1. Summary of Guideline

Table 1. Detection of CAD

Indie	cation	Level of Evi- dence	Appropri- ateness Criteria (score)	References
Det	ection of CAD: Symptomatic			
1.	Evaluation of Chest Pain Syndrome			
(Pro	tocols may include vasodilator perfusion CMR, dobutamine stress	s functio	on CMR, and	d/or MR
corc	onary angiography)			
Q1	Low pre-test probability of CAD/ECG interpretable AND able to exercise	А	I(2)	(13, 34, 39, 65)
Q2	Intermediate pre-test probability of CAD/ECG interpretable AND able to exercise	A	U(4)	(13, 34, 39, 65)
Q3	Intermediate pre-test probability of CAD/ECG uninterpretable OR unable to exercise	A	A(7)	(13, 34, 39, 65)
Q4	High pre-test probability of CAD	А	U(6)	(13, 34, 39, 65)
2.	Evaluation of Intracardiac Structures (Use of MR Coronary Ang	giograpl	hy)	
Q5	Evaluation of suspected coronary anomalies	В	A(8)	(46, 47)
3.	Acute Chest Pain			
(Pro	tocols may include vasodilator perfusion CMR or dobutamine str	ess func	tion CMR)	
Q6	Low pre-test probability of CAD/No ECG changes and serial cardiac enzyme negative	А	U(4)	(48, 51, 52)
Q7	Intermediate pre-test probability of CAD/No ECG changes and serial cardiac enzyme negative	А	U(5)	(48, 51)
Q8	High pre-test probability of CAD/No ECG changes and serial cardiac enzyme negative	А	U(5)	(48, 51)
Q9	High pre-test probability of CAD/ECG—ST-segment elevation and/or positive cardiac enzymes	А	I(2)	(48, 51)
4.	Detection of CAD: with Prior Test Results			
(Pro	tocols may include vasodilator perfusion CMR or dobutamine str	ess fund	tion CMR)	
Q10	Normal prior stress test (exercise, nuclear, echo, MRI)/High CHD risk (Framingham)/Within 1 year of prior stress test	A	I(2)	(13, 17, 65)
Q11	Equivocal stress test (exercise, stress SPECT, or stress echo)/Intermediate CHD risk (Framingham)	А	U(6)	(13, 17, 65)
Q12	Coronary angiography (catheterization or CT)/Stenosis of un-	С	A(7)	(64)

	clear significance			
5.	Evaluation of CAD: Post PCI or CABG			
Evalu	uation of Chest Pain Syndrome (Use of MR Coronary Angiograph	<i>y)</i>		
Q13	Evaluation of bypass grafts	С	U(4)	(69, 70)
Q14	History of percutaneous revascularization with stent	С	I(3)	(71, 72)
Asyn	nptomatic (Use of MR Coronary Angiography)			
Q15	Evaluation of bypass grafts and coronary anatomy	С	I(3)	(69, 70)
Q16	Evaluation for in-stent restenosis and coronary anatomy after PCI	С	I(3)	(71, 72)
6.	CAD Risk Assessment: Preoperative Evaluation	1	L	•
(Prot	tocols may include vasodilator perfusion CMR or dobutamine stru	ess func	tion CMR)	
Q17	Low-risk non-cardiac surgery in patients with intermediate perioperative risk predictors	С	I(3)	(82)
Q18	Intermediate or high risk non-cardiac surgery in patients with intermediate perioperative risk predictors	С	U(5)	(82)
Q19	CAD evaluation before valve surgery	С	U(6)	(82)
	e of MR Coronary Angiography) nptomatic			
	nptomatic	[
Q20	No previous definitive test (catheter-based XCA, MR coronary angiography, or CT coronary angiography) available	В	U(5)	(84, 85, 87)
Q21	Previous tests (catheter-based XCA, MR coronary angi- ography, or CT coronary angiography) documented coronary aneurysm/stenosis, for follow up	В	A(7)	(84, 85, 87)
Symp	ptomatic			
Q22	No previous definitive test (catheter-based XCA, MR coronary angiography, or CT coronary angiography) available	В	A(7)	(84, 85, 87)
Q23	Previous tests (catheter-based XCA, MR coronary angi- ography, or CT coronary angiography) documented coronary aneurysm/stenosis, for follow up	В	A(7)	(84, 85, 87)
8.	Detection of CAD: Asymptomatic		I	_
(Prot	tocols may include vasodilator perfusion CMR, dobutamine stress	functio	n CMR, an	d∕or MR
corol	nary angiography)			
Q24	Low CHD risk (Framingham)	А	I(1)	(89)
Q25	Moderate CHD risk (Framingham)	А	U(4)	(89)
Q26	High CHD risk (Framingham)	А	U(6)	(89)

