
Supplementary material for “Lighter: fast and memory-efficient

error correction without counting”

Li Song, Liliana Florea, Ben Langmead

August 6, 2014

Supplementary Note 1: Pattern-blocked Bloom filter

For a standard Bloom filter, each of the h hash functions could map item o to any element of the bit array.
The bit array will often be very large, much larger than the processor cache. Thus, each probe into the bit
array is likely to cause a cache miss. Putze et al [5] propose a blocked Bloom filter. Given a block size b,
the first hash function H0(o) is used to select a size-b block of consecutive positions in the bit array. Then,
H1(o), ..., Hh−1(o) map o onto elements of that block. When b is less than or equal to the size of a cache line,
the h accesses will tend to cause only one or two cache misses, rather than approximately h cache misses.

The drawback is that h and m must be somewhat larger to achieve the same false positive rate (FPR)
as a corresponding standard Bloom filter. To estimate the FPR of the blocked Bloom filter, we can consider
each of the possible m − b + 1 blocks. For the i-th block, the FPR within the block is (b′i/b)

h, where b′i is
the number of bits set to 1 in block i. So the overall FPR is:

∑

i(b
′

i/b)
h

m− b+ 1

Putze et al also propose a pattern-blocked Bloom filter [5], where the difference is that instead of updating
the h positions in the block separately, we pre-compute a list of patterns where each pattern is a bit-
mask describing how to update h positions in a block with a few bitwise operations. To perform such an
update we first find the appropriate pattern using hash function, then update the corresponding positions
simultaneously. In Lighter, 64-bit integers are used to form the mask. For example, if b = 256, the pattern
is made up of 4 64-bit integers, and we can update in 4 64-bit operations, regardless of h. The FPR formula
above still roughly estimates the FPR for the pattern-blocked bloom filter.

Supplementary Note 2: Correcting positions at the ends of reads

If the error is located near the end of the read and some candidate substitutions are equally good, we will
extend reads using the k-mer reported in Bloom filter A for each candidates. Lighter extends the read base
by base. For the new base beyond the read, Lighter tries all the four nucleotides in the order of “A”,“C”,
“G”, “T”, and uses the first nucleotide creating a k-mer that can be found in Bloom filter A. This procedure
is terminated until all the nucleotides fails or the distance to the candidate substitution’s position is larger
than k - 1. Then we choose the candidate substitution with the longest extension based on this greedy
procedure. As a result, we can solve some ties that are more likely to happened near the end of a read due
to insufficient extension.

1



Supplementary Note 3: Scaling with depth of sequencing

Scaling with coverage

Lighter’s accuracy is near-constant as the depth of sequencing K increases and its memory footprint is held
constant. The basic idea is that as K increases, we adjust α in inverse proportion. That is, we hold αK
constant. For concreteness, consider two scenarios: scenario I, where the total number of k-mers is K1 and
subsampling fraction is α1, and scenario II where the number is K2 = zK1 and subsampling fraction is
α2 = α1/z.

Contents of Bloom filter A. The occupancy of Bloom filter A, as well as the fraction of correct k-mers in
A, are approximately the same in both scenarios. This follows from the fact that κ′

c ∼ Pois(αK(1− ǫ)/G),
κ′

e ∼ Pois(αKǫ/H), and αK, ǫ, G, and H are constant across scenarios. This is also supported by our
experiments, as seen in the main body of the manuscript. Because the occupancy does not change, we can
hold the Bloom filter’s size constant while achieving the same false positive rate.

Accuracy of trusted / untrusted classifications. Also, if a read position and its neighbors within
k − 1 positions on either side are error-free, then the probability it will be called trusted does not change
between scenarios. We mentioned that when α is small, P (α1) ≈ P (α1/z) = P (α2). We also showed that the
false positive rate of the bloom filter is approximately constant between scenarios, so P ∗(α1) ≈ P ∗(α1/z) =
P ∗(α2). Thus, the thresholds yx will also remain unchanged. pc = (p(κ′

c ≥ 1))/(p(κc ≥ 1)) is the probability
a correct k-mer is in the subsample given that it was sequenced. pc = (1− e−α(1−ǫ)K/G)/(1− e−(1−ǫ)K/G) ≈
1− e−α(1−ǫ)K/G, since (1− ǫ)K/G is large. pc is constant across scenarios since αK, ǫ, and G are constant.
Since pc is constant, the parameters of the Be,x distribution are constant and the probability a correct
position will be called trusted is also constant.

