

Replicate2! HiSeq! 82,769,534! 0.84! 0!

Replicate3! HiSeq! 49,859,498! 0.60! 0!

MEG!GATA2!! ! ! ! !

Replicate1! HiSeq! 97,251,129! 0.96! 0!

MEG!FLI1! ! ! ! !

Replicate1! HiSeq! 85,007,549! 0.81! 0!

Replicate2! HiSeq! 108,383,696! 0.92! 0!
!
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reproducibility between replicates, but also provides an objective criterion called the 

irreproducible discovery rate (IDR), to control or report the level of irreproducibility, in a 

fashion similar to the FDR. This method has been used extensively by the ENCODE and 

modENCODE Consortia to objectively identify high-confidence peaks from datasets 

generated by several labs (Mouse ENCODE Consortium et al., 2012).  

 

We performed IDR analysis as described in the ENCODE standards manuscript, with a 

few modifications (Landt et al., 2012). The method is described in detail at 

https://sites.google.com/site/anshulkundaje/projects/idr, (“IDR on original replicates”). 

We used MACS to call peaks with a relaxed p-value threshold of 0.05 for individual 

replicates as well as the pooled data using the following workflows, respectively: 

 

https://main.g2.bx.psu.edu/u/csm165/w/adjustablepvaluehardisonidrpeakcalling  

 

https://main.g2.bx.psu.edu/u/csm165/w/adjustablepooledhardisonchip-

seqworkflow 

 

This resulted in a minimum of 100,000 peaks per replicate, and was expected to contain 

many false positives. The peaks for each pair of replicates were then run through the 

IDR pipeline using the p-values as a ranking measure (‘ranking.measure’ = p.value), with 

overlapping peaks defined as peaks with >=1bp overlap (‘min.overlap.ratio’ =0). As 

recommended on the above IDR webpage, IDR of 0.02 was used as a threshold to 

identify the number N of reproducible peaks from the pairs of replicates. For samples 

with more than two replicates, we performed pairwise consistency analysis for all the 

possible pairs of replicates the reproducible peaks from each pairwise comparison were 

concatenated and merged to give a set of N non-overlapping peaks. We obtained a final 

set of high-confidence peaks for each factor by selecting the top N peaks from the set of 

pooled peaks ranked by fold-enrichment. This is a very stringent set of peaks. We also 

obtained a larger set of less conservative set of peaks, called the confident peaks by 

selecting peaks from the pooled set whose p-value was more significant than TF-90, 

where TF-90 was defined as -10log10(p-value) of the least significant reproducible peak 

out of the top 90th percentile of reproducible peaks. For both sets, ChIP-seq peaks 

overlapping blacklisted regions (see below) were first removed from the set of pooled 
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peaks prior to selection of final peaks. A summary of the IDR results can found in the 

Supplemental Methods Table 2 below. 

 

 
Supplemental Methods Table 2. A summary of the IDR data 

 

Blacklist 

As a final quality filter, we identified a set of genomic locations characterised by very 

high signal in our input or control tracks.  We compiled a set of these locations by using 

MACS to identify peaks in the input tracks.  To this list, we added additional locations, 

which showed elevated input signal over large areas (> 10,000 bp).  We have identified 

the combination of these two groups of segments as a blacklist.  
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Data analysis 

 

Peak intersections 

Overlap between two peak regions was called between two transcription factors in the 

same lineage or between two lineages for the same transcription factors if the 

coordinates overlapped by at least 1 base pair. A gene was considered to be occupied in 

both lineages or by both transcription factors in two different ways: (1) if it had at least 

one peak overlapping the gene region where the “gene” includes 10 kb upstream of the 

TSS and 3 kb downstream of the polyA signal in both compared instances (2) if it had 

overlapped peak regions overlapping the gene region.  

 

Motif enrichment 

Enrichment of a motif was performed de novo, using HOMER algorithm (Heinz et al., 

2010), testing for 8 to 16 base pair motif sequences. For enrichments among a set of 

peaks, a 200 bp window around the center of the peak was used as the target 

sequence. For motif enrichments within a set of genes we used the region from 2000 bp 

upstream to 500 bp downstream from the gene TSS. The canonical binding site motifs 

are enriched in the OSs from both lineages, and thus are not returned in the 

discriminative analysis. 

 

Methylation profiles 

The methylation profile for a set of transcription profile peaks was plotted for the region 

spanning -10 kb to +10 kb from the peak center. We used positive strands with a 200 bp 

window resolution. For heatmap generation, gray-scaled intensities were proportional to 

the significance (-log10 scale) of the methylation signal as compared to control with a 

maximum significance set at log10(P)=10 (black) and minimum log10(P)=0 (white). 

Individual rows were sorted by the significance of transcription factor binding peak signal 

with the methylation profile. 

 

Enrichment of transcription factor occupancy and histone methylation marks 

The Fisher exact test was used to test if occupancy by a transcription factor or the 

presence of a methylation mark is over- or under-represented in a gene group (G) 

compared to all considered genes (A). For n being the number of genes occupied by a 

transcription factor in a gene set and N being a total number of genes in a set, the 
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following values were used for Fisher exact test: Gn, GN-Gn, An, AN-An. The 

enrichment value was calculated as a ratio: Enrichment = Gn/GN/ (An/AN). Enrichments 

of less than 1 (under-representation of a transcription factor binding or a histone 

methylation mark) were converted to -1/enrichment values. Statistical significance was 

defined at p<0.001. 

 

Ingenuity  

Pathway, function and upstream regulator enrichment analysis was carried out with the 

Ingenuity Pathways Analysis software (http://www.ingenuity.com/) using Ingenuity Core 

Analysis (IPA 8.0, Ingenuity® Systems), with Benjamini-Hochberg correction for multiple 

testing and using p<0.05 as a significance threshold.  
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