
In vitro, long-range sequence information for de

novo genome assembly via transposase contiguity

Andrew Adey1, Jacob O. Kitzman1, Joshua N. Burton1, Riza Daza1, Akash Kumar1,

Lena Christiansen2, Mostafa Ronaghi2, Sasan Amini2, Kevin Gunderson2, Frank J.

Steemers2, Jay Shendure1,*

1 Department of Genome Sciences, University of Washington, Seattle, WA 98115, USA

2 Illumina, Inc, Advanced Research Group, 5200 Illumina Way, San Diego, CA 92122, USA.

* To whom correspondence should be addressed.

Supplemental Information

Supplemental Notes

Supplemental Tables S1-S3

Supplemental Figures S1-S11

Detailed fragScaff description

A. Sequence data processing prior to fragScaff

i. Group assignment of reads (optional). CPT-seq default read names are a
concatenation of the four index reads from the sequencing run in the following format:
@[Nextera i7 Index][PCR i7 Index][PCR i5 Index][Nextera i5 Index], which corresponds to:
@[Read 2][Read 3][Read 4][Read 5] of the run. Barcode deconvolution can be performed

using the provided script (CPTseq_barcode_split.pl) that looks at each read in the

full barcode and performs an edit-distance based assignment. If the run is of high quality,
particularly for the index reads, this step can be skipped and fragScaff will only use
perfect-match index reads which will typically result in a loss of roughly 8% of the reads,
though for lower quality runs this can be up to 40% in which case barcode deconvolution
can reduce it down to roughly 5% depending on the run.

ii. Read alignment. Alignment of reads to a reference created from the input contig/scaffold
assembly and creation of a sorted BAM file with valid group and sequence header lines. In
order to be sure these lines are correct it is recommended to first generate a sequence

dictionary for the reference, eg. myReference.fa.dict, and then use the provided

group header (group_header.txt). These can then be used instead of the default

header lines that alignment software will output by using the following call where

“myAlignmentCall” is whatever aligner you prefer that outputs in a sam file format:

(cat myReference.fa.dict group_header.txt &&

 myAlignmentCall | awk ‘($1!~/^@/)’) |

samtools view –bSu – | samtools sort – myOutfile;

B. Input contig/scaffold pre-processing (optional but recommended)

i. N-base bed file. Generation of a bed file that contains the coordinates of all N-base
stretches in the assembly (ie. when the input is in the form of scaffolds and not contigs).
This can be generated using the included script:

fragScaff_generate_Nbase_bed.pl. This file will aid in the determining of node-end

boundaries such that N-bases will not be included and each node end will ideally have the
same number of valid bases.

ii. Repeat bed file. Generation of a bed file that contains all high-identity repeats in the
assembly. This can be generated by performing a blastn alignment of the input assembly

to itself. We recommend using the following blast parameters: –word_size 36 –

perc_identity 95 –outfmt 6. The output can then be filtered using the provided

script (fragScaff_self_blast_to_repeat_bed.pl) followed by sorting and merging

of entries. Alternatively identifying alignments to Repbase also works well.

C. fragScaff algorithm

The fragScaff program has three major stages that can be run independently. This allows for
the first two time consuming stages that require very little parameter optimization to only be
run once and the much quicker graph filtering and manipulation stage with a large amount of
parameter optimization to be run multiple times.

i. Bam file parsing and node determination. In this stage the BAM file is parsed first to
read in the contigs, groups, and then the alignments.

a. Bam header parsing. The header of the BAM file is parsed to read in the names and

lengths of all of the input contigs or scaffolds as well as the names of all of the read
groups (9,216 for CPT-seq).

b. Node ends are determined. The size of the node ends is defined by –E with a default

of 5,000 bp. If a N-base (–N) and/or repeat bed file (–J) is defined, fragScaff will read

in the coordinates and take them into consideration when defining the node

boundaries such that there is a total of –E bases of viable sequence included at each

node end up to a certain maximum limit (–o, default 10,000 bp). If a contig or scaffold

is shorter than –E then then entire contig or scaffold serves as the node and

downstream orientation is not possible. It is also possible for the end nodes to overlap
in the middle of the input scaffold or contig which will therefore result in limited ability
for orientation.

c. Node group hit identification. The reads are then parsed with a defined alignment

quality score threshold (–q, default 10) and read groups determined by either the read

name (–G N, default for CPT-seq), a tag at the end of the read name (–G H), or the

standard RG:Z:[read group] sam field (–G R). If the read aligns to a node it is

considered a hit and stored.

d. bamParse output. After all reads are parsed a “bamParse” file can be generated (if –

b [0/1] is defined, 0 will make the bamParse file and continue, 1 will make the

bamParse file and exit) that contains all of the node and group hit information so that
later runs do not have to parse through the entire BAM file again which can take
several hours for very large BAM files. It is also useful since the BAM parsing is single
thread and the all-by-all shared fraction calculations in the next step are designed to
be multithreaded (see Multithreading box below).

ii. All-by-all shared fraction calculations. In this stage the fraction of shared groups within

any two nodes’ set of groups is calculated. The distribution of this shared fraction for each
node to all other nodes is calculated and the outlier probability score is calculated for each.

a. Node filtering. After the bamParse file has been generated or read in, the nodes can
then be filtered according to several specifications. First, only groups which have a

minimum number (–C) reads that hit a node will be counted as true hits (default is only

1 read for CPT-seq and more for LFR or Fosmid approaches hat have a higher density
of reads). Next, the number group hits for each node is calculated and the nodes on

the extremes of the distribution (minimum and maximum fractional cut set by –d and –

D respectively with defaults of 0.05 and 0.95 to exclude the lowest and highest 5

percent). This allows the removal of nodes that likely have unidentified repeats that
may result in increased false links as well as those that may be improperly assembled
sequence.

It is important to note that the threshold fractions are designed to identify the threshold
hit counts and ensue only that a minimum of the extreme fractions identified will be
excluded. For instance, if a sample has 10% of nodes with zero group hits, the

threshold (with a –d of 0.05) would be set to 0, and the entire 10% at zero would be

excluded. Additionally the option –U exists which allows a minimum number of groups

to have hit the node for inclusion. However the default is set to 0 since nodes included
with a low number of hits, eg. one group, will not produce significant outlier scores and
links would not be established.

b. Node shared fraction calculations. Each node then has its shared fraction with all
other nodes calculated. The shared fraction is defined as the number of groups that hit
both of the nodes over the total number of unique groups that hit either one of the
nodes. After the shared fraction is calculated between the initial node and each other
node, the mean and standard deviation of the shared fractions can be used to
calculate the Gaussian probability of each other node’s shared fraction falling within
the distribution of the initial node’s distribution. The score is then the –log10 of the
Gaussian probability and is calculated for each other node with respect to the initial
node.

c. Link file output. The scores that are above a minimum report threshold (–r, default 1)

are included in the link file output. This file is designed to be inclusive such that later,
more stringent score cutoffs can be used without having to re-do the all-by-all node

calculations. If fragScaff is run with the –A option, it will exit after the generation of the

link file to allow for more control of thread usage as all further steps are single-thread
and much quicker.