9.	Detection of Myocardial Scar and Viability in Ischemic Heart	Disease	9			
(Proto	(Protocols may include LGE evaluation or dobutamine stress function CMR)					
Q27	To determine the location and extent of myocardial necrosis including 'no reflow' regions/Post-acute myocardial infarction	A	A(9)	(92-94)		
Q28	To detect post PCI myocardial necrosis	А	A(8)	(95, 101)		
Q29	To determine viability prior to revascularization/Establish likelihood of recovery of function with revascularization (PCI or CABG) or medical therapy	A	A(9)	(96, 101, 102)		
Q30	To determine viability prior to revascularization/Viability as- sessment by SPECT or dobutamine echo has provided "equivocal or indeterminate" results	A	A(9)	(13, 97, 98)		

Table 2. Structure and Myocardial Functional Evaluation in Patients with Risk of Heart Failure or Overt Heart Failure

Indicat	ion	Level of Evi- dence	Appropri- ateness Criteria (score)	References		
10.	Evaluation in Patients with Risk of Heart Failure or Overt H	eart Fa	ilure (Gene	eral)		
(Protod	(Protocols may include LV/RV mass and volumes, MR angiography, quantification of valvular dis-					
ease, a	and LGE evaluation)					
Q31	Evaluation of LV function following myocardial infarction OR	А	A (7)	(116, 121,		
QSI	in heart failure patients	A	A(7)	131)		
	Evaluation of LV function following myocardial infarction OR	A				
Q32	in heart failure patients/Patients with technically limited im-		A(9)	(108, 115, 116)		
ages from echocardiogram	ages from echocardiogram			110)		
Q33	Quantification of LV function/Discordant information that is	А	A(0)	(108, 115,		
QSS	clinically significant from prior tests	A	A(9)	116)		
Q34	Evaluation in patients with new onset heart failure to assess	А	۸ (۵)	(119-121)		
Q34	etiology	A	A(8)	(119-121)		
	Initial evaluation of structure and function for newly suspect-					
	ed or potential heart failure (also including malignancy on					
Q35	current or planned cardiotoxic therapy and no prior imaging	^	A (Q)	(119, 120,		
QSS	evaluation/familial or genetic cardiomyopathy in first-degree	A	A(8)	124)		
	relative, known adult congenital heart disease, acute myocar-					
	dial infarction during initial hospitalization)					
Q36	Evaluation determine patient candidacy of ICD therapy (ejec-	А	A(8)	(132-134)		

	tion fraction and/or other structural information)			
	Initial evaluation determine patient candidacy of CRT or pro-			
Q37	cedural planning (ejection fraction, fibrosis, scarring, coronary	А	A(8)	(135, 136)
	vein variation, and intra-cavitary thrombus)			
Q38	Cardiac function follow up after ICD or CRT	С	I(3)	(138, 139)
11.	In Congenital Heart Disease			
(Proto	cols may include LV/RV mass and volumes, MR angiography, qua	antificat	tion of valv	ular dis-
ease, a	and LGE evaluation)			
	Assessment of complex congenital heart disease including			
Q39	anomalies of coronary circulation, great vessels, and cardiac	А	A(8)	(45, 144, 153, 154)
	chambers and valves			133, 134)
040	Assessment of post-operative congenital heart disease includ-	^	A (Q)	(163, 166,
Q40	ing ventricular and valvular function and anatomy evaluation	A	A(8)	168)
12.	In Valvular Heart Disease			
(Proto	cols may include LV/RV mass and volumes, MR angiography, qu	uantific	ation of va	alvular dis-
ease, a	and LGE evaluation)			
	Characterization of native and prosthetic cardiac valves—		A(8)	
0.41	including planimetry of stenotic disease and quantification of			(175 107)
Q41	regurgitant disease/Patients with technically limited images	A		(175, 187)
	from transthoracic or transesophageal echocardiography			
13.	In Suspected or Diagnosed Myocardial Disease			
(Proto	cols may include LV/RV mass and volumes, MR angiography, qua	antificat	tion of valv	ular dis-
ease, a	and LGE evaluation)			
042	Evaluation for ARVD/C patients presenting with syncope or	٨	A (O)	(190, 101)
Q42	ventricular arrhythmia	A	A(9)	(189-191)
	Evaluation of myocarditis or myocardial infarction with nor-			
Q43	mal coronary arteries/Positive cardiac enzymes without ob-	А	A(9)	(129, 202, 203)
	structive atherosclerosis on angiography			200)
014	Evaluation of specific cardiomyopathies (infiltrative [amyloid,	^	A (O)	(124, 192,
Q44	sarcoid, etc.] or due to cardiotoxic therapies)	A	A(9)	209)
14.	Evaluation in HCM			
045	In HCM patients with inconclusive or inadequate echocardi-	^	A(0)	(205, 207,
Q45	ography	A	A(9)	208, 215)
046	To define apical hypertrophy and/or aneurysm if echocardi-	•	A (O)	(205, 207,
Q46	ography is inconclusive	A	A(9)	208, 215)
Q47	In selected patients with known HCM, when SCD risk stratifi-	А	A(8)	(126, 221)

