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Detailed fragScaff description 

A. Sequence data processing prior to fragScaff 
 

i. Group assignment of reads (optional). CPT-seq default read names are a 
concatenation of the four index reads from the sequencing run in the following format: 
@[Nextera i7 Index][PCR i7 Index][PCR i5 Index][Nextera i5 Index], which corresponds to: 
@[Read 2][Read 3][Read 4][Read 5] of the run. Barcode deconvolution can be performed 

using the provided script (CPTseq_barcode_split.pl) that looks at each read in the 

full barcode and performs an edit-distance based assignment. If the run is of high quality, 
particularly for the index reads, this step can be skipped and fragScaff will only use 
perfect-match index reads which will typically result in a loss of roughly 8% of the reads, 
though for lower quality runs this can be up to 40% in which case barcode deconvolution 
can reduce it down to roughly 5% depending on the run. 
 

ii. Read alignment. Alignment of reads to a reference created from the input contig/scaffold 
assembly and creation of a sorted BAM file with valid group and sequence header lines. In 
order to be sure these lines are correct it is recommended to first generate a sequence 

dictionary for the reference, eg. myReference.fa.dict, and then use the provided 

group header (group_header.txt). These can then be used instead of the default 

header lines that alignment software will output by using the following call where 

“myAlignmentCall” is whatever aligner you prefer that outputs in a sam file format: 

 
(cat myReference.fa.dict group_header.txt && 

 myAlignmentCall | awk ‘($1!~/^@/)’) | 

samtools view –bSu – | samtools sort – myOutfile; 

 

B. Input contig/scaffold pre-processing (optional but recommended) 
 

i. N-base bed file. Generation of a bed file that contains the coordinates of all N-base 
stretches in the assembly (ie. when the input is in the form of scaffolds and not contigs). 
This can be generated using the included script: 

fragScaff_generate_Nbase_bed.pl. This file will aid in the determining of node-end 

boundaries such that N-bases will not be included and each node end will ideally have the 
same number of valid bases. 
 

ii. Repeat bed file. Generation of a bed file that contains all high-identity repeats in the 
assembly. This can be generated by performing a blastn alignment of the input assembly 

to itself. We recommend using the following blast parameters: –word_size 36 –

perc_identity 95 –outfmt 6. The output can then be filtered using the provided 

script (fragScaff_self_blast_to_repeat_bed.pl) followed by sorting and merging 

of entries. Alternatively identifying alignments to Repbase also works well. 
 

C. fragScaff algorithm 
 
The fragScaff program has three major stages that can be run independently. This allows for 
the first two time consuming stages that require very little parameter optimization to only be 
run once and the much quicker graph filtering and manipulation stage with a large amount of 
parameter optimization to be run multiple times. 
 



i. Bam file parsing and node determination. In this stage the BAM file is parsed first to 
read in the contigs, groups, and then the alignments. 
 
a. Bam header parsing. The header of the BAM file is parsed to read in the names and 

lengths of all of the input contigs or scaffolds as well as the names of all of the read 
groups (9,216 for CPT-seq). 
 

b. Node ends are determined. The size of the node ends is defined by –E with a default 

of 5,000 bp. If a N-base (–N) and/or repeat bed file (–J) is defined, fragScaff will read 

in the coordinates and take them into consideration when defining the node 

boundaries such that there is a total of –E bases of viable sequence included at each 

node end up to a certain maximum limit (–o, default 10,000 bp). If a contig or scaffold 

is shorter than –E then then entire contig or scaffold serves as the node and 

downstream orientation is not possible. It is also possible for the end nodes to overlap 
in the middle of the input scaffold or contig which will therefore result in limited ability 
for orientation. 

 

c. Node group hit identification. The reads are then parsed with a defined alignment 

quality score threshold (–q, default 10) and read groups determined by either the read 

name (–G N, default for CPT-seq), a tag at the end of the read name (–G H), or the 

standard RG:Z:[read group] sam field (–G R). If the read aligns to a node it is 

considered a hit and stored. 
 

d. bamParse output. After all reads are parsed a “bamParse” file can be generated (if –

b [0/1] is defined, 0 will make the bamParse file and continue, 1 will make the 

bamParse file and exit) that contains all of the node and group hit information so that 
later runs do not have to parse through the entire BAM file again which can take 
several hours for very large BAM files. It is also useful since the BAM parsing is single 
thread and the all-by-all shared fraction calculations in the next step are designed to 
be multithreaded (see Multithreading box below). 

 
ii. All-by-all shared fraction calculations. In this stage the fraction of shared groups within 

any two nodes’ set of groups is calculated. The distribution of this shared fraction for each 
node to all other nodes is calculated and the outlier probability score is calculated for each. 

 

a. Node filtering. After the bamParse file has been generated or read in, the nodes can 
then be filtered according to several specifications. First, only groups which have a 

minimum number (–C) reads that hit a node will be counted as true hits (default is only 

1 read for CPT-seq and more for LFR or Fosmid approaches hat have a higher density 
of reads). Next, the number group hits for each node is calculated and the nodes on 

the extremes of the distribution (minimum and maximum fractional cut set by –d and –

D respectively with defaults of 0.05 and 0.95 to exclude the lowest and highest 5 

percent). This allows the removal of nodes that likely have unidentified repeats that 
may result in increased false links as well as those that may be improperly assembled 
sequence. 
 
It is important to note that the threshold fractions are designed to identify the threshold 
hit counts and ensue only that a minimum of the extreme fractions identified will be 
excluded. For instance, if a sample has 10% of nodes with zero group hits, the 



threshold (with a –d of 0.05) would be set to 0, and the entire 10% at zero would be 

excluded. Additionally the option –U exists which allows a minimum number of groups 

to have hit the node for inclusion. However the default is set to 0 since nodes included 
with a low number of hits, eg. one group, will not produce significant outlier scores and 
links would not be established. 
 

b. Node shared fraction calculations. Each node then has its shared fraction with all 
other nodes calculated. The shared fraction is defined as the number of groups that hit 
both of the nodes over the total number of unique groups that hit either one of the 
nodes. After the shared fraction is calculated between the initial node and each other 
node, the mean and standard deviation of the shared fractions can be used to 
calculate the Gaussian probability of each other node’s shared fraction falling within 
the distribution of the initial node’s distribution. The score is then the –log10 of the 
Gaussian probability and is calculated for each other node with respect to the initial 
node. 
 

c. Link file output. The scores that are above a minimum report threshold (–r, default 1) 

are included in the link file output. This file is designed to be inclusive such that later, 
more stringent score cutoffs can be used without having to re-do the all-by-all node 

calculations. If fragScaff is run with the –A option, it will exit after the generation of the 

link file to allow for more control of thread usage as all further steps are single-thread 
and much quicker. 