Multithreading all-by-all shared fraction calculations.

The all-by-all shared fraction calculations is the most computationally intense portion of
fragScaff and therefore variations of multithreading have been included. This option is
specified by the –t option and can be specified in several ways described below.

-t 1 Single thread. This is the default fragScaff threading option, though is not

recommended as the all-by-all calculations can take some time, especially
when there is a high number of input contigs or scaffolds.

-t [>1] Multithread, single machine. When specifying –t to more than one, this
number of threads will be spun off on the same machine that the parent
instance of fragScaff was run on. It is important to note that these are
separate instances of the fragScaff program and not true multithreading as
this was found to have optimal memory usage. For this run mode the

number of nodes per thread can be set by –S (default is 100) and also the

–k option must be the valid call for fragScaff.

-t Q SGE mode. In this mode qsub functionality will be used. It is required that

the qsub command is callable by the system to use this option. It also has

another set of options to control the qsub job array call in addition to the –

k and –S commands when performing the standard multithreading. –T

allows specification of the max number of jobs to run at a given time (–tc

for the qsub command, default N, which means no throttling but an integer

can be set), and –e is used to define the amount of memory to allocate per

qsub job (default is 2G, but more may be required for large number of
input contigs or scaffolds).

iii. Graph manipulation. In this stage the links are used from the previous step or the link file

is loaded (specified by –K) and edges are created between nodes if they meet various

thresholds. The resulting graph is then manipulated to produce a final node ordering.

a. Score cutoff determination. All links with a score greater than –r (default 1) are

included in the link file and loaded in. However this score is designed to be extremely
permissive and only there to reduce the file size of the links file by eliminating the
majority of potential links that fall well within a node’s shared fraction distribution. To
identify outliers that are true links the score can either be manually set or automatically

determined using the option –p, with the default as –p A for automatic determination.

If –p is set to a value then this score will be used for all link filtering.

For automatic score cutoff estimation (–p A), fragScaff will attempt to determine the

optimum score cutoff based on what seems to have worked on a number of genomes.
First, fragScaff finds the mean number of links across all nodes that would pass a
given threshold score for each integer score ranging from 1 to 200. It then finds the

minimum score threshold such that the mean number of passing links hits –j (default

is 1.25, for a mean of 1.25 passing links per node). Setting –j is highly dependent

on the input assembly and is the most important parameter to tweak during the

scaffolding process. For an assembly with a fairly high N50 (eg. 75+ kbp) setting –j

to 1.25 (the default) seems to work well. However for smaller N50 assemblies (eg. 50
kbp) it is recommended to increase this value as a higher number of links would be
expected due to some links being able to skip a contig and link to the next. Varying this

parameter and even following up by manually setting –p may be necessary.

To reduce the time it takes to run each variant of the link filtering options it is

recommended to have previously generated the bamParse file (specify with –B) and

the link file (specify with –K) so that they do not need to be re-generated, and also to

run using the –A option which will exit after the graph manipulations and not go

through the process of reading in the input assembly fasta file and outputting the final
fasta assembly which is I/O intensive and can take some time, whereas the graph
manipulation steps should take between 1 and 20 minutes depending on the number
of input assembly contigs or scaffolds.

b. Link filtering and edge determination. After the score threshold has been set,
fragScaff will read in all of the links that pass the threshold and perform further filtering
of the links to produce the final edges of the graph. For each node the set of passing
links is first trimmed to include only the maximum scoring set, for which the amount is

determined by –l (default 5), though most nodes should have a number of passing

links below this cutoff. This filtering is done so that the lower-scoring links that may be
more distant are not included, as the high-scoring links are the only ones that are
relevant. An additional filter will entirely remove nodes that have a number of links

greater than –a (default 20) as they are likely due to unidentified repeats, though as

with the –l filtering, very few nodes, if any, should be removed using this filter,

particularly if a repeat bed file is used for the initial BAM parsing.

The next filtering requirement for a link to be used as an edge is that the link is
reciprocated. For instance, if node1 has a passing link to node2, the link from node2 to

node1 must also be passing. This can also be adjusted by the use of the –u option

which is the multiplier of the score cutoff that is required for the link to be considered

valid. The default –u value is 2, which imposes no additional link stringency, however

this can be adjusted to be more inclusive. For instance, a slightly more permissive

score cutoff can be used (either by increasing –j in the automatic determination, or by

specifying a lower –p than the recommended value produces using the default –j) and

a higher –u multiplier can be used.

Example: In one case the –p value that is determined automatically using –j 1.25 is 20
and in a second case a more permissive run where –j 2.0 produces a score cutoff of
16. For the second case the –u value can be set to require a higher total reciprocated
link score, such as 2.5 to allow recovery of the weaker links if the reciprocating link is
strong enough to compensate.

In the first case, a link with scores of 18 and 26 would not form an edge since the link
with a score of 18 does not pass the score cutoff and a link with scores 17 and 18
would also fail as neither link passes the cutoff.

In the second case, the first link with scores of 18 and 26 would pass with a –u set to
2.5 since both links pass and the combined score is at least 2.5 times the score cutoff
(18 + 26 ≥ 16*2.5 = 44 ≥ 40). However, the second link would not pass even though
both of the link scores are above the score threshold but the combined score is not
high enough (17 + 18 < 40).

c. Minimum spanning tree identification. Next, subgraphs are identified and the
maximum scoring minimum spanning tree (MST) is determined. An MST is used for
three reasons: i) it is computationally tractable using Prim’s Algorithm, ii) the majority
of subgraphs are very close to an MST already, except for very short input contigs or
scaffolds, and iii) since the edges are weighted, the highest weight edges are likely the
closest. It is also important to note that even though an MST is determined, the edges
that are not included in the MST are still stored and not discarded as they are utilized
in the placement of branches in the graph.

d. Trunk identification. The longest path through the MST is then determined and
classified as the trunk. This is done by walking through the graph between every pair
of degree one nodes in the MST and finding the longest of these paths. If no degree
one nodes are present, degree two nodes are used and so on, though this has not yet
been observed as the majority of MSTs are already very close to the trunk with only
very few branches.

e. Branch placement. The branches that are not present in the MST are then placed by
finding the highest weighted path through the new trunk as each node is placed. It is
important to note that the vast majority of the branches are single-node branches in
which their node partner (the node on the other side of the input contig or scaffold) is
part of the trunk. In these cases the placement of the branch is purely an orientation
issue. Furthermore, the branches are restricted from being placed between a contig or
scaffold node pair, which would be extremely unlikely given that the edge weights for
node pairs are set much higher than the possible range of non-node pair edges.