cation is inconclusive after documentation of the convention-		
al risk factors/Use of LGE evaluation		

Table 3. Miscellaneous

Indicat	ion	Level of Evi- dence	Appro- priate- ness Criteria (score)	References
	15. Evaluation of Cardiac Mass (Suspected Tumor or			
Q48	Thrombus)/Use of Contrast for Perfusion and Enhance-	А	A(9)	(231-234)
	ment			
Q49	16. Evaluation of Pericardium (Pericardial Mass, Constric-	В	A(8)	(236, 237,
Q-1J	tive Pericarditis)	D	71(0)	239)
Q50	17. Evaluation for Aortic Dissection	А	A(8)	(240)
	18. Evaluation of Pulmonary Veins Prior to Radiofrequency		A (7)	(241-243)
051	Ablation for Atrial Fibrillation/Left Atrial and Pulmonary	В		
Q51	Venous Anatomy Including Dimensions of Veins for Map-	D	A(7)	
	ping Purposes			
	19. Anatomic Assessment Before Percutaneous Device Clo-			
	sure of ASD or VSD/Anatomic Assessment Before Percu-			
Q52	taneous Device Closure of ASD or VSD/Anatomic Assess-	В	A(7)	(244, 245, 247)
	ment Before Percutaneous Device Closure or Percutaneous			277)
	Aortic Valve Replacement			

2. CMR Appropriateness Criteria (By Appropriateness Category)

Table 1. Appropriateness Indications (Median score 7-9)

Indica	tion	Level of Evi- dence	Appro- priate- ness Criteria (score)	References
Detec	tion of CAD: Symptomatic			
1. Eva	luation of Chest Pain Syndrome			
(Proto	ocols may include vasodilator perfusion CMR, dobutamine stress f	function	CMR, and	d/or MR
coron	ary angiography)			
02	Intermediate pre-test probability of CAD/ECG uninterpretable	^	A (7)	(13, 34, 39,
Q3	OR unable to exercise	A	A(7)	65)
2. Eva	luation of Intracardiac Structures (Use of MR Coronary Angiog	raphy)		
Q5	Evaluation of suspected coronary anomalies	В	A(8)	(46, 47)
4. De	tection of CAD: with Prior Test Results			
(Proto	ncols may include vasodilator perfusion CMR or dobutamine stres	s functio	on CMR)	
010	Coronary angiography (catheterization or CT)/Stenosis of un-		A (7)	(6.4)
Q12	clear significance	С	A(7)	(64)
7. Eva	luation of CAD: in Pediatric Patients with Kawasaki Disease			
(Use d	of MR Coronary Angiography)			
Asym	otomatic			
	Previous tests (catheter-based XCA, MR coronary angiography,			
Q21	or CT coronary angiography) documented coronary aneu-	В	A(7)	(84, 85, 87)
	rysm/stenosis, for follow up			
Symp	tomatic		1	
	No previous definitive test (catheter-based XCA, MR coronary			
Q22	angiography, or CT coronary angiography) available	В	A(7)	(84, 85, 87)
	Previous tests (catheter-based XCA, MR coronary angiography,			
Q23	or CT coronary angiography) documented coronary aneu-	В	A(7)	(84, 85, 87)
-	rysm/stenosis, for follow up			
9. De	tection of Myocardial Scar and Viability in Ischemic Heart Dise	ase	L	
	ocols may include LGE evaluation or dobutamine stress function C			
	To determine the location and extent of myocardial necrosis			
Q27	including 'no reflow' regions/Post-acute myocardial infarction	А	A(9)	(92-94)
Q28	To detect post PCI myocardial necrosis	Α	A(8)	(95, 101)
Q29	To determine viability prior to revascularization/Establish likeli-	А		(96, 101,
Q29		A	A(9)	102)