 

Multithreading all-by-all shared fraction calculations. 
 
The all-by-all shared fraction calculations is the most computationally intense portion of 
fragScaff and therefore variations of multithreading have been included. This option is 
specified by the –t option and can be specified in several ways described below. 
 
-t 1 Single thread. This is the default fragScaff threading option, though is not 

recommended as the all-by-all calculations can take some time, especially 
when there is a high number of input contigs or scaffolds. 
 

-t [>1] Multithread, single machine. When specifying –t to more than one, this 
number of threads will be spun off on the same machine that the parent 
instance of fragScaff was run on. It is important to note that these are 
separate instances of the fragScaff program and not true multithreading as 
this was found to have optimal memory usage. For this run mode the 

number of nodes per thread can be set by –S (default is 100) and also the 

–k option must be the valid call for fragScaff. 

 
-t Q SGE mode. In this mode qsub functionality will be used. It is required that 

the qsub command is callable by the system to use this option. It also has 

another set of options to control the qsub job array call in addition to the –

k and –S commands when performing the standard multithreading. –T 

allows specification of the max number of jobs to run at a given time (–tc 

for the qsub command, default N, which means no throttling but an integer 

can be set), and –e is used to define the amount of memory to allocate per 

qsub job (default is 2G, but more may be required for large number of 
input contigs or scaffolds). 



iii. Graph manipulation. In this stage the links are used from the previous step or the link file 

is loaded (specified by –K) and edges are created between nodes if they meet various 

thresholds. The resulting graph is then manipulated to produce a final node ordering. 
 

a. Score cutoff determination. All links with a score greater than –r (default 1) are 

included in the link file and loaded in. However this score is designed to be extremely 
permissive and only there to reduce the file size of the links file by eliminating the 
majority of potential links that fall well within a node’s shared fraction distribution. To 
identify outliers that are true links the score can either be manually set or automatically 

determined using the option –p, with the default as –p A for automatic determination. 

If –p is set to a value then this score will be used for all link filtering. 

 

For automatic score cutoff estimation (–p A), fragScaff will attempt to determine the 

optimum score cutoff based on what seems to have worked on a number of genomes. 
First, fragScaff finds the mean number of links across all nodes that would pass a 
given threshold score for each integer score ranging from 1 to 200. It then finds the 

minimum score threshold such that the mean number of passing links hits –j (default 

is 1.25, for a mean of 1.25 passing links per node). Setting –j is highly dependent 

on the input assembly and is the most important parameter to tweak during the 

scaffolding process. For an assembly with a fairly high N50 (eg. 75+ kbp) setting –j 

to 1.25 (the default) seems to work well. However for smaller N50 assemblies (eg. 50 
kbp) it is recommended to increase this value as a higher number of links would be 
expected due to some links being able to skip a contig and link to the next. Varying this 

parameter and even following up by manually setting –p may be necessary. 

 
To reduce the time it takes to run each variant of the link filtering options it is 

recommended to have previously generated the bamParse file (specify with –B) and 

the link file (specify with –K) so that they do not need to be re-generated, and also to 

run using the –A option which will exit after the graph manipulations and not go 

through the process of reading in the input assembly fasta file and outputting the final 
fasta assembly which is I/O intensive and can take some time, whereas the graph 
manipulation steps should take  between 1 and 20 minutes depending on the number 
of input assembly contigs or scaffolds. 
 

b. Link filtering and edge determination. After the score threshold has been set, 
fragScaff will read in all of the links that pass the threshold and perform further filtering 
of the links to produce the final edges of the graph. For each node the set of passing 
links is first trimmed to include only the maximum scoring set, for which the amount is 

determined by –l (default 5), though most nodes should have a number of passing 

links below this cutoff. This filtering is done so that the lower-scoring links that may be 
more distant are not included, as the high-scoring links are the only ones that are 
relevant. An additional filter will entirely remove nodes that have a number of links 

greater than –a (default 20) as they are likely due to unidentified repeats, though as 

with the –l filtering, very few nodes, if any, should be removed using this filter, 

particularly if a repeat bed file is used for the initial BAM parsing. 
 
The next filtering requirement for a link to be used as an edge is that the link is 
reciprocated. For instance, if node1 has a passing link to node2, the link from node2 to 

node1 must also be passing. This can also be adjusted by the use of the –u option 



which is the multiplier of the score cutoff that is required for the link to be considered 

valid. The default –u value is 2, which imposes no additional link stringency, however 

this can be adjusted to be more inclusive. For instance, a slightly more permissive 

score cutoff can be used (either by increasing –j in the automatic determination, or by 

specifying a lower –p than the recommended value produces using the default –j) and 

a higher –u multiplier can be used. 

 
Example: In one case the –p value that is determined automatically using –j 1.25 is 20 
and in a second case a more permissive run where –j 2.0 produces a score cutoff of 
16. For the second case the –u value can be set to require a higher total reciprocated 
link score, such as 2.5 to allow recovery of the weaker links if the reciprocating link is 
strong enough to compensate. 
 
In the first case, a link with scores of 18 and 26 would not form an edge since the link 
with a score of 18 does not pass the score cutoff and a link with scores 17 and 18 
would also fail as neither link passes the cutoff. 
 
In the second case, the first link with scores of 18 and 26 would pass with a –u set to 
2.5 since both links pass and the combined score is at least 2.5 times the score cutoff 
(18 + 26 ≥ 16*2.5 = 44 ≥ 40). However, the second link would not pass even though 
both of the link scores are above the score threshold but the combined score is not 
high enough (17 + 18 < 40). 
 
 

c. Minimum spanning tree identification. Next, subgraphs are identified and the 
maximum scoring minimum spanning tree (MST) is determined. An MST is used for 
three reasons: i) it is computationally tractable using Prim’s Algorithm, ii) the majority 
of subgraphs are very close to an MST already, except for very short input contigs or 
scaffolds, and iii) since the edges are weighted, the highest weight edges are likely the 
closest. It is also important to note that even though an MST is determined, the edges 
that are not included in the MST are still stored and not discarded as they are utilized 
in the placement of branches in the graph. 
 

d. Trunk identification. The longest path through the MST is then determined and 
classified as the trunk. This is done by walking through the graph between every pair 
of degree one nodes in the MST and finding the longest of these paths. If no degree 
one nodes are present, degree two nodes are used and so on, though this has not yet 
been observed as the majority of MSTs are already very close to the trunk with only 
very few branches. 

 

e. Branch placement. The branches that are not present in the MST are then placed by 
finding the highest weighted path through the new trunk as each node is placed. It is 
important to note that the vast majority of the branches are single-node branches in 
which their node partner (the node on the other side of the input contig or scaffold) is 
part of the trunk. In these cases the placement of the branch is purely an orientation 
issue. Furthermore, the branches are restricted from being placed between a contig or 
scaffold node pair, which would be extremely unlikely given that the edge weights for 
node pairs are set much higher than the possible range of non-node pair edges. 