D. fragScaff output and interpretation

i. Log file. The most informative output file for fragScaff is the log file. This file is output as

the –O output prefix followed by “.fragScaff.log”. (Note: if the fragScaff run is just

generating a bamParse file, the log will be “.bamParse.log”). The log file has details

regarding the input provided as well as a full call for the run with all options listed. It also
has a wealth of information regarding the performance at each step of the way detailed
below.

a. Input information. The first lines are regarding the input files provided. If a bamParse

is provided it will use the file handle (auto-generated when creating a bamParse) to

determine the –E option. If this is incorrect in the log file, there will likely be

complications. If a links file is provided it will also be listed along with the detected

options –d, –D, –E, and –r. The next line lists all of the options that correspond to the

run of fragScaff.

b. Node determination. The next lines are regarding either parsing through the BAM file
to generate a bamParse, or loading in the bamParse. It will output the number of
contigs, nodes, and groups as well as the minimum and maximum thresholds for the
number of group hits per node in order to exclude the extreme high and low group hit
windows. The lower cut should be in the range of 50-300, and upper range from 300 to
800. If these numbers are too high, it likely means the CPT-seq run had too much
input going into the PCR, if it is substantially lower (particularly for the upper bound) it
either means too little into the PCR, or difficulties in the run.

c. Link calculations. The next line is either for reading in the link file provided by –K, or

the execution of the sub-threads or SGE jobs for the all-by-all node calculations. For
the SGE run mode the job name is provided in case any modifications to the job array
must be made.

d. Edge determination and graph manipulations. The next lines first describe the

automatic determination of –p, assuming –p is set to A. If it is not set to auto

determine, it will instead list the –p cutoff provided. If the links file is generated in this

run (and not provided by –K) it will output the recommended –p score cutoff (based on

the provided mean link cutoff, -j) regardless of whether or not it is set to auto

determine. It will then list the number of nodes that are included in the fragScaff
assembly, the number that were trimmed due to an excessively high valid link count

(set by –l) which should be low for high N50 input assemblies and higher (up to

~40%) for assemblies with a shorter N50, as well as the number of nodes excluded

due to high node counts (set by –a) which should be no more than 1-3%. The next

lines describe building the graph and the subsequent graph manipulations.

e. Estimated N50 improvement. fragScaff will attempt to estimate the N10, N50, and
N90 improvements from the scaffolding from the input scaffold/contig lengths. It does
not take into account N-bases, so the numbers are just estimates and will not be the
same as the final N50 numbers (though they should be fairly close, especially if the
input is contigs as opposed to scaffolds). The improvement estimations will be made
even if –I is specified and fragScaff exits prior to printing the final fasta output.

f. Final output. The final lines are regarding the fasta output file and the final scaffold
count of the assembly (this number includes input scaffolds that did not get included in
the fragScaff process).

ii. bamParse file. The bamParse file is generated after the BAM header has been read, the
node boundaries determined, and the alignments stored. This file has the details required
for the fragScaff assembly in a much more condensed form and allows subsequent runs of

the program to skip parsing through the BAM file. This file can be provided as –B instead

of the BAM file for subsequent runs.

iii. Links file. The links file is generated after the all-by-all node calculations. It reports all of

the links for each node above a certain threshold (set by –r). Additionally it contains the

shared fraction of groups hitting the node-pairs that belong to the same input
contig/scaffold which is used for determining the orientation quality score. The information
in this file is designed to be inclusive such that future runs of the program can take care of

the link filtering. It can be provided as –K in order to skip the all-by-all node calculations

step for subsequent runs.

iv. Ordered node file. The ordered node file lists the scaffolds that are generated by

fragScaff. It can be used as the input to the script: fragScaff_check_ordering.pl

which compares the assembles scaffolds to their alignment to a trusted reference and will
output relevant accuracy statistics. This script additionally requires a mapping file for the
contigs to a trusted reference in a tab delimited format with the columns: contig/scaffold
name, chromosome, start position, and end position. If there is no valid alignment for the

contig or scaffold, the chromosome and coordinate columns should be replaced with a “-

1”.

v. Output fasta. This file contains the newly scaffolded fasta file with N-bases placed
between the joins made by fragScaff. It also contains all input contigs/scaffolds that were
not included in the assembly.

vi. Qual file. This file provides the quality information for the links as well as the orientation
for the scaffolds. It is intended to guide future analysis or future scaffolding by informing
where the weak points are in the assembly.

vii. N50 file. This file provides details on the input and output max scaffold size, N10, N50,
and N90 with and without N-bases.

viii. Cytoscape file. If the –V option is specified a “.csv” file will be generated that can be used

as an input to cytoscape for visualization of the graphs. If a number is specified to –V it will

output only that many scaffolds semi-randomly (biased towards larger scaffolds). If it is set

to “A” it will output all scaffolds included in fragScaff. Edges are listed as either “TRUNK”

which is a subset of the minimum spanning tree edges “MST” which is a subset of all of the

edges “EDGE”. The file also has the edge weight score and the scaffold ID that the vertices

and edges belong to.

E. fragScaff computational requirements

The computational requirements and run times of fragScaff are directly tied to the size of the
BAM file (initial I/O) and the number of input contigs or scaffolds. In order to optimize the
process, fragScaff is divided into the three main steps described above: (i) BAM file parsing
and node determination, (ii) all-by-all shared fraction calculations, and (iii) graph
manipulation followed by the final assembly output. Since each step can be performed
independently, the requirements are addressed separately below. Specific examples are
also provided for the 437 kbp N50 input human assembly as well as the fly assembly.
(Human = 18,922 input scaffolds, 2.73 Gbp assembled, 334 M reads; Fly = 7,109 input
scaffolds, 127 Mbp assembled, 1,324 M reads).

i. Bam file parsing and node determination. This initial step is primarily comprised of
reading in the BAM file and is single-threaded. The memory requirement is low (<1 Gb),
and is purely based on the size of the BAM file. This process takes approximately twice as
long as running a BAM->SAM conversion using samtools. (Human = 4 hours, < 1Gb
memory; Fly = 48 minutes, < 1 Gb memory)

ii. All-by-all shared fraction calculations. After the “.bamParse” file has been generated,
the all-by-all calculations must be performed. This step is highly dependent on the number
of input contigs and scaffolds with respect to run time (O(n2)); however the memory
footprint is similar to that of the first step at <1 Gb. fragScaff has been developed with
multithreading capability either on the node in which it is being run, or with the capability to
execute jobs using SGE. The following table provides approximate run times using varying
number of threads or concurrent SGE jobs. Again these numbers are approximations and
vary based on the assembly, particularly with respect to repeat content which can either
increase the run times if the repeats are not masked out, or decrease them if thorough
repeat masking is performed. (Human = 22 minutes (50 jobs on SGE), < 1 Gb memory;
Fly = 6 minutes (8 threads); < 1 Gb memory)