12 In	Valvular Heart Disease			
Q40	ing ventricular and valvular function and anatomy evaluation	А	A(8)	(163, 166, 168)
	Assessment of post-operative congenital heart disease includ-			(163, 166,
Q39	anomalies of coronary circulation, great vessels, and cardiac chambers and valves	A	A(8)	153, 154)
	Assessment of complex congenital heart disease including			(45, 144,
ease,	and LGE evaluation)			
	cols may include LV/RV mass and volumes, MR angiography, qua	ntificati	on of val	vular dis-
11. In	Congenital Heart Disease			
	vein variation, and intra-cavitary thrombus)			
Q37	cedural planning (ejection fraction, fibrosis, scarring, coronary	А	A(8)	(135, 136)
	Initial evaluation determine patient candidacy of CRT or pro-			
Q36	Evaluation determine patient candidacy of ICD therapy (ejec- tion fraction and/or other structural information)	А	A(8)	(132-134)
	pitalization)			
	known adult congenital heart disease, AMI during initial hos-			(119, 120, 124)
Q55	tion/familial or genetic cardiomyopathy in first-degree relative,	A	A(8)	
Q35	or planned cardiotoxic therapy and no prior imaging evalua-		A(8)	
	or potential heart failure (also including malignancy on current			
	Initial evaluation of structure and function for newly suspected			
Q34	etiology	A	A(8)	(119-121)
	clinically significant from prior tests Evaluation in patients with new onset heart failure to assess			116)
Q33	Quantification of LV function/Discordant information that is	А	A(9)	(108, 115
	from echocardiogram			116)
Q32	heart failure patients/Patients with technically limited images	А	A(9)	(108, 115
	heart failure patients Evaluation of LV function following myocardial infarction OR in			131)
Q31	Evaluation of LV function following myocardial infarction OR in	А	A(7)	(116, 121, 131)
ease,	and LGE evaluation)			
(Prote	cols may include LV/RV mass and volumes, MR angiography, qua	ntificati	on of val	vular dis-
10. Ev	aluation in Patients with Risk of Heart Failure or Overt Heart	Failure	(General)	1
	ocal or indeterminate" results			
Q30	sessment by SPECT or dobutamine echo has provided "equiv-	А	A(9)	(13, 97, 98
	To determine viability prior to revascularization/Viability as-			
	hood of recovery of function with revascularization (PCI or CABG) or medical therapy			

(Protocols may include LV/RV mass and volumes, MR angiography, quantification of valvular disease, and LGE evaluation)

	Characterization of native and prosthetic cardiac valves— including planimetry of stenotic disease and quantification of			
Q41	regurgitant disease/Patients with technically limited images	A	A(8)	(175, 187)
	from transthoracic or transesophageal echocardiography			

13. In Suspected or Diagnosed Myocardial Disease

(Protocols may include LV/RV mass and volumes, MR angiography, quantification of valvular disease, and LGE evaluation)