 

 



 

D. fragScaff output and interpretation 
 

i. Log file. The most informative output file for fragScaff is the log file. This file is output as 

the –O output prefix followed by “.fragScaff.log”. (Note: if the fragScaff run is just 

generating a bamParse file, the log will be “.bamParse.log”). The log file has details 

regarding the input provided as well as a full call for the run with all options listed. It also 
has a wealth of information regarding the performance at each step of the way detailed 
below. 

 
a. Input information. The first lines are regarding the input files provided. If a bamParse 

is provided it will use the file handle (auto-generated when creating a bamParse) to 

determine the –E option. If this is incorrect in the log file, there will likely be 

complications. If a links file is provided it will also be listed along with the detected 

options –d, –D, –E, and –r. The next line lists all of the options that correspond to the 

run of fragScaff. 
 

b. Node determination. The next lines are regarding either parsing through the BAM file 
to generate a bamParse, or loading in the bamParse. It will output the number of 
contigs, nodes, and groups as well as the minimum and maximum thresholds for the 
number of group hits per node in order to exclude the extreme high and low group hit 
windows. The lower cut should be in the range of 50-300, and upper range from 300 to 
800. If these numbers are too high, it likely means the CPT-seq run had too much 
input going into the PCR, if it is substantially lower (particularly for the upper bound) it 
either means too little into the PCR, or difficulties in the run. 

 

c. Link calculations. The next line is either for reading in the link file provided by –K, or 

the execution of the sub-threads or SGE jobs for the all-by-all node calculations. For 
the SGE run mode the job name is provided in case any modifications to the job array 
must be made. 

 

d. Edge determination and graph manipulations. The next lines first describe the 

automatic determination of –p, assuming –p is set to A. If it is not set to auto 

determine, it will instead list the –p cutoff provided. If the links file is generated in this 

run (and not provided by –K) it will output the recommended –p score cutoff (based on 

the provided mean link cutoff, -j) regardless of whether or not it is set to auto 

determine. It will then list the number of nodes that are included in the fragScaff 
assembly, the number that were trimmed due to an excessively high valid link count 

(set by –l) which should be low for high N50 input assemblies and higher (up to 

~40%) for assemblies with a shorter N50, as well as the number of nodes excluded 

due to high node counts (set by –a) which should be no more than 1-3%. The next 

lines describe building the graph and the subsequent graph manipulations. 
 

e. Estimated N50 improvement. fragScaff will attempt to estimate the N10, N50, and 
N90 improvements from the scaffolding from the input scaffold/contig lengths. It does 
not take into account N-bases, so the numbers are just estimates and will not be the 
same as the final N50 numbers (though they should be fairly close, especially if the 
input is contigs as opposed to scaffolds). The improvement estimations will be made 
even if –I is specified and fragScaff exits prior to printing the final fasta output. 



 

f. Final output. The final lines are regarding the fasta output file and the final scaffold 
count of the assembly (this number includes input scaffolds that did not get included in 
the fragScaff process). 

 

ii. bamParse file. The bamParse file is generated after the BAM header has been read, the 
node boundaries determined, and the alignments stored. This file has the details required 
for the fragScaff assembly in a much more condensed form and allows subsequent runs of 

the program to skip parsing through the BAM file. This file can be provided as –B instead 

of the BAM file for subsequent runs. 
 

iii. Links file. The links file is generated after the all-by-all node calculations. It reports all of 

the links for each node above a certain threshold (set by –r). Additionally it contains the 

shared fraction of groups hitting the node-pairs that belong to the same input 
contig/scaffold which is used for determining the orientation quality score. The information 
in this file is designed to be inclusive such that future runs of the program can take care of 

the link filtering. It can be provided as –K in order to skip the all-by-all node calculations 

step for subsequent runs. 
 

iv. Ordered node file. The ordered node file lists the scaffolds that are generated by 

fragScaff. It can be used as the input to the script: fragScaff_check_ordering.pl 

which compares the assembles scaffolds to their alignment to a trusted reference and will 
output relevant accuracy statistics. This script additionally requires a mapping file for the 
contigs to a trusted reference in a tab delimited format with the columns: contig/scaffold 
name, chromosome, start position, and end position. If there is no valid alignment for the 

contig or scaffold, the chromosome and coordinate columns should be replaced with a “-

1”. 

 

v. Output fasta. This file contains the newly scaffolded fasta file with N-bases placed 
between the joins made by fragScaff. It also contains all input contigs/scaffolds that were 
not included in the assembly. 

 

vi. Qual file. This file provides the quality information for the links as well as the orientation 
for the scaffolds. It is intended to guide future analysis or future scaffolding by informing 
where the weak points are in the assembly. 

 

vii. N50 file. This file provides details on the input and output max scaffold size, N10, N50, 
and N90 with and without N-bases. 

 

viii. Cytoscape file. If the –V option is specified a “.csv” file will be generated that can be used 

as an input to cytoscape for visualization of the graphs. If a number is specified to –V it will 

output only that many scaffolds semi-randomly (biased towards larger scaffolds). If it is set 

to “A” it will output all scaffolds included in fragScaff. Edges are listed as either “TRUNK” 

which is a subset of the minimum spanning tree edges “MST” which is a subset of all of the 

edges “EDGE”. The file also has the edge weight score and the scaffold ID that the vertices 

and edges belong to. 
 

  



E. fragScaff computational requirements 
 
The computational requirements and run times of fragScaff are directly tied to the size of the 
BAM file (initial I/O) and the number of input contigs or scaffolds. In order to optimize the 
process, fragScaff is divided into the three main steps described above: (i) BAM file parsing 
and node determination, (ii) all-by-all shared fraction calculations, and (iii) graph 
manipulation followed by the final assembly output. Since each step can be performed 
independently, the requirements are addressed separately below. Specific examples are 
also provided for the 437 kbp N50 input human assembly as well as the fly assembly. 
(Human = 18,922 input scaffolds, 2.73 Gbp assembled, 334 M reads; Fly = 7,109 input 
scaffolds, 127 Mbp assembled, 1,324 M reads). 
 