Input
Contig/Scaffolds

Number of threads (or
concurrent SGE jobs)

Approximate Run
Time

< 10,000 8 (threads) 10 – 20 min
10,000 – 30,000 50 (SGE) 10 – 60 min
30,000 – 100,000 50 (SGE) 1 – 15 hr

100,000 – 250,000 50 (SGE) 15 – 48 hr

iii. Graph manipulation. Both the run time and memory of the graph manipulation steps are
based on the number of input contigs and scaffolds. The runtime also varies considerably
based on the repeat content and the masking of repeats in the input assembly. All things
considered, this is the fastest step, with input assemblies containing just over 100,000
input contigs requiring less than 15 minutes. (16.3 Gb memory footprint). (Human = 2
minutes, 8 Gb memory; Fly = seconds, < 1 Gb memory)

iv. Final assembly output. This is another single thread process and first involves running
the graph manipulation step, but allowing fragScaff to continue on to produce the final
output. The memory requirement is approximately 5*(size of assembly). The run time of
this step is also heavily I/O bound and takes approximately three times as long as it would
take to cat the input assembly fasta. (Human = 1.8 hours, 13.2 Gb memory; Fly = 4
minutes, < 1 Gb memory)

CPT-seq Index Sequences

TSase 1-12 =
 ATTACTCG,TCCGGAGA,CGCTCATT,GAGATTCC,ATTCAGAA,GAATTCGT,

 CTGAAGCT,TAATGCGC,CGGCTATG,TCCGCGAA,TCTCGCGC,AGCGATAG

TSase A-H =
 TATAGCCT,ATAGAGGC,CCTATCCT,GGCTCTGA,

 AGGCGAAG,TAATCTTA,CAGGACGT,GTACTGAC

PCR 1-12 =
 TAAGGCGA,CGTACTAG,AGGCAGAA,TCCTGAGC,GGACTCCT,TAGGCATG,

 CTCTCTAC,CAGAGAGG,GCTACGCT,CGAGGCTG,AAGAGGCA,GTAGAGGA

PCR A-H =
 TAGATCGC,CTCTCTAT,TATCCTCT,AGAGTAGA,

 GTAAGGAG,ACTGCATA,AAGGAGTA,CTAAGCCT

CPT-seq HiSeq 6-read-run

Read 1 = gDNA Read 1

Read 2 = TSase (1-12) Index

 (dark cycles)

Read 3 = PCR (1-12) Index

Read 4 = PCR (A-H) Index

 (dark cycles)

Read 5 = TSase (A-H) Index

Read 6 = gDNA Read 2

j u p-score u-score N10 Imp. N50 Imp. N90 Imp. Join accuracy

Orientation

accuracy

bp properly

placed

1 3 52 156 1.38 1.38 1.32 96.9 93.17 98.93

1 2.5 52 130 2.21 2.07 1.9 97.45 94.05 98.66

1 2 52 104 3.16 2.92 2.65 97.73 94.3 98.56

1.25 3 45 135 2.02 1.92 1.74 97.34 93.64 98.8

1.25 2.5 45 112.5 3.5 3.19 2.86 97.57 94.09 98.43

1.25 2 45 90 5.18 4.68 4.13 97.56 94.05 98.36

1.5 3 38 114 3.58 3.19 2.83 97.51 93.5 98.61

1.5 2.5 38 95 6.65 6.26 5.16 97.35 93.5 98.47

1.5 2 38 76 8.21 8.02 6.87 97.19 93.1 98.6

1.75 3 32 96 7.21 6.59 5.32 97.26 92.9 98.61

1.75 2.5 32 80 10.27 10.09 8.49 97.08 92.35 98.48
1.75 2 32 64 11.32 11.82 10.45 96.98 92.14 98.35

2 3 27 81 10.71 11.06 8.99 96.87 91.71 98.3

2 2.5 27 67.5 15.98 14.74 13.05 96.68 91.52 98.35

2 2 27 54 17.68 15.73 13.89 96.56 91.31 98.14

2.25 3 23 69 16.57 14.85 13.4 96.64 91.26 98.35

2.25 2.5 23 57.5 21.47 18.05 16.61 96.39 90.89 97.99

2.25 2 23 46 27.11 19.97 18.04 96.25 90.61 97.99

2.5 3 19 57 21.94 21.66 18.34 96.26 90.5 98.03

2.5 2.5 19 47.5 27.77 23.95 20.39 95.94 90.16 97.85

2.5 2 19 38 37.46 27.04 21.07 95.83 89.97 97.97

2.75 3 16 48 29.96 25.87 21.68 95.98 89.63 97.92

2.75 2.5 16 40 35.11 29.17 23.45 95.69 89.35 97.85

2.75 2 16 32 35.11 29.48 24.29 95.55 89.32 97.78

3 3 14 42 27.77 28.84 24.71 95.86 88.98 98.11

3 2.5 14 35 32.58 30.52 26.39 95.65 88.88 97.98

3 2 14 28 38.34 31.67 27.2 95.58 88.8 97.95

3.25 3 12 36 34.97 32.63 27.37 95.76 88.82 98.04

3.25 2.5 12 30 38.23 34.07 29.59 95.51 88.63 97.99

3.25 2 12 24 38.23 35.84 30.02 95.31 88.55 98.01

3.5 3 10 30 45.74 36.71 30.02 95.75 88.5 97.97

3.5 2.5 10 25 47.23 37.39 30.79 95.43 88.34 97.76

3.5 2 10 20 48.08 38.48 32.48 95.28 88.17 97.7

3.75 3 9 27 47.1 36.82 30.44 95.6 88.31 97.93

3.75 2.5 9 22.5 48.08 38.44 32.54 95.35 88.23 97.8

3.75 2 9 18 48.08 38.87 34 95.3 88.08 97.86

4 3 8 24 47.29 37.39 32.8 95.44 88.27 97.68

4 2.5 8 20 48.08 40.92 35.76 95.27 88.1 97.75

4 2 8 16 51.92 42.49 38.08 95.15 87.82 97.72

4.25 3 7 21 48.08 40.92 35.64 95.28 87.78 97.77

4.25 2.5 7 17.5 49.34 42.49 38.05 95.16 87.61 97.75
4.25 2 7 14 51.92 42.85 38.81 95.1 87.54 97.63