ease,	and LGE evaluation)			
Q42	Evaluation for ARVD/C patients presenting with syncope or ventricular arrhythmia	A	A(9)	(189-191)
Q43	Evaluation of myocarditis or myocardial infarction with normal coronary arteries/Positive cardiac enzymes without obstructive atherosclerosis on angiography	A	A(9)	(129, 202, 203)
Q44	Evaluation of specific cardiomyopathies (infiltrative [amyloid, sarcoid, etc.] or due to cardiotoxic therapies)	A	A(9)	(124, 192, 209)
14. Ev	aluation in HCM			
Q45	In HCM patients with inconclusive or inadequate echocardiog- raphy	А	A(9)	(205, 207, 208, 215)
Q46	To define apical hypertrophy and/or aneurysm if echocardiog- raphy is inconclusive	А	A(9)	(205, 207, 208, 215)
Q47	In selected patients with known HCM, when sudden cardiac death risk stratification is inconclusive after documentation of the conventional risk factors/Use of LGE evaluation	A	A(8)	(126, 221)
Misce	llaneous			
Q48	15. Evaluation of Cardiac Mass (Suspected Tumor or Thrombus)/ Use of Contrast for Perfusion and Enhancement	A	A(9)	(231-234)
Q49	16. Evaluation of Pericardium (Pericardial Mass, Constrictive Pericarditis)	В	A(8)	(236, 237, 239)
Q50	17. Evaluation for Aortic Dissection	А	A(8)	(240)
Q51	18. Evaluation of Pulmonary Veins Prior to Radiofrequency Ablation for Atrial Fibrillation /Left Atrial and Pulmonary Ve- nous Anatomy Including Dimensions of Veins for Mapping Purposes	В	A(7)	(241-243)
Q52	19. Anatomic Assessment Before Percutaneous Device Clo- sure of ASD or VSD/Anatomic Assessment Before Percutane-	В	A(7)	(244, 245, 247)

ous Device Closure or Percutaneous Aortic Valve Replacement			
---	--	--	--

Table 2. Uncertain Indications (Median score 4-6)