i. Bam file parsing and node determination. This initial step is primarily comprised of 
reading in the BAM file and is single-threaded. The memory requirement is low (<1 Gb), 
and is purely based on the size of the BAM file. This process takes approximately twice as 
long as running a BAM->SAM conversion using samtools. (Human = 4 hours, < 1Gb 
memory; Fly = 48 minutes, < 1 Gb memory) 
 

ii. All-by-all shared fraction calculations. After the “.bamParse” file has been generated, 
the all-by-all calculations must be performed. This step is highly dependent on the number 
of input contigs and scaffolds with respect to run time (O(n2)); however the memory 
footprint is similar to that of the first step at <1 Gb. fragScaff has been developed with 
multithreading capability either on the node in which it is being run, or with the capability to 
execute jobs using SGE. The following table provides approximate run times using varying 
number of threads or concurrent SGE jobs. Again these numbers are approximations and 
vary based on the assembly, particularly with respect to repeat content which can either 
increase the run times if the repeats are not masked out, or decrease them if thorough 
repeat masking is performed. (Human = 22 minutes (50 jobs on SGE), < 1 Gb memory; 
Fly = 6 minutes (8 threads); < 1 Gb memory) 

Input 
Contig/Scaffolds 

Number of threads (or 
concurrent SGE jobs) 

Approximate Run 
Time 

< 10,000 8 (threads) 10 – 20 min 
10,000 – 30,000 50 (SGE) 10 – 60 min 
30,000 – 100,000 50 (SGE) 1 – 15 hr 

100,000 – 250,000 50 (SGE) 15 – 48 hr 
 

iii. Graph manipulation. Both the run time and memory of the graph manipulation steps are 
based on the number of input contigs and scaffolds. The runtime also varies considerably 
based on the repeat content and the masking of repeats in the input assembly. All things 
considered, this is the fastest step, with input assemblies containing just over 100,000 
input contigs requiring less than 15 minutes. (16.3 Gb memory footprint). (Human = 2 
minutes, 8 Gb memory; Fly = seconds, < 1 Gb memory) 
 

iv. Final assembly output. This is another single thread process and first involves running 
the graph manipulation step, but allowing fragScaff to continue on to produce the final 
output. The memory requirement is approximately 5*(size of assembly). The run time of 
this step is also heavily I/O bound and takes approximately three times as long as it would 
take to cat the input assembly fasta. (Human = 1.8 hours, 13.2 Gb memory; Fly = 4 
minutes, < 1 Gb memory) 



CPT-seq Index Sequences 
 

TSase 1-12 =  
 ATTACTCG,TCCGGAGA,CGCTCATT,GAGATTCC,ATTCAGAA,GAATTCGT, 

 CTGAAGCT,TAATGCGC,CGGCTATG,TCCGCGAA,TCTCGCGC,AGCGATAG 

 

TSase A-H =  
 TATAGCCT,ATAGAGGC,CCTATCCT,GGCTCTGA, 

 AGGCGAAG,TAATCTTA,CAGGACGT,GTACTGAC 

 

PCR 1-12 =  
 TAAGGCGA,CGTACTAG,AGGCAGAA,TCCTGAGC,GGACTCCT,TAGGCATG, 

 CTCTCTAC,CAGAGAGG,GCTACGCT,CGAGGCTG,AAGAGGCA,GTAGAGGA 

 

PCR A-H =  
 TAGATCGC,CTCTCTAT,TATCCTCT,AGAGTAGA, 

 GTAAGGAG,ACTGCATA,AAGGAGTA,CTAAGCCT 

 

 

 

 

CPT-seq HiSeq 6-read-run 

 

Read 1 = gDNA Read 1 

Read 2 = TSase (1-12) Index 

   (dark cycles) 

Read 3 = PCR (1-12) Index 

Read 4 = PCR (A-H) Index 

   (dark cycles) 

Read 5 = TSase (A-H) Index 

Read 6 = gDNA Read 2 



j u p-score u-score N10 Imp. N50 Imp. N90 Imp. Join accuracy

Orientation 

accuracy

bp properly 

placed

1 3 52 156 1.38 1.38 1.32 96.9 93.17 98.93

1 2.5 52 130 2.21 2.07 1.9 97.45 94.05 98.66

1 2 52 104 3.16 2.92 2.65 97.73 94.3 98.56

1.25 3 45 135 2.02 1.92 1.74 97.34 93.64 98.8

1.25 2.5 45 112.5 3.5 3.19 2.86 97.57 94.09 98.43

1.25 2 45 90 5.18 4.68 4.13 97.56 94.05 98.36

1.5 3 38 114 3.58 3.19 2.83 97.51 93.5 98.61

1.5 2.5 38 95 6.65 6.26 5.16 97.35 93.5 98.47

1.5 2 38 76 8.21 8.02 6.87 97.19 93.1 98.6

1.75 3 32 96 7.21 6.59 5.32 97.26 92.9 98.61

1.75 2.5 32 80 10.27 10.09 8.49 97.08 92.35 98.48
1.75 2 32 64 11.32 11.82 10.45 96.98 92.14 98.35

2 3 27 81 10.71 11.06 8.99 96.87 91.71 98.3

2 2.5 27 67.5 15.98 14.74 13.05 96.68 91.52 98.35

2 2 27 54 17.68 15.73 13.89 96.56 91.31 98.14

2.25 3 23 69 16.57 14.85 13.4 96.64 91.26 98.35

2.25 2.5 23 57.5 21.47 18.05 16.61 96.39 90.89 97.99

2.25 2 23 46 27.11 19.97 18.04 96.25 90.61 97.99

2.5 3 19 57 21.94 21.66 18.34 96.26 90.5 98.03

2.5 2.5 19 47.5 27.77 23.95 20.39 95.94 90.16 97.85

2.5 2 19 38 37.46 27.04 21.07 95.83 89.97 97.97

2.75 3 16 48 29.96 25.87 21.68 95.98 89.63 97.92

2.75 2.5 16 40 35.11 29.17 23.45 95.69 89.35 97.85

2.75 2 16 32 35.11 29.48 24.29 95.55 89.32 97.78

3 3 14 42 27.77 28.84 24.71 95.86 88.98 98.11

3 2.5 14 35 32.58 30.52 26.39 95.65 88.88 97.98

3 2 14 28 38.34 31.67 27.2 95.58 88.8 97.95

3.25 3 12 36 34.97 32.63 27.37 95.76 88.82 98.04

3.25 2.5 12 30 38.23 34.07 29.59 95.51 88.63 97.99

3.25 2 12 24 38.23 35.84 30.02 95.31 88.55 98.01

3.5 3 10 30 45.74 36.71 30.02 95.75 88.5 97.97

3.5 2.5 10 25 47.23 37.39 30.79 95.43 88.34 97.76

3.5 2 10 20 48.08 38.48 32.48 95.28 88.17 97.7

3.75 3 9 27 47.1 36.82 30.44 95.6 88.31 97.93

3.75 2.5 9 22.5 48.08 38.44 32.54 95.35 88.23 97.8

3.75 2 9 18 48.08 38.87 34 95.3 88.08 97.86

4 3 8 24 47.29 37.39 32.8 95.44 88.27 97.68

4 2.5 8 20 48.08 40.92 35.76 95.27 88.1 97.75

4 2 8 16 51.92 42.49 38.08 95.15 87.82 97.72

4.25 3 7 21 48.08 40.92 35.64 95.28 87.78 97.77

4.25 2.5 7 17.5 49.34 42.49 38.05 95.16 87.61 97.75
4.25 2 7 14 51.92 42.85 38.81 95.1 87.54 97.63