4.5 3 6 18 50.84 42.49 38.08 95.16 87.54 97.62

4.5 2.5 6 15 62.87 46.09 38.91 94.98 87.61 97.25

4.5 2 6 12 62.87 46.09 41.23 94.94 87.57 97.27

4.75-5 3 5 15 104.28 53.1 40.92 94.84 87.39 97.41

4.75-5 2.5 5 12.5 110.16 53.35 42.61 94.69 87.36 97.13

4.75-5 2 5 10 138.78 55.56 42.67 94.56 87.14 96.94

5.25-5.5 3 4 12 238.87 60.96 42.83 94.51 86.94 97.31

5.25-5.5 2.5 4 10 261.94 64.18 43.25 94.35 86.93 97.19

5.25-5.5 2 4 8 269.92 64.18 43.44 94.27 86.82 97.17

5.75-6 3 3 9 306.12 64.18 47.51 94.29 86.34 97.32

5.75-6 2.5 3 7.5 424.88 72.22 47.51 94.04 86.13 97.36

5.75-6 2 3 6 445.44 72.75 48.06 93.97 86.11 97.3

Human (iSC N50 = 437 kbp)

Supplemental Table S1. fragScaff parameter optimization

j u p-score u-score N10 Imp. N50 Imp. N90 Imp. Join accuracy

Orientation

accuracy

bp properly

placed

2.5 3 108 300 5.2 4.54 2.92 99.49 76.02 99.78

2.5 2.5 108 270 7.87 6.97 4.34 99.4 76.01 99.74

2.5 2 108 216 11.68 10.55 6.67 99.28 75.85 99.69

2.75 3 101 300 5.25 4.6 2.98 99.48 75.61 99.78

2.75 2.5 101 252.5 10.37 9.22 5.82 99.32 75.34 99.71

2.75 2 101 202 15.36 13.62 8.66 99.17 75.17 99.68

3 3 94 282 6.86 6.13 3.93 99.42 75.09 99.74

3 2.5 94 235 13.56 12 7.84 99.22 74.68 99.67
3 2 94 188 19.43 17.6 11.12 99.05 74.37 99.64

3.25 3 88 264 9.4 8.18 5.33 99.32 74.63 99.71

3.25 2.5 88 220 17.67 15.69 10.26 99.07 74 99.62

3.25 2 88 176 23.65 22.02 14.05 98.91 73.65 99.62

3.5 3 82 246 12.18 10.84 7.2 99.23 73.93 99.66

3.5 2.5 82 205 22.72 20.19 13.14 98.93 73.3 99.58

3.5 2 82 164 29.12 27.37 17.14 98.76 73.2 99.56

3.75 3 77 231 15.8 13.91 9.4 99.09 73.41 99.62

3.75 2.5 77 192.5 28.39 25.52 16.01 98.79 72.81 99.55

3.75 2 77 154 35.79 32.42 20.02 98.63 72.68 99.53

4 3 72 216 20.89 18.59 12.31 98.93 72.91 99.57

4 2.5 72 180 33.11 30.81 19.25 98.65 72.43 99.53

4 2 72 144 41.62 38.48 23.56 98.49 72.3 99.5

4.25 3 67 201 26.2 23.96 15.4 98.78 72.42 99.53

4.25 2.5 67 167.5 40.07 37.75 22.94 98.49 72.14 99.48

4.25 2 67 134 45.28 44.8 26.32 98.3 71.94 99.44

4.5 3 63 189 32.46 29.63 18.57 98.63 72.07 99.46

4.5 2.5 63 157.5 44.27 43.69 25.86 98.31 71.85 99.4

4.5 2 63 126 50.79 50.5 29.97 98.12 71.8 99.36

4.75 3 59 177 37.91 36.11 22.43 98.48 71.8 99.43

4.75 2.5 59 147.5 49.17 50.93 29.3 98.13 71.69 99.33

4.75 2 59 118 54.39 54.81 32.85 97.96 71.59 99.3

5 3 55 165 43.05 43.08 25.93 98.28 71.67 99.32

5 2.5 55 137.5 56.21 54.75 32.62 97.93 71.47 99.26

5 2 55 110 60.24 57.42 35.34 97.77 71.42 99.24

5.25 3 52 156 46.08 49.09 28.49 98.15 71.52 99.3

5.25 2.5 52 130 58.52 57.28 34.58 97.83 71.42 99.22
5.25 2 52 104 63.81 60.38 36.49 97.68 71.32 99.2

5.5 3 49 147 51.24 54.09 31.4 97.99 71.43 99.23

5.5 2.5 49 122.5 63.63 60.7 35.89 97.7 71.31 99.2

5.5 2 49 98 67.34 63.88 37.13 97.55 71.21 99.15

5.75 3 46 138 58.74 56.44 33.53 97.82 71.34 99.17

5.75 2.5 46 115 67.34 62.14 36.89 97.55 71.21 99.15

5.75 2 46 92 72.12 65.64 38.34 97.43 71.18 99.11

6 3 43 129 62.52 59.43 35.34 97.69 71.33 99.13

6 2.5 43 107.5 72.12 64.93 38.02 97.43 71.16 99.11

6 2 43 86 73.95 67.61 39 97.33 71.17 99.05

Human (iSC N50 = 47 kbp)

j u p-score u-score N10 Imp. N50 Imp. N90 Imp. Join accuracy

Orientation

accuracy

bp properly

placed

1 3 75 225 1.48 1.76 1.85 98.66 88.2 99.27

1 2.5 75 187.5 1.69 2.25 2.42 98.69 88.33 99.05

1 2 75 150 2.07 2.81 2.99 98.67 88.26 99.01

1.1 3 66 198 1.63 2.1 2.25 98.68 88.16 99.17

1.1 2.5 66 165 2.06 2.76 2.98 98.64 88.2 99.02

1.1 2 66 132 2.59 3.45 3.71 98.61 88.12 99.04

1.2 3 56 168 2.06 2.69 2.92 98.62 88.07 99.1

1.2 2.5 56 140 2.62 3.62 3.94 98.61 88.02 99.1

1.2 2 56 112 3.1 4.47 4.91 98.54 88.06 98.98

1.3 3 47 141 2.62 3.61 3.94 98.61 87.87 98.99

1.3 2.5 47 117.5 3.31 4.71 5.34 98.52 87.7 99.03

1.3 2 47 94 4.02 5.51 6.34 98.46 87.56 98.93

1.4 3 39 117 3.31 4.76 5.42 98.5 87.62 99.05

1.4 2.5 39 97.5 4.35 5.83 6.97 98.47 87.29 98.96

1.4 2 39 78 4.73 6.76 8.13 98.4 87.08 98.91

1.5 3 31 93 4.44 6.35 7.54 98.45 87.11 98.9

1.5 2.5 31 77.5 5.16 7.54 9.32 98.35 86.84 98.8

1.5 2 31 62 5.8 8.43 10.43 98.23 86.96 98.71

1.6 3 25 75 5.33 7.94 9.79 98.33 86.82 98.73

1.6 2.5 25 62.5 6.32 9.37 11.51 98.18 86.72 98.59

1.6 2 25 50 6.87 10.15 12.57 98.05 86.78 98.39

1.7 3 20 60 6.58 9.91 12.1 98.12 86.69 98.48

1.7 2.5 20 50 7.49 10.82 13.97 98 86.48 98.33

1.7 2 20 40 8.52 11.65 15.25 97.92 86.38 98.27

1.8 3 15 45 8.42 11.8 15.53 97.97 86.28 98.31

1.8 2.5 15 37.5 9.33 13.05 16.8 97.8 86.29 98.09
1.8 2 15 30 10.41 13.66 17.81 97.7 86.08 98.08