1. Evaluation of Chest Pain Syndrome (Protocols may include vasodilator perfusion CMR, dobutamine stress function CMR, and/or MR coronary angiography) Q2 Intermediate pre-test probability of CAD/ECG interpretable A U(4) (13, 34, 39, 65) Q4 High pre-test probability of CAD A U(6) (13, 34, 39, 65) Q4 High pre-test probability of CAD A U(6) (13, 34, 39, 65) 3. Acute Chest Pain (Protocols may include vasodilator perfusion CMR or dobutamine stress function CMR) (48, 51, 52) Q6 Low pre-test probability of CAD/No ECG changes and serial cardiac enzyme negative A U(5) (48, 51) Q7 Intermediate pre-test probability of CAD/No ECG changes and serial cardiac enzyme negative A U(5) (48, 51) Q8 High pre-test probability of CAD/No ECG changes and serial cardiac enzyme negative A U(5) (48, 51) Q8 High pre-test probability of CAD/No ECG changes and serial cardiac enzyme negative A U(6) (13, 17, 65) Q8 High pre-test probability of CAD/No ECG changes and serial cardiac enzyme negative A U(6) (13, 17, 65) Q1 Equivocal stress test (exercise, stress SPECT, or stress echo)/ Intermediate CHD risk (Framingham) A U(6) (13, 17, 65) <	Indica	tion	Level of Evi- dence	Appro- priate- ness Criteria (score)	References
coronary angiography)Q2Intermediate pre-test probability of CAD/ECG interpretable AND able to exerciseAU(4)(13, 34, 39, 65)Q4High pre-test probability of CADAU(6)(13, 34, 39, 65)3. Acute Chest Pain(Protocols may include vasodilator perfusion CMR or dobutamine stress function CMR)Q6Low pre-test probability of CAD/No ECG changes and serial cardiac enzyme negativeAU(4)(48, 51, 52)Q7Intermediate pre-test probability of CAD/No ECG changes and serial cardiac enzyme negativeAU(5)(48, 51)Q8High pre-test probability of CAD/No ECG changes and serial cardiac enzyme negativeAU(5)(48, 51)Q8High pre-test probability of CAD/No ECG changes and serial cardiac enzyme negativeAU(5)(48, 51)Q8High pre-test probability of CAD/No ECG changes and serial cardiac enzyme negativeAU(5)(48, 51)Q8High pre-test probability of CAD/No ECG changes and serial cardiac enzyme negativeAU(6)(13, 17, 65)Q1Equivocal stress test (exercise, stress SPECT, or stress echo)/ Intermediate CHD risk (Framingham)AU(6)(13, 17, 65)S1Evaluation of CAD: Post PCI or CABGEvaluation of Chest Pain Syndrome (Use of MR Coronary Angiography)CU(4)(69, 70)G2Evaluation of bypass graftsCU(4)(69, 70)(62)(82)Q13Evaluation of bypass graftsCU(4)(62)(62)Q14Intermediate prioperative risk pr	1. Eva	luation of Chest Pain Syndrome	•		
Q2Intermediate pre-test probability of CAD/ECG interpretable AND able to exerciseAU(4)(13, 34, 39, 65)Q4High pre-test probability of CADAU(6)(13, 34, 39, 65)3. Acute Chest Pain(Protocols may include vasodilator perfusion CMR or dobutamine stress function CMR)Q6Low pre-test probability of CAD/No ECG changes and serial cardiac enzyme negativeAU(4)(48, 51, 52)Q7Intermediate pre-test probability of CAD/No ECG changes and serial serial cardiac enzyme negativeAU(5)(48, 51)Q8High pre-test probability of CAD/No ECG changes and serial cardiac enzyme negativeAU(5)(48, 51)Q8High pre-test probability of CAD/No ECG changes and serial cardiac enzyme negativeAU(5)(48, 51)Q8High pre-test probability of CAD/No ECG changes and serial cardiac enzyme negativeAU(5)(48, 51)Q8Reprive test probability of CAD/No ECG changes and serial cardiac enzyme negativeAU(6)(13, 17, 65)Q11Equivocal stress test (exercise, stress SPECT, or stress echo)/ Intermediate CHD risk (Framingham)AU(6)(13, 17, 65)S. Evaluation of CAD: Post PCI or CABG Evaluation of Chest Pain Syndrome (Use of MR Coronary Angiography)Q(49, 70)(49, 70)G. CAD Risk Assessment: Preoperative Evaluation (Protocols may include vasodilator perfusion CMR or dobutamine stress function CMR)(82)Q13Evaluation of bypass graftsCU(4)(69, 70)G. CAD Risk Assessment: Preoperative Evaluation (Protocols	(Proto	ocols may include vasodilator perfusion CMR, dobutamine stress f	function	CMR, and	d/or MR