4.5 3 6 18 50.84 42.49 38.08 95.16 87.54 97.62

4.5 2.5 6 15 62.87 46.09 38.91 94.98 87.61 97.25

4.5 2 6 12 62.87 46.09 41.23 94.94 87.57 97.27

4.75-5 3 5 15 104.28 53.1 40.92 94.84 87.39 97.41

4.75-5 2.5 5 12.5 110.16 53.35 42.61 94.69 87.36 97.13

4.75-5 2 5 10 138.78 55.56 42.67 94.56 87.14 96.94

5.25-5.5 3 4 12 238.87 60.96 42.83 94.51 86.94 97.31

5.25-5.5 2.5 4 10 261.94 64.18 43.25 94.35 86.93 97.19

5.25-5.5 2 4 8 269.92 64.18 43.44 94.27 86.82 97.17

5.75-6 3 3 9 306.12 64.18 47.51 94.29 86.34 97.32

5.75-6 2.5 3 7.5 424.88 72.22 47.51 94.04 86.13 97.36

5.75-6 2 3 6 445.44 72.75 48.06 93.97 86.11 97.3

Human (iSC N50 = 437 kbp) 

Supplemental Table S1. fragScaff parameter optimization 



j u p-score u-score N10 Imp. N50 Imp. N90 Imp. Join accuracy

Orientation 

accuracy

bp properly 

placed

2.5 3 108 300 5.2 4.54 2.92 99.49 76.02 99.78

2.5 2.5 108 270 7.87 6.97 4.34 99.4 76.01 99.74

2.5 2 108 216 11.68 10.55 6.67 99.28 75.85 99.69

2.75 3 101 300 5.25 4.6 2.98 99.48 75.61 99.78

2.75 2.5 101 252.5 10.37 9.22 5.82 99.32 75.34 99.71

2.75 2 101 202 15.36 13.62 8.66 99.17 75.17 99.68

3 3 94 282 6.86 6.13 3.93 99.42 75.09 99.74

3 2.5 94 235 13.56 12 7.84 99.22 74.68 99.67
3 2 94 188 19.43 17.6 11.12 99.05 74.37 99.64

3.25 3 88 264 9.4 8.18 5.33 99.32 74.63 99.71

3.25 2.5 88 220 17.67 15.69 10.26 99.07 74 99.62

3.25 2 88 176 23.65 22.02 14.05 98.91 73.65 99.62

3.5 3 82 246 12.18 10.84 7.2 99.23 73.93 99.66

3.5 2.5 82 205 22.72 20.19 13.14 98.93 73.3 99.58

3.5 2 82 164 29.12 27.37 17.14 98.76 73.2 99.56

3.75 3 77 231 15.8 13.91 9.4 99.09 73.41 99.62

3.75 2.5 77 192.5 28.39 25.52 16.01 98.79 72.81 99.55

3.75 2 77 154 35.79 32.42 20.02 98.63 72.68 99.53

4 3 72 216 20.89 18.59 12.31 98.93 72.91 99.57

4 2.5 72 180 33.11 30.81 19.25 98.65 72.43 99.53

4 2 72 144 41.62 38.48 23.56 98.49 72.3 99.5

4.25 3 67 201 26.2 23.96 15.4 98.78 72.42 99.53

4.25 2.5 67 167.5 40.07 37.75 22.94 98.49 72.14 99.48

4.25 2 67 134 45.28 44.8 26.32 98.3 71.94 99.44

4.5 3 63 189 32.46 29.63 18.57 98.63 72.07 99.46

4.5 2.5 63 157.5 44.27 43.69 25.86 98.31 71.85 99.4

4.5 2 63 126 50.79 50.5 29.97 98.12 71.8 99.36

4.75 3 59 177 37.91 36.11 22.43 98.48 71.8 99.43

4.75 2.5 59 147.5 49.17 50.93 29.3 98.13 71.69 99.33

4.75 2 59 118 54.39 54.81 32.85 97.96 71.59 99.3

5 3 55 165 43.05 43.08 25.93 98.28 71.67 99.32

5 2.5 55 137.5 56.21 54.75 32.62 97.93 71.47 99.26

5 2 55 110 60.24 57.42 35.34 97.77 71.42 99.24

5.25 3 52 156 46.08 49.09 28.49 98.15 71.52 99.3

5.25 2.5 52 130 58.52 57.28 34.58 97.83 71.42 99.22
5.25 2 52 104 63.81 60.38 36.49 97.68 71.32 99.2

5.5 3 49 147 51.24 54.09 31.4 97.99 71.43 99.23

5.5 2.5 49 122.5 63.63 60.7 35.89 97.7 71.31 99.2

5.5 2 49 98 67.34 63.88 37.13 97.55 71.21 99.15

5.75 3 46 138 58.74 56.44 33.53 97.82 71.34 99.17

5.75 2.5 46 115 67.34 62.14 36.89 97.55 71.21 99.15

5.75 2 46 92 72.12 65.64 38.34 97.43 71.18 99.11

6 3 43 129 62.52 59.43 35.34 97.69 71.33 99.13

6 2.5 43 107.5 72.12 64.93 38.02 97.43 71.16 99.11

6 2 43 86 73.95 67.61 39 97.33 71.17 99.05

Human (iSC N50 = 47 kbp) 