1.9 3 12 36 9.78 13.36 17.06 97.8 86.26 98.15

1.9 2.5 12 30 11.51 15.75 18.55 97.58 85.93 97.92

1.9 2 12 24 13.03 16.53 19.47 97.42 85.74 97.95

2 3 10 30 12.16 15.8 18.74 97.56 85.97 97.85

2 2.5 10 25 14.8 17.01 19.9 97.3 85.84 97.83

2 2 10 20 19.96 18.2 20.71 97.07 85.5 97.73

Mouse

j u p-score u-score N10 Imp. N50 Imp. N90 Imp. Join accuracy

Orientation

accuracy

bp properly

placed

3 3 15 45 1.1 1.08 1.28 83.97 61.07 96.48

3 2.5 15 37.5 1.34 1.38 1.52 92.98 72.19 98.97

3 2 15 30 3.12 3.08 1.95 95.12 78.48 99.35

3.25 3 14 42 1.1 1.11 1.35 89.86 67.15 98.54

3.25 2.5 14 35 1.77 1.78 1.72 94.87 74.57 99.37

3.25 2 14 28 3.89 3.65 2.15 95.51 78.01 99.45

3.5 3 12 36 1.56 1.57 1.61 96.91 71.3 99.51

3.5 2.5 12 30 3.38 3.63 2.07 97.22 75.46 99.65

3.5 2 12 24 4.9 4.61 2.39 97.19 74.68 99.66

3.75 3 11 33 2.38 2.4 1.84 97.8 73.56 99.71

3.75 2.5 11 27.5 4.21 4.38 2.25 97.61 74.02 99.71

3.75 2 11 22 4.97 4.97 2.55 97.77 74.48 99.73

4-4.25 3 10 30 3.55 3.75 1.99 97.8 73.5 99.68

4-4.25 2.5 10 25 4.83 4.73 2.36 97.78 73.53 99.7

4-4.25 2 10 20 5.48 5.46 2.66 97.89 74.19 99.71

4.5 3 9 27 4.36 4.46 2.23 98.15 71.66 99.73

4.5 2.5 9 22.5 5.38 5.19 2.52 98.29 71.59 99.75

4.5 2 9 18 6.11 6.02 2.64 98.23 71.7 99.75

4.75-5 3 8 24 4.97 5.11 2.44 98.3 70.63 99.75

4.75-5 2.5 8 20 6.12 5.83 2.64 98.28 71.44 99.75

4.75-5 2 8 16 6.12 6.77 2.88 97.78 70.78 99.64

5.25-5.5 3 7 21 5.72 5.78 2.63 98.34 69.66 99.74

5.25-5.5 2.5 7 17.5 6.12 6.59 2.86 98 69.3 99.7

5.25-5.5 2 7 14 6.12 7.07 2.96 97.94 69.27 99.67

5.75-6 3 6 18 6.36 6.82 2.81 97.85 69.25 99.68

5.75-6 2.5 6 15 6.36 7.12 2.96 97.82 69.05 99.68

5.75-6 2 6 12 6.36 7.67 2.98 97.66 68.81 99.61

6.25-6.75 3 5 15 6.37 7.28 2.93 98.16 69.22 99.71

6.25-6.75 2.5 5 12.5 6.53 7.71 2.99 97.93 68.55 99.67
6.25-6.75 2 5 10 7.24 8.27 3.04 97.86 68.62 99.62

7-8 3 4 12 6.53 7.74 3.01 97.76 67.38 99.56

7-8 2.5 4 10 8.14 8.44 3.08 97.73 66.78 99.55

7-8 2 4 8 8.14 8.55 3.18 97.68 66.27 99.55

8.25-9.5 3 3 9 8.14 8.55 3.17 97.87 64.29 99.56

8.25-9.5 2.5 3 7.5 8.32 8.74 3.3 97.67 64.49 99.51

8.25-9.5 2 3 6 8.32 8.78 3.39 97.68 64.66 99.51

9.75-10 3 2 6 8.65 8.92 3.56 97.63 63.99 99.47

9.75-10 2.5 2 5 8.65 9.25 3.64 97.59 63.5 99.47

9.75-10 2 2 4 8.65 9.81 3.65 97.61 63.3 99.53

fragScaff parameter optimization was carried out by varying options “j” (the

mean number of passing hits per node to call the p-value cutoff) and “u” (the

modifier to the score to consider the link reciprocated). The optimization is

carried out using a wrapper scripts and only performs the fast, graph

manipulation steps of the assembly.

 Fly

Assembly ID Organism Input assembly
a Input N10 (kbp) Input N50 (kbp) Input N90 (kbp)

Input scaffold

count

Hs47.con Human S 133 47 11 127,088

Hs47.len Human S 133 47 11 127,088

Hs437.con Human S + 3Kb 1,234 437 102 18,921

Hs437.len Human S + 3Kb 1,234 437 102 18,921

Hs437.fos Human S + 3Kb 1,234 437 102 18,921

Hs437.lfr Human S + 3Kb 1,234 437 102 18,921

Hs15.sim Human R, 15Kb 15 15 15 191,312

Hs25.sim Human R, 25Kb 25 25 25 115,162

Hs50.sim Human R, 50Kb 50 50 50 57,586

Hs75.sim Human R, 75Kb 75 75 75 38,394

Hs100.sim Human R, 100Kb 100 100 100 28,817

Hs150.sim Human R, 150Kb 150 150 150 19,212

Hs200.sim Human R, 200Kb 200 200 200 14,412

Hs300.sim Human R, 300Kb 300 300 300 9,612

Mm224 Mouse S + 3Kb 912 224 44 25,964

Dm68 Fly S 207 68 8 7,109

Assembly ID Library method
Percent of

bases included

fragScaff N10

(kbp)

N10 fold

improvement

fragScaff N50

(kbp)

N50 fold

improvement

fragScaff N90

(kbp)