Q2 Q4AND able to exerciseAU(4)65)Q4High pre-test probability of CADAU(6)(13, 34, 39, 65)3. Acute Chest Pain(Protocols may include vasodilator perfusion CMR or dobutamine stress function CMR)(AU(4)(48, 51, 52)Q6Low pre-test probability of CAD/No ECG changes and serial cardiac enzyme negativeAU(4)(48, 51, 52)Q7Intermediate pre-test probability of CAD/No ECG changes and serial cardiac enzyme negativeAU(5)(48, 51)Q8High pre-test probability of CAD/No ECG changes and serial cardiac enzyme negativeAU(5)(48, 51)Q8High pre-test probability of CAD/No ECG changes and serial cardiac enzyme negativeAU(5)(48, 51)Q8High pre-test probability of CAD/No ECG changes and serial cardiac enzyme negativeAU(5)(48, 51)Q8High pre-test probability of CAD/No ECG changes and serial cardiac enzyme negativeAU(5)(48, 51)Q9High pre-test probability of CAD/No ECG changes and serial cardiac enzyme negativeAU(5)(48, 51)Q8High pre-test probability of CAD/No ECG changes and serial cardiac enzyme negativeAU(5)(48, 51)Q1Equivocal stress test clearcise, stress SPECT, or stress echo)/ Intermediate CHD risk (Framingham)AU(6)(13, 17, 65)5. Evaluation of CAD: Post PCI or CABG Evaluation of CAD: Post PCI or CABG Evaluation of bypass graftsCU(4)(69, 70)Q13Evaluation of bypass graftsCU(4	coron	ary angiography)	0		
Q4High pre-test probability of CADAU(6)65)3. Acute Chest Pain(Protocols may include vasodilator perfusion CMR or dobutamine stress function CMR)Q6Low pre-test probability of CAD/No ECG changes and serial cardiac enzyme negativeAU(4)(48, 51, 52)Q7Intermediate pre-test probability of CAD/No ECG changes and serial cardiac enzyme negativeAU(5)(48, 51)Q8High pre-test probability of CAD/No ECG changes and serial cardiac enzyme negativeAU(5)(48, 51)Q8High pre-test probability of CAD/No ECG changes and serial cardiac enzyme negativeAU(5)(48, 51)Q8High pre-test probability of CAD/No ECG changes and serial cardiac enzyme negativeAU(5)(48, 51)Q8High pre-test probability of CAD/No ECG changes and serial cardiac enzyme negativeAU(5)(48, 51)Q8High pre-test probability of CAD/No ECG changes and serial cardiac enzyme negativeAU(5)(48, 51)Q8High pre-test probability of CAD/No ECG changes and serial cardiac enzyme negativeAU(5)(48, 51)Q9Evaluation of CAD: with Prior Test ResultsIntermediate creation of CMRIntermediate series function CMRQ11Equivocal stress test (exercise, stress SPECT, or stress echo)/ Intermediate CHD risk (Framingham)CU(4)(69, 70)6. CAD Risk Assessment: Preoperative Evaluation (Protocols may include vasodilator perfusion CMR or dobutamine stress function CMR)Q13Evaluation of bypass g	Q2		A	U(4)	
(Protocols may include vasodilator perfusion CMR or dobutamine stress function CMR)Q6Low pre-test probability of CAD/No ECG changes and serial cardiac enzyme negativeAU(4)(48, 51, 52)Q7Intermediate pre-test probability of CAD/No ECG changes and serial cardiac enzyme negativeAU(5)(48, 51)Q8High pre-test probability of CAD/No ECG changes and serial cardiac enzyme negativeAU(5)(48, 51)Q8High pre-test probability of CAD/No ECG changes and serial cardiac enzyme negativeAU(5)(48, 51)Q8High pre-test probability of CAD/No ECG changes and serial cardiac enzyme negativeAU(5)(48, 51)Q8Equivacia test probability of CAD/No ECG changes and serial cardiac enzyme negativeAU(5)(48, 51)Q11Equivacia strest probability of CAD/No ECG changes and serial cardiac enzyme negativeAU(6)(13, 17, 65)Q11Équivacia strest test (exercise, stress SPECT, or stress echo)/ Intermediate CHD risk (Framingham)AU(6)(13, 17, 65)Struttion of CAD: Post PCI or CABGEvaluation of Chest Pain Syndrome (Use of MR Coronary Angiography)Q13Evaluation of bypass graftsCU(4)(69, 70)GCU(5)(82)Q18Intermediate or high risk non-cardiac surgery in patients with intermediate perioperative risk predictorsCU(6)(82)Q19CAD evaluation before valve surgeryCU(6)(82)(82)Q19CAD eva	Q4	High pre-test probability of CAD	А	U(6)	
Q6Low pre-test probability of CAD/No ECG changes and serial cardiac enzyme negativeAU(4)(48, 51, 52)Q7Intermediate pre-test probability of CAD/No ECG changes and serial cardiac enzyme negativeAU(5)(48, 51)Q8High pre-test probability of CAD/No ECG changes and serial cardiac enzyme negativeAU(5)(48, 51)Q8High pre-test probability of CAD/No ECG changes and serial cardiac enzyme negativeAU(5)(48, 51)4. Detection of CAD: with Prior Test Results (Protocols may include vasodilator perfusion CMR or dobutamine stress function CMR)(48, 51)Q11Equivocal stress test (exercise, stress SPECT, or stress echo)/ Intermediate CHD risk (Framingham)AU(6)(13, 17, 65)5. Evaluation of CAD: Post PCI or CABG Evaluation of Chest Pain Syndrome (Use of MR Coronary Angiography)U(4)(69, 70)6. CAD Risk Assessment: Preoperative Evaluation (Protocols may include vasodilator perfusion CMR or dobutamine stress function CMR)(20)(21)Q13Evaluation of bypass graftsCU(4)(69, 70)6. CAD Risk Assessment: Preoperative Evaluation (Protocols may include vasodilator perfusion CMR or dobutamine stress function CMR)(21)(22)Q18Intermediate or high risk non-cardiac surgery in patients with intermediate perioperative risk predictorsCU(5)(82)Q19CAD evaluation before valve surgeryCU(6)(82)Q19CAD evaluation before valve surgeryCU(6)(82)Q10CAD evaluation before valve surgeryCU	3. Acı	ute Chest Pain			