j u p-score u-score N10 Imp. N50 Imp. N90 Imp. Join accuracy

Orientation 

accuracy

bp properly 

placed

1 3 75 225 1.48 1.76 1.85 98.66 88.2 99.27

1 2.5 75 187.5 1.69 2.25 2.42 98.69 88.33 99.05

1 2 75 150 2.07 2.81 2.99 98.67 88.26 99.01

1.1 3 66 198 1.63 2.1 2.25 98.68 88.16 99.17

1.1 2.5 66 165 2.06 2.76 2.98 98.64 88.2 99.02

1.1 2 66 132 2.59 3.45 3.71 98.61 88.12 99.04

1.2 3 56 168 2.06 2.69 2.92 98.62 88.07 99.1

1.2 2.5 56 140 2.62 3.62 3.94 98.61 88.02 99.1

1.2 2 56 112 3.1 4.47 4.91 98.54 88.06 98.98

1.3 3 47 141 2.62 3.61 3.94 98.61 87.87 98.99

1.3 2.5 47 117.5 3.31 4.71 5.34 98.52 87.7 99.03

1.3 2 47 94 4.02 5.51 6.34 98.46 87.56 98.93

1.4 3 39 117 3.31 4.76 5.42 98.5 87.62 99.05

1.4 2.5 39 97.5 4.35 5.83 6.97 98.47 87.29 98.96

1.4 2 39 78 4.73 6.76 8.13 98.4 87.08 98.91

1.5 3 31 93 4.44 6.35 7.54 98.45 87.11 98.9

1.5 2.5 31 77.5 5.16 7.54 9.32 98.35 86.84 98.8

1.5 2 31 62 5.8 8.43 10.43 98.23 86.96 98.71

1.6 3 25 75 5.33 7.94 9.79 98.33 86.82 98.73

1.6 2.5 25 62.5 6.32 9.37 11.51 98.18 86.72 98.59

1.6 2 25 50 6.87 10.15 12.57 98.05 86.78 98.39

1.7 3 20 60 6.58 9.91 12.1 98.12 86.69 98.48

1.7 2.5 20 50 7.49 10.82 13.97 98 86.48 98.33

1.7 2 20 40 8.52 11.65 15.25 97.92 86.38 98.27

1.8 3 15 45 8.42 11.8 15.53 97.97 86.28 98.31

1.8 2.5 15 37.5 9.33 13.05 16.8 97.8 86.29 98.09
1.8 2 15 30 10.41 13.66 17.81 97.7 86.08 98.08

1.9 3 12 36 9.78 13.36 17.06 97.8 86.26 98.15

1.9 2.5 12 30 11.51 15.75 18.55 97.58 85.93 97.92

1.9 2 12 24 13.03 16.53 19.47 97.42 85.74 97.95

2 3 10 30 12.16 15.8 18.74 97.56 85.97 97.85

2 2.5 10 25 14.8 17.01 19.9 97.3 85.84 97.83

2 2 10 20 19.96 18.2 20.71 97.07 85.5 97.73

Mouse 



j u p-score u-score N10 Imp. N50 Imp. N90 Imp. Join accuracy

Orientation 

accuracy

bp properly 

placed

3 3 15 45 1.1 1.08 1.28 83.97 61.07 96.48

3 2.5 15 37.5 1.34 1.38 1.52 92.98 72.19 98.97

3 2 15 30 3.12 3.08 1.95 95.12 78.48 99.35

3.25 3 14 42 1.1 1.11 1.35 89.86 67.15 98.54

3.25 2.5 14 35 1.77 1.78 1.72 94.87 74.57 99.37

3.25 2 14 28 3.89 3.65 2.15 95.51 78.01 99.45

3.5 3 12 36 1.56 1.57 1.61 96.91 71.3 99.51

3.5 2.5 12 30 3.38 3.63 2.07 97.22 75.46 99.65

3.5 2 12 24 4.9 4.61 2.39 97.19 74.68 99.66

3.75 3 11 33 2.38 2.4 1.84 97.8 73.56 99.71

3.75 2.5 11 27.5 4.21 4.38 2.25 97.61 74.02 99.71

3.75 2 11 22 4.97 4.97 2.55 97.77 74.48 99.73

4-4.25 3 10 30 3.55 3.75 1.99 97.8 73.5 99.68

4-4.25 2.5 10 25 4.83 4.73 2.36 97.78 73.53 99.7

4-4.25 2 10 20 5.48 5.46 2.66 97.89 74.19 99.71

4.5 3 9 27 4.36 4.46 2.23 98.15 71.66 99.73

4.5 2.5 9 22.5 5.38 5.19 2.52 98.29 71.59 99.75

4.5 2 9 18 6.11 6.02 2.64 98.23 71.7 99.75

4.75-5 3 8 24 4.97 5.11 2.44 98.3 70.63 99.75

4.75-5 2.5 8 20 6.12 5.83 2.64 98.28 71.44 99.75

4.75-5 2 8 16 6.12 6.77 2.88 97.78 70.78 99.64

5.25-5.5 3 7 21 5.72 5.78 2.63 98.34 69.66 99.74

5.25-5.5 2.5 7 17.5 6.12 6.59 2.86 98 69.3 99.7

5.25-5.5 2 7 14 6.12 7.07 2.96 97.94 69.27 99.67

5.75-6 3 6 18 6.36 6.82 2.81 97.85 69.25 99.68

5.75-6 2.5 6 15 6.36 7.12 2.96 97.82 69.05 99.68

5.75-6 2 6 12 6.36 7.67 2.98 97.66 68.81 99.61

6.25-6.75 3 5 15 6.37 7.28 2.93 98.16 69.22 99.71

6.25-6.75 2.5 5 12.5 6.53 7.71 2.99 97.93 68.55 99.67
6.25-6.75 2 5 10 7.24 8.27 3.04 97.86 68.62 99.62

7-8 3 4 12 6.53 7.74 3.01 97.76 67.38 99.56

7-8 2.5 4 10 8.14 8.44 3.08 97.73 66.78 99.55

7-8 2 4 8 8.14 8.55 3.18 97.68 66.27 99.55

8.25-9.5 3 3 9 8.14 8.55 3.17 97.87 64.29 99.56

8.25-9.5 2.5 3 7.5 8.32 8.74 3.3 97.67 64.49 99.51

8.25-9.5 2 3 6 8.32 8.78 3.39 97.68 64.66 99.51

9.75-10 3 2 6 8.65 8.92 3.56 97.63 63.99 99.47

9.75-10 2.5 2 5 8.65 9.25 3.64 97.59 63.5 99.47

9.75-10 2 2 4 8.65 9.81 3.65 97.61 63.3 99.53

fragScaff parameter optimization was carried out by varying options “j” (the 

mean number of passing hits per node to call the p-value cutoff) and “u” (the 

modifier to the score to consider the link reciprocated). The optimization is 

carried out using a wrapper scripts and only performs the fast, graph 

manipulation steps of the assembly. 