Hs47.con CPT-Seq 95.81 1,809 13.60 570 12.13 83

Hs47.len CPT-Seq 97.81 7,807 58.70 2,720 57.87 367

Hs437.con CPT-Seq 97.13 12,724 10.31 4,398 10.06 889

Hs437.len CPT-Seq 99.02 60,536 49.06 18,193 41.63 3,928

Hs437.fos Fosmid 38.90 1,633 1.32 567 1.30 133

Hs437.lfr LFR 46.58 2,355 1.91 668 1.53 151

Hs15.sim CPT-Seq 77.95
c 1,069 71 361 24 15

Hs25.sim CPT-Seq 88.66
c 7,281 291 1,751 70 100

Hs50.sim CPT-Seq 89.87
c 14,161 283 3,753 75 250

Hs75.sim CPT-Seq 90.23
c 18,915 252 4,754 63 300

Hs100.sim CPT-Seq 90.47
c 24,605 246 6,601 66 400

Hs150.sim CPT-Seq 90.64
c 31,813 212 7,503 50 600

Hs200.sim CPT-Seq 90.78
c 34,366 172 10,202 51 800

Hs300.sim CPT-Seq 90.79
c 38,708 129 12,302 41 1,200

Mm224 CPT-Seq 96.22 8,423 9.24 2,916 13.02 743

Dm68 CPT-Seq 87.34 1,347 6.51 524 7.71 24

Supplemental Table S2. Extended fragScaff assembly results

A

B

Assembly ID Library method

Hs47.con CPT-Seq

Hs47.len CPT-Seq

Hs437.con CPT-Seq

Hs437.len CPT-Seq

Hs437.fos Fosmid

Hs437.lfr LFR

Hs15.sim CPT-Seq

Hs25.sim CPT-Seq

Hs50.sim CPT-Seq

Hs75.sim CPT-Seq

Hs100.sim CPT-Seq

Hs150.sim CPT-Seq

Hs200.sim CPT-Seq

Hs300.sim CPT-Seq

Mm224 CPT-Seq

Dm68 CPT-Seq

Assembly ID
fragScaff

scaffold count

Join accuracy

(%)

Orientation

accuracy (%)

Bases properly

placed (%)
b

Hs47.con 39,377 99.22 74.68 99.67

Hs47.len 24,251 97.83 71.42 99.22

Hs437.con 7,596 97.08 92.35 98.48

Hs437.len 5,514 95.16 87.61 97.75

Hs437.fos 15,303 71.57 74.66 87.95

Hs437.lfr 14,476 34.00 62.78 60.53

Hs15.sim 36,790 99.53 96.02 99.53

Hs25.sim 18,127 99.60 99.52 99.60

Hs50.sim 8,464 99.31 99.39 99.31

Hs75.sim 5,660 99.39 99.58 99.39

Hs100.sim 4,223 99.29 99.58 99.29

Hs150.sim 2,838 99.36 99.66 99.36

Hs200.sim 2,134 99.43 99.59 99.43

Hs300.sim 1,451 99.62 99.72 99.62

Mm224 3,969 97.80 86.29 98.09

Dm68 3,779 97.93 68.55 99.67

A. Input assemblies prior to fragScaff assembly. Sequence used indicated the

types of libraries included. S = shotgun, 3Kb = 3 Kb mate pair sequencing, R =

reference genome segmented into following contig sizes. B. fragScaff assembly

output and sequencing method used to perform scaffolding. Scaffold count

includes scaffolds that were not joined to any other scaffolds during the

fragScaff process. C. fragScaff accuracies. Additional accuracy description can

be found in Supplemental Fig. S4.

a
Input Asembly. S=shotgun, 3kbp=3 kbp mate-pair, R=split reference with size of the fragments

b
Percentage of fragScaff scaffolded sequence that was correctly scaffolded

c
For simulated assemblies, the percent included is reduced due to the removal of the top and bottom 5% of sequence

C

Organism
Initial

Assembly

N50

(Kb)

Percent

Clustered

Percent

Ordered

Clustering

Accuracy

Ordering

Accuracy

Orienting

Accuracy

Human S* 47 89.7 41.5 99.4 95.2 89.3

Human S + 3Kb 437 98.2 94.4 99.9 99.5 98.8 100

Human R, 15Kb 15 35.9 0.2 13.5 96.8 97.0 90

Human R, 25Kb 25 28.9 0.4 15.0 97.5 97.5 80

Human R, 50Kb 50 70.8 16.5 95.6 86.0 74.2 50

Mouse S + 3Kb 224 98.0 86.7 99.8 99.5 98.1 0

Fly** S 68 81.2 82.0 n/a n/a n/a

Organism
Initial

Assembly

N50

(Kb)

Percent

Clustered

Percent

Ordered

Clustering

Accuracy

Ordering

Accuracy

Orienting

Accuracy

Human S* 47 99.4 99.1 97.5 95.9 96.3

Human S + 3Kb 437 98.8 96.0 99.7 98.9 98.5 100

Human R, 15Kb 15 91.9 88.2 99.9 96.0 96.4 90

Human R, 25Kb 25 92.5 93.1 99.9 96.5 97.6 80

Human R, 50Kb 50 93.6 95.5 96.9 97.4 97.2 50

Mouse S + 3Kb 224 99.8 98.6 98.0 99.2 98.5 0

Fly** S 68 96.2 93.0 n/a n/a n/a

Input CPM Only

fragScaff + CPMInput

A. Completeness and accuracy measurements for CPM scaffolding on various

input assemblies. B. Completeness and accuracy measurements for CPM

scaffolding after first scaffolding using CPT-seq and fragScaff on the same input

assemblies.

* Shotgun assembly generated by fragmenting the shotgun + 3 Kb mate-pair

assembly at any N-base.

** Fly accuracy measurements not possible due to the inability to uniquely align

a large proportion of input contigs to the fly reference genome.

A

Supplemental Table S3. Hi-C based scaffolding (contact probability maps,

CPM) improvements when first using fragScaff

B

HMW gDNA

extraction
96-plex

tagmentation
Pooling &

limiting dilution

96-plex PCR

amplification
Custom

sequencing run

Alignment to

input assembly

Identification of

repeats in input

Identification of

input N-bases

Parsing of groups

and contigs

Determination of

valid end nodes

Identification of

node group hits

All-by-all shared

group fractions

Auto score cutoff

determination

Edge

determination

MST

identification

Trunk

identification

Branch

placement
Final output

C
P

T
-s

e
q

P

re
-P

ro
c

e
s

s
in

g

fr
a

g
S

c
a
ff

CPT-seq (blue), de novo assembly and input pre-processing (purple), and

fragScaff (green) workflows. Dashed boxes and arrows indicate optional steps.

Supplemental Figure S1. Workflow of CPT-seq and fragScaff

Barcode

deconvolution

MP & shotgun

assembly

Histogram of the pool hit count for contig ends for the human (N50 = 437 Kb)

input assembly. The top and bottom 10% of node ends are automatically filtered

out. The lower peak is due to node ends that contain a segment of N’s in the

node end resulting in less alignable space.