Now we consider an incorrect read position. We ignore false positives from Bloom filter A for now.
pe = p(κ′

e ≥ 1)/p(κe ≥ 1) = (1 − e−αǫK/H)/(1 − e−ǫK/H) is the probability an incorrect k-mer is in
the subsample given that it was sequenced. Since ǫK/H is close to 0, e−ǫK/H ≈ 1 − ǫK/H and pe ≈

(αǫK/H)/(ǫK/H) = α. Say an incorrect read position is covered by x k-mers; if Be,x is a random variable
for the number of k-mers overlapping the position that appear in Bloom filter A, then Be,x ∼ Binom(x, pe) ≈
Binom(x, α). The probability of falsely trusting a position is therefore: p(Be,x ≥ yx) =

∑x
i=yx

(

x
i

)

pie(1 −

pe)
x−i ≈

∑x
i=yx

(

x
i

)

αi(1 − α)x−i. If we omit the (1 − α)x−i term in the sum, what remains is an upper

bound, i.e.
∑x

i=yx

(

x
i

)

αi(1− α)x−i ≤
∑x

i=yx

(

x
i

)

αi. Since α2 = α1/z, the upper bound in scenario II is lower
by a factor of at least 1/z relative to the upper bound in scenario I. So an upper bound on the probability of
labeling an incorrect position as trusted decreases by a factor of at least z. When K increases, the number
of distinct test cases for incorrect positions increases by a factor of at most z. Thus, we expect the total
number incorrect positions labeled as trusted to remain approximately constant.

When α is small, the false positive rate β may dominate the probability pe. In practice, however, the
false positive rate is usually small enough that the probability of a incorrect position being labeled as trusted
due to false positives is extremely low. For example, when k-mer length k = 17, the false positive rate of
Bloom A ≈ 0.004, the threshold y2k−1 = 6, and α = 0.05. In this situation, p(Be,x ≥ yx) ≈ 5 · 10−11.

The above is not an exhaustive analysis, since we have not examined the case where a read position is
error-free but not all of its neighbors within k−1 positions on either side are error-free. In this case, whether
the threshold is passed depends chiefly on the whereabouts of the nearby errors.

Contents of Bloom filter B. Given the analysis in the previous section, we expect that the collection
of k-mers drawn from the stretches of trusted positions in the reads will not change much across scenarios
and, therefore, the contents of Bloom filter B will not change much. This conclusion is also supported by
our experiments, as seen in the main body of the manuscript.

2



Supplementary Note 4: Hardware Environment

This section describes the hardware we used in our experiments.
/proc/meminfo:

MemTotal: 528650220 kB

MemFree: 2230712 kB

Buffers: 288652 kB

Cached: 520412244 kB

SwapCached: 3036 kB

Active: 1647888 kB

Inactive: 519194196 kB

HighTotal: 0 kB

HighFree: 0 kB

LowTotal: 528650220 kB

LowFree: 2230712 kB

SwapTotal: 2096472 kB

SwapFree: 2076884 kB

Dirty: 0 kB

Writeback: 0 kB

AnonPages: 140232 kB

Mapped: 30464 kB

Slab: 5148768 kB

PageTables: 13968 kB

NFS_Unstable: 0 kB

Bounce: 0 kB

CommitLimit: 266421580 kB

Committed_AS: 942108 kB

VmallocTotal: 34359738367 kB

VmallocUsed: 282824 kB

VmallocChunk: 34359455519 kB

HugePages_Total: 0

HugePages_Free: 0

HugePages_Rsvd: 0

Hugepagesize: 2048 kB

/proc/cpuinfo

processor : 0

vendor_id : AuthenticAMD

cpu family : 16

model : 9

model name : AMD Opteron(tm) Processor 6172

stepping : 1

cpu MHz : 2100.025

cache size : 512 KB

physical id : 0

siblings : 12

core id : 0

cpu cores : 12

apicid : 0

fpu : yes

3



fpu_exception : yes

cpuid level : 5

wp : yes

flags : fpu vme de pse tsc msr pae mce cx8 apic sep

mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall

nx mmxext fxsr_opt pdpe1gb rdtscp lm 3dnowext 3dnow rep_good constant_tsc

nonstop_tsc amd_dcm pni cx16 popcnt lahf_lm cmp_legacy svm extapic

cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt nodeid_msr

bogomips : 4200.04

TLB size : 1024 4K pages

clflush size : 64

cache_alignment : 64

address sizes : 48 bits physical, 48 bits virtual

power management: ts ttp tm stc 100mhzsteps hwpstate [8]

...

The computer we used has 48 such cores.

4



Supplementary Note 5: Command lines

The commands that we used for all the experiments are available at:
https://github.com/mourisl/Lighter_paper/blob/revision1/README.md.

5



Supplementary Table 1: Quality-free simulation results

Here we give accuracy results from an evaluation similar to that shown in Table 1, except with quality values
omitted. Each of the tools was run on a FASTA file (with no qualities) instead of a FASTQ file. Quake and
Bless are omitted as they require quality values. The simulated error rate is 1% in these experiments.