 Fly 



Assembly ID Organism Input assembly
a Input N10 (kbp) Input N50 (kbp) Input N90 (kbp)

Input scaffold 

count

Hs47.con Human S 133 47 11 127,088

Hs47.len Human S 133 47 11 127,088

Hs437.con Human S + 3Kb 1,234 437 102 18,921

Hs437.len Human S + 3Kb 1,234 437 102 18,921

Hs437.fos Human S + 3Kb 1,234 437 102 18,921

Hs437.lfr Human S + 3Kb 1,234 437 102 18,921

Hs15.sim Human R, 15Kb 15 15 15 191,312

Hs25.sim Human R, 25Kb 25 25 25 115,162

Hs50.sim Human R, 50Kb 50 50 50 57,586

Hs75.sim Human R, 75Kb 75 75 75 38,394

Hs100.sim Human R, 100Kb 100 100 100 28,817

Hs150.sim Human R, 150Kb 150 150 150 19,212

Hs200.sim Human R, 200Kb 200 200 200 14,412

Hs300.sim Human R, 300Kb 300 300 300 9,612

Mm224 Mouse S + 3Kb 912 224 44 25,964

Dm68 Fly S 207 68 8 7,109

Assembly ID Library method
Percent of 

bases included

fragScaff  N10 

(kbp)

N10 fold 

improvement

fragScaff  N50 

(kbp)

N50 fold 

improvement

fragScaff  N90 

(kbp)

Hs47.con CPT-Seq 95.81 1,809 13.60 570 12.13 83

Hs47.len CPT-Seq 97.81 7,807 58.70 2,720 57.87 367

Hs437.con CPT-Seq 97.13 12,724 10.31 4,398 10.06 889

Hs437.len CPT-Seq 99.02 60,536 49.06 18,193 41.63 3,928

Hs437.fos Fosmid 38.90 1,633 1.32 567 1.30 133

Hs437.lfr LFR 46.58 2,355 1.91 668 1.53 151

Hs15.sim CPT-Seq 77.95
c 1,069 71 361 24 15

Hs25.sim CPT-Seq 88.66
c 7,281 291 1,751 70 100

Hs50.sim CPT-Seq 89.87
c 14,161 283 3,753 75 250

Hs75.sim CPT-Seq 90.23
c 18,915 252 4,754 63 300

Hs100.sim CPT-Seq 90.47
c 24,605 246 6,601 66 400

Hs150.sim CPT-Seq 90.64
c 31,813 212 7,503 50 600

Hs200.sim CPT-Seq 90.78
c 34,366 172 10,202 51 800

Hs300.sim CPT-Seq 90.79
c 38,708 129 12,302 41 1,200

Mm224 CPT-Seq 96.22 8,423 9.24 2,916 13.02 743

Dm68 CPT-Seq 87.34 1,347 6.51 524 7.71 24

Supplemental Table S2. Extended fragScaff assembly results 

A 

B 

Assembly ID Library method

Hs47.con CPT-Seq

Hs47.len CPT-Seq

Hs437.con CPT-Seq

Hs437.len CPT-Seq

Hs437.fos Fosmid

Hs437.lfr LFR

Hs15.sim CPT-Seq

Hs25.sim CPT-Seq

Hs50.sim CPT-Seq

Hs75.sim CPT-Seq

Hs100.sim CPT-Seq

Hs150.sim CPT-Seq

Hs200.sim CPT-Seq

Hs300.sim CPT-Seq

Mm224 CPT-Seq

Dm68 CPT-Seq



Assembly ID
fragScaff 

scaffold count

Join   accuracy 

(%)

Orientation 

accuracy (%)

Bases properly 

placed (%)
b

Hs47.con 39,377 99.22 74.68 99.67

Hs47.len 24,251 97.83 71.42 99.22

Hs437.con 7,596 97.08 92.35 98.48

Hs437.len 5,514 95.16 87.61 97.75

Hs437.fos 15,303 71.57 74.66 87.95

Hs437.lfr 14,476 34.00 62.78 60.53

Hs15.sim 36,790 99.53 96.02 99.53

Hs25.sim 18,127 99.60 99.52 99.60

Hs50.sim 8,464 99.31 99.39 99.31

Hs75.sim 5,660 99.39 99.58 99.39

Hs100.sim 4,223 99.29 99.58 99.29

Hs150.sim 2,838 99.36 99.66 99.36

Hs200.sim 2,134 99.43 99.59 99.43

Hs300.sim 1,451 99.62 99.72 99.62

Mm224 3,969 97.80 86.29 98.09

Dm68 3,779 97.93 68.55 99.67

A. Input assemblies prior to fragScaff assembly. Sequence used indicated the 

types of libraries included. S = shotgun, 3Kb = 3 Kb mate pair sequencing, R = 

reference genome segmented into following contig sizes. B. fragScaff assembly 

output and sequencing method used to perform scaffolding. Scaffold count 

includes scaffolds that were not joined to any other scaffolds during the 

fragScaff process. C. fragScaff accuracies. Additional accuracy description can 

be found in Supplemental Fig. S4. 

a
Input Asembly. S=shotgun, 3kbp=3 kbp mate-pair, R=split reference with size of the fragments

b
Percentage of fragScaff  scaffolded sequence that was correctly scaffolded

c
For simulated assemblies, the percent included is reduced due to the removal of the top and bottom 5% of sequence

C 



Organism
Initial 

Assembly

N50 

(Kb)

Percent 

Clustered

Percent 

Ordered

Clustering 

Accuracy

Ordering 

Accuracy

Orienting 

Accuracy

Human S* 47 89.7 41.5 99.4 95.2 89.3

Human S + 3Kb 437 98.2 94.4 99.9 99.5 98.8 100

Human R, 15Kb 15 35.9 0.2 13.5 96.8 97.0 90

Human R, 25Kb 25 28.9 0.4 15.0 97.5 97.5 80

Human R, 50Kb 50 70.8 16.5 95.6 86.0 74.2 50

Mouse S + 3Kb 224 98.0 86.7 99.8 99.5 98.1 0

Fly** S 68 81.2 82.0 n/a n/a n/a

Organism
Initial 

Assembly

N50 

(Kb)

Percent 

Clustered

Percent 

Ordered

Clustering 

Accuracy

Ordering 

Accuracy

Orienting 

Accuracy

Human S* 47 99.4 99.1 97.5 95.9 96.3

Human S + 3Kb 437 98.8 96.0 99.7 98.9 98.5 100

Human R, 15Kb 15 91.9 88.2 99.9 96.0 96.4 90

Human R, 25Kb 25 92.5 93.1 99.9 96.5 97.6 80

Human R, 50Kb 50 93.6 95.5 96.9 97.4 97.2 50

Mouse S + 3Kb 224 99.8 98.6 98.0 99.2 98.5 0

Fly** S 68 96.2 93.0 n/a n/a n/a

Input CPM Only

fragScaff + CPMInput

A. Completeness and accuracy measurements for CPM scaffolding on various 

input assemblies. B. Completeness and accuracy measurements for CPM 

scaffolding after first scaffolding using CPT-seq and fragScaff on the same input 

assemblies. 

* Shotgun assembly generated by fragmenting the shotgun + 3 Kb mate-pair 

assembly at any N-base. 

** Fly accuracy measurements not possible due to the inability to uniquely align 

a large proportion of input contigs to the fly reference genome. 

A 

Supplemental Table S3. Hi-C based scaffolding (contact probability maps, 

CPM) improvements when first using fragScaff 

B 
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CPT-seq (blue), de novo assembly and input pre-processing (purple), and 

fragScaff (green) workflows. Dashed boxes and arrows indicate optional steps. 