No. Pools Hit

N
o

d
e

 C
o

u
n

t
Human TC-seq Pool Hit Histogram

(for Human, N50 = 437 Kb)

Supplemental Figure S2. End-node pool hit histogram

A

B

C

MST trunk edges MST branch edges

Non-MST edges New ordering edge

Supplemental Figure S3. Graph manipulation examples

MST trunk edges MST branch edges

Non-MST edges New ordering edge

D

E

F

Examples of the graph manipulation process for the human shotgun assembly

(input N50 47 kbp). The majority of nodes A, D. Graphs with MST and trunk

determined. B, E. Determination of branch placement. C, F. Final path.

100 101 102 103 104 105 106 107 108 109

271 270 269 267 266 X 265 398

X X X X X

157 158 159 X 544 543 542 541

Scaffold 1

Scaffold 2

Scaffold 3

Contig true alignment order

The true alignment order of each scaffold is determined via BLAST alignments

of the contigs to the reference genome. Alignments are retained if they contain

at least 80% of the contig sequence, otherwise the order is not determined and

denoted as an X. Join accuracy is only determined for sub-segments of

scaffolds in which all successive contigs have a true alignment order (blue

boxes) where the ordering is within 5 of the actual ordering (eg. Green double-

arrow link is considered accurate, despite a jump of 2 in the ordering as

opposed to 1) and the jump between 265-398 is considered an incorrect join

(purple crossed link). A fused scaffold that is bridged by an unmapped contig is

still included as a fused scaffold in the accuracy statistics (red crossed link). For

the fused scaffold all bases belonging to the shorter sub-segment of the scaffold

would be considered improperly placed.

Scaffold 4

Supplemental Figure S4. Accuracy metrics schematic

Correct Placement

Incorrect Placement

Combined link score

C
o

u
n

t
fragScaff Placement Scores

(for Human, N50 = 437 Kb)

A

Supplemental Figure S5. Link placement and contig orientation scores

Correct Orientation

Incorrect Orientation

End-node pool non-overlap fraction

C
o

u
n

t

Score of 0:

~50% Accuracy

B fragScaff Orientation Scores
(for Human, N50 = 437 Kb)

A. Histogram of link quality scores for properly placed (blue) contigs and

improperly placed (red) contigs for the stringent human assembly (input N50 =

437 Kb). Due to extensive filtering and pruning during the fragScaff, there is little

discrimination between accurate and inaccurate links based on the score. B.

Orientation quality score distribution for correctly oriented (blue) and incorrectly

oriented (red) contigs. The score is 1 – (pool overlap fraction), resulting in

completely overlapping end nodes sharing 100% of pools and thus an

orientation score of 0 resulting in a 50/50 chance of proper assignment.

A. Histogram of the number of gaps present at increasing sizes up to 35+ Kb for

both human input assemblies. B. Percentage of joins made at each input

assembly gap size for the stringent human assembly and the small input N50

human assembly.

Input assembly gap sizes

Percentage of gap joins by fragScaff

P
e

rc
e

n
ta

g
e

 o
f
to

ta
l
g

a
p

s

G
a

p
 c

o
u

n
t

Size bin (Kb)

Size bin (Kb)

Human, N50 = 437 Kb

Human, N50 = 47 Kb

Human, N50 = 437 Kb

Human, N50 = 47 Kb

A

B

Supplemental Figure S6. Input assembly gap distribution and joining

percentages

First, shotgun paired-end reads are generated to high depth (blue pairs) and

assembled into local sequence contigs (long blue lines). Next, 3 Kb mate pair

libraries (red pairs) can be used to generate mid-size scaffolds (long red lines).

NCP can then be used (gray and purple lines) to increase scaffold sizes large

enough so that the last phase (CPM) can be used. Finally CPM will cluster

scaffolds into chromosomes and assemble into a complete reference.

Supplemental Figure S7. In vitro, de novo assembly of genomes

R P B

Fragments

Pools hit

by window

Pools hit

by contig

Anchor position

To anchor novel contigs to a reference genome (black line), we first aligned all

CPT-seq reads to the genome and called fragments (red, green, purple, blue,

and orange lines). Next, the pools that contain fragments present in windows

(gray dashed lines) tiling across the genome are identified (R, G, P, B, and O).

Unaligned reads are then aligned to the contigs to identify which pools hit each

contig. The window in the reference genome that has the largest fraction of

shared pools (gray shading) is then identified as the most likely anchoring

position.

R R R R P G G G R R P G O R R R R

G G G P O O O P G P O O B O B B B

P P O B B B P B B B

Supplemental Figure S8. Contig anchoring scheme

Supplemental Figure S9. Haplotype resolution results

Breakdown of Phased Variants

Validated

(327,828)

In Repeat

Elements

(291,053)

In SegDups

(200,049)

Other (83,975)

Phased

Correctly

(183,470)

Phased

Incorrectly

(9,669) Phased

Unknown

(77,030)

Unphased

(57,659)

Breakdown of heterozygous calls from shotgun sequence reads aligned to the

Human GM12878 assembly (input N50 = 437 kbp, fragScaff N50 = 4.4 Mbp)

split into validation categories (left). Of the validated calls variants were subject

to haplotype resolution using RefHap (Duitama et. al. 2010). Variants that were

successfully phased were validated based on their corresponding human

reference genome positions (GRCh37) and the known phase of variants based

on GM12878 pedigree information. Variants in the “Phased Unknown” category

are variants confirmed by the NIST variant call set (Zook and Salit 2013) but are

not present in the pedigree variant set.

ALLPATHS-LG +

fragScaff Het. Calls

(902,905)

NIST NA12878

Validated Calls

(327,828)

Pulsed field gel electrophoresis was run on a BioRad Pulsed Field Gel

Electrophoresis system using a 1% agarose TBE gel run at 170 V for 16 hours

at 14°C with a switch time from 1 to 6 seconds. High DNA quality is crucial to

CPT-seq and therefore a pulsed-field gel should be run prior to initiating the

protocol. In our experience, if most DNA is above 40 kbp (ideally >100 kbp) then

a well-performing CPT-seq library can be generated.

L 1 2 3 L

40

20
15

10

5

L) 1 Kb Extension Ladder

1) HeLa Control gDNA

2) Mouse Liver gDNA

3) Fly gDNA

L
a

d
d

e
r

S
iz

e
s
 (

K
b

)

Supplemental Figure S10. Pulsed-field gel electrophoresis of CPT-seq input

gDNA samples

96 pools for each input (PCR) mass are shown along with the total megabases

of the genome that are covered by called fragments. The amount covered tracks

well with the input mass, thus allowing method tailoring to reflect the genome

size of the organism being assembled.

Pool ID

M
b

 C
o

v
e

re
d

PCR Input

1pg

2pg

3pg

Drosophila CPT-seq Fragment Coverage

Supplemental Figure S11. Drosophila melanogaster CPT-seq called fragment

coverage