Coverage 35× 70× 140×
α for Lighter 0.2 0.1 0.05

soapec 63.45 63.36 63.07
Recall musket 93.75 93.73 93.73

lighter 99.89 99.84 99.88

soapec 99.99 99.99 99.99
Prec musket 99.99 99.99 99.99

lighter 99.96 99.95 99.95

soapec 77.63 77.57 77.35
F-score musket 96.77 96.76 96.76

lighter 99.92 99.90 99.91

soapec 63.44 63.36 63.06
Gain musket 93.74 93.72 93.72

lighter 99.84 99.79 99.82

6



Supplementary Table 2: Simulation results using the Art simulator.

Here we give accuracy results from an evaluation similar to that shown in Table 1, except that the simulation
was conducted using art_illumina v2.1.8 from the Art [2] package.

Coverage 35× 70× 140×
α for Lighter 0.2 0.1 0.05

quake 99.46 99.47 99.46
soapec 77.97 77.98 78.02

Recall musket 99.93 99.93 99.93
bless 99.95 99.94 99.94
lighter 99.91 99.94 99.94

quake 99.99 99.99 99.99
soapec 99.99 100.00 99.99

Prec musket 99.99 99.99 99.99
bless 99.57 99.55 99.54
lighter 99.98 99.99 99.99

quake 99.73 99.73 99.73
soapec 87.62 87.63 87.65

F-score musket 99.96 99.96 99.96
bless 99.76 99.75 99.74
lighter 99.95 99.96 99.96

quake 99.45 99.45 99.45
soapec 77.97 77.98 78.01

Gain musket 99.93 99.92 99.93
bless 99.52 99.49 99.48
lighter 99.89 99.92 99.92

7



Supplementary Table 3: Simulation results with C. elegans genome.

Accuracy evaluation for the simulated data set from C. elegans genome with 35× coverage and 1% error
rate using Mason [1] v0.1.2. The row labeled k gives the selected k-mer sizes.

Quake SOAPec Musket Bless Lighter
Recall 85.70 53.40 90.31 98.99 98.12

Precision 99.82 99.84 99.59 95.64 99.66
F-score 92.22 69.58 94.72 97.29 98.88
Gain 85.55 53.31 89.94 94.48 97.78
k 19 23 27 31 31

8



Supplementary Table 4: Alignment statistics for E. coli dataset

using –very-fast.

Alignment statistics for the 75× E. coli data set using Bowtie 2 [3] v2.2.2 with --very-fast. The column
labeled k gives the selected k-mer sizes.

Read Level Base Level
k Mapped Reads Increase (%) Matches/aligned base (%) Increase (%)

Original - 3,459,316 - 99.048 -
Quake 19 3,373,491 -2.48 99.659 0.62
SOAPec 17 3,464,456 0.15 99.135 0.09
Musket 17 3,467,805 0.25 99.601 0.56
Bless 19 3,468,604 0.27 99.667 0.62
Lighter 19 3,478,210 0.55 99.641 0.60

9



Supplementary Table 5: Alignment statistics for E. coli dataset

using BWA-MEM.

Alignment statistics for the 75× E. coli data set using BWA-MEM [4] v0.7.9a-r786 with default parameters.

Read Level Base Level
k Mapped Reads Increase (%) Matches/aligned base (%) Increase (%)

Original - 3,482,421 - 98.936 -
Quake 19 3,373,877 -3.12 99.968 1.04
SOAPec 17 3,482,422 0.00 99.039 0.10
Musket 17 3,482,735 0.01 99.599 0.67
Bless 19 3,481,889 -0.02 99.788 0.86
Lighter 19 3,484,166 0.05 99.821 0.89

10



Supplementary Table 6: Alignment statistics for GAGE chromo-

some 14 dataset using BWA-MEM.

Alignment statistics for the GAGE chr14 data set using BWA-MEM [4] v0.7.9a-r786 with default parameters.

Read Level Base Level
k Mapped Reads Increase (%) Matches/aligned base (%) Increase (%)

Original - 36,493,776 - 97.093 -
Quake 19 32,560,823 -10.78 99.826 2.81
SOAPec 19 36,493,999 0.00 97.394 0.31
Musket 23 36,494,472 0.00 98.165 1.1
Bless 31 36,481,303 -0.03 98.661 1.61
Lighter 19 36,494,905 0.00 98.369 1.31

11



References

[1] M. Holtgrewe. Mason–a read simulator for second generation sequencing data. Technical Report FU

Berlin, 2010.

[2] W. Huang, L. Li, J. R. Myers, and G. T. Marth. Art: a next-generation sequencing read simulator.
Bioinformatics, 28(4):593–594, 2012.

[3] B. Langmead and S. L. Salzberg. Fast gapped-read alignment with bowtie 2. Nature methods, 9(4):357–
359, 2012.

[4] H. Li. Aligning sequence reads, clone sequences and assembly contigs with bwa-mem. arXiv preprint

arXiv:1303.3997, 2013.

[5] F. Putze, P. Sanders, and J. Singler. Cache-, hash-, and space-efficient bloom filters. J. Exp. Algorithmics,
14:4:4.4–4:4.18, Jan. 2010.

12