Supplemental Figure S1. Workflow of CPT-seq and fragScaff  
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Histogram of the pool hit count for contig ends for the human (N50 = 437 Kb) 

input assembly. The top and bottom 10% of node ends are automatically filtered 

out. The lower peak is due to node ends that contain a segment of N’s in the 

node end resulting in less alignable space. 
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Human TC-seq Pool Hit Histogram 

(for Human, N50 = 437 Kb) 

Supplemental Figure S2. End-node pool hit histogram 



A 

B 

C 

MST trunk edges MST branch edges 

Non-MST edges New ordering edge 

Supplemental Figure S3. Graph manipulation examples 



MST trunk edges MST branch edges 

Non-MST edges New ordering edge 

D 

E 

F 

Examples of the graph manipulation process for the human shotgun assembly 

(input N50 47 kbp). The majority of nodes A, D. Graphs with MST and trunk 

determined. B, E. Determination of branch placement. C, F. Final path. 



100 101 102 103 104 105 106 107 108 109 

271 270 269 267 266 X 265 398 

X X X X X 

157 158 159 X 544 543 542 541 

Scaffold 1 

Scaffold 2 

Scaffold 3 

Contig true alignment order 

The true alignment order of each scaffold is determined via BLAST alignments 

of the contigs to the reference genome. Alignments are retained if they contain 

at least 80% of the contig sequence, otherwise the order is not determined and 

denoted as an X. Join accuracy is only determined for sub-segments of 

scaffolds in which all successive contigs have a true alignment order (blue 

boxes) where the ordering is within 5 of the actual ordering (eg. Green double-

arrow link is considered accurate, despite a jump of 2 in the ordering as 

opposed to 1) and the jump between 265-398 is considered an incorrect join 

(purple crossed link). A fused scaffold that is bridged by an unmapped contig is 

still included as a fused scaffold in the accuracy statistics (red crossed link). For 

the fused scaffold all bases belonging to the shorter sub-segment of the scaffold 

would be considered  improperly placed. 

Scaffold 4 

Supplemental Figure S4. Accuracy metrics schematic 
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Supplemental Figure S5. Link placement and contig orientation scores 

Correct Orientation 

Incorrect Orientation 

End-node pool non-overlap fraction 

C
o

u
n

t 

Score of 0: 

~50% Accuracy 

B fragScaff Orientation Scores 
(for Human, N50 = 437 Kb) 

A. Histogram of link quality scores for properly placed (blue) contigs and 

improperly placed (red) contigs for the stringent human assembly (input N50 = 

437 Kb). Due to extensive filtering and pruning during the fragScaff, there is little 

discrimination between accurate and inaccurate links based on the score. B. 

Orientation quality score distribution for correctly oriented (blue) and incorrectly 

oriented (red) contigs. The score is 1 – (pool overlap fraction), resulting in 

completely overlapping end nodes sharing 100% of pools and thus an 

orientation score of 0 resulting in a 50/50 chance of proper assignment. 



A. Histogram of the number of gaps present at increasing sizes up to 35+ Kb for 

both human input assemblies. B. Percentage of joins made at each input 

assembly gap size for the stringent human assembly and the small input N50 

human assembly. 

Input assembly gap sizes 

Percentage of gap joins by fragScaff 
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Human, N50 = 437 Kb 

Human, N50 = 47 Kb 

Human, N50 = 437 Kb 

Human, N50 = 47 Kb 
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B 

Supplemental Figure S6. Input assembly gap distribution and joining 

percentages 



First, shotgun paired-end reads are generated to high depth (blue pairs) and 

assembled into local sequence contigs (long blue lines).  Next, 3 Kb mate pair 

libraries (red pairs) can be used to generate mid-size scaffolds (long red lines). 

NCP can then be used (gray and purple lines) to increase scaffold sizes large 

enough so that the last phase (CPM) can be used. Finally CPM will cluster 

scaffolds into chromosomes and assemble into a complete reference. 

Supplemental Figure S7. In vitro, de novo assembly of genomes 



R P B 

Fragments 

Pools hit 

by window 

Pools hit 

by contig 

Anchor position 

To anchor novel contigs to a reference genome (black line), we first aligned all 

CPT-seq reads to the genome and called fragments (red, green, purple, blue, 

and orange lines). Next, the pools that contain fragments present in windows 

(gray dashed lines) tiling across the genome are identified (R, G, P, B, and O). 

Unaligned reads are then aligned to the contigs to identify which pools hit each 

contig. The window in the reference genome that has the largest fraction of 

shared pools (gray shading) is then identified as the most likely anchoring 

position. 

R R R R P G G G R R P G O R R R R 

G G G P O O O P G P O O B O B B B 

P P O B B B P B B B 

Supplemental Figure S8. Contig anchoring scheme 



Supplemental Figure S9. Haplotype resolution results 

Breakdown of Phased Variants 

Validated 

(327,828) 

In Repeat 

Elements 

(291,053) 

In SegDups 

(200,049) 

Other (83,975) 

Phased 

Correctly 

(183,470) 

Phased 

Incorrectly 

(9,669) Phased 

Unknown 

(77,030) 

Unphased 

(57,659) 

Breakdown of heterozygous calls from shotgun sequence reads aligned to the 

Human GM12878 assembly (input N50 = 437 kbp, fragScaff N50 = 4.4 Mbp) 

split into validation categories (left). Of the validated calls variants were subject 

to haplotype resolution using RefHap (Duitama et. al. 2010). Variants that were 

successfully phased were validated based on their corresponding human 

reference genome positions (GRCh37)  and the known phase of variants based 

on GM12878 pedigree information. Variants in the “Phased Unknown” category 

are variants confirmed by the NIST variant call set (Zook and Salit 2013) but are 

not present in the pedigree variant set. 
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Pulsed field gel electrophoresis was run on a BioRad Pulsed Field Gel 

Electrophoresis system using a 1% agarose TBE gel run at 170 V for 16 hours 

at 14°C with a switch time from 1 to 6 seconds. High DNA quality is crucial to 

CPT-seq and therefore a pulsed-field gel should be run prior to initiating the 

protocol. In our experience, if most DNA is above 40 kbp (ideally >100 kbp) then 

a well-performing CPT-seq library can be generated. 
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Supplemental Figure S10. Pulsed-field gel electrophoresis of CPT-seq input 

gDNA samples 



96 pools for each input (PCR) mass are shown along with the total megabases 

of the genome that are covered by called fragments. The amount covered tracks 

well with the input mass, thus allowing method tailoring to reflect the genome 

size of the organism being assembled. 
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Drosophila CPT-seq Fragment Coverage 

Supplemental Figure S11. Drosophila melanogaster CPT-seq called fragment 

coverage 