Q6cardiac enzyme negativeAU(4)(48, 51, 52)Q7Intermediate pre-test probability of CAD/No ECG changes and serial cardiac enzyme negativeAU(5)(48, 51)Q8High pre-test probability of CAD/No ECG changes and serial cardiac enzyme negativeAU(5)(48, 51)Q8Equivation of CAD: with Prior Test ResultsAU(5)(48, 51)(Protocols may include vasodilator perfusion CMR or dobutamine stress function CMR)AU(6)(13, 17, 65)Q11Equivocal stress test (exercise, stress SPECT, or stress echo)/ Intermediate CHD risk (Framingham)AU(6)(13, 17, 65)5. Evaluation of CAD: Post PCI or CABGEvaluation of Chest Pain Syndrome (Use of MR Coronary Angiography)CU(4)(69, 70)Q13Evaluation of bypass graftsCU(4)(69, 70)6. CAD Risk Assessment: Preoperative Evaluation (Protocols may include vasodilator perfusion CMR or dobutamine stress function CMR)(82)Q18Intermediate or high risk non-cardiac surgery in patients with intermediate perioperative risk predictorsCU(6)(82)Q19CAD evaluation before valve surgeryCU(6)(82)Q19CAD evaluation before valve surgery.CU(6)(82)Q19CAD enaluation before valve surgery.CU(6)(82)Q19CAD evaluation before valve surgery.CU(6)(82)Q19CAD enaluation before valve surgery.CU(6)(82)Q19CAD enaluation before valve surgery. <td< td=""><td>(Proto</td><td>ocols may include vasodilator perfusion CMR or dobutamine stres.</td><td>s functio</td><td>on CMR)</td><td></td></td<>	(Proto	ocols may include vasodilator perfusion CMR or dobutamine stres.	s functio	on CMR)	
Q7serial cardiac enzyme negativeAU(5)(48, 51)Q8High pre-test probability of CAD/No ECG changes and serial cardiac enzyme negativeAU(5)(48, 51)4. Detection of CAD: with Prior Test Results (Protocols may include vasodilator perfusion CMR or dobutamine stress function CMR)AU(5)(48, 51)Q11Equivocal stress test (exercise, stress SPECT, or stress echo)/ Intermediate CHD risk (Framingham)AU(6)(13, 17, 65)5. Evaluation of CAD: Post PCI or CABGEvaluation of Chest Pain Syndrome (Use of MR Coronary Angiography)Q13Evaluation of bypass graftsCU(4)(69, 70)6. CAD Risk Assessment: Preoperative Evaluation(Protocols may include vasodilator perfusion CMR or dobutamine stress function CMR)Q13Evaluation of bypass graftsCU(4)(69, 70)6. CAD Risk Assessment: Preoperative Evaluation(Protocols may include vasodilator perfusion CMR or dobutamine stress function CMR)Q18Intermediate or high risk non-cardiac surgery in patients with intermediate perioperative risk predictorsCU(5)(82)Q19CAD evaluation before valve surgeryCU(6)(82)7. Evaluation of CAD: In Pediatric Patients with Kawasaki Disease (Use of MR Coronary Angiography)	Q6		A	U(4)	(48, 51, 52)
Q8Cardiac enzyme negativeAU(5)(48, 51)4. Detection of CAD: with Prior Test Results (Protocols may include vasodilator perfusion CMR or dobutamine stress function CMR)Q11Equivocal stress test (exercise, stress SPECT, or stress echo)/ Intermediate CHD risk (Framingham)AU(6)(13, 17, 65)5. Evaluation of CAD: Post PCI or CABG Evaluation of Chest Pain Syndrome (Use of MR Coronary Angiography)CU(4)(69, 70)6. CAD Risk Assessment: Preoperative Evaluation (Protocols may include vasodilator perfusion CMR or dobutamine stress function CMR)CU(5)(82)Q18Intermediate or high risk non-cardiac surgery in patients with intermediate perioperative risk predictorsCU(6)(82)Q19CAD evaluation before valve surgeryCU(6)(82)7. Evaluation of CAD: In Pediatric Patients with Kawasaki Disease (Use of MR Coronary Angiography)CU(6)(82)	Q7		А	U(5)	(48, 51)
(Proto-cols may include vasodilator perfusion CMR or dobutamine stress function CMR)Q11Equivocal stress test (exercise, stress SPECT, or stress echo)/ Intermediate CHD risk (Framingham)AU(6)(13, 17, 65)S. Evaluation of CAD: Post PCI or CABGEvaluation of Chest Pain Syndrome (Use of MR Coronary Angiography)Q13Evaluation of bypass graftsCU(4)(69, 70)6. CAD Risk Assessment: Preoperative Evaluation (Proto-cols may include vasodilator perfusion CMR or dobutamine stress function CMR)Q18Intermediate or high risk non-cardiac surgery in patients with intermediate perioperative risk predictorsCU(5)(82)Q19CAD evaluation before valve surgeryCU(6)(82)7. Evaluation of CAD: In Pediatric Patients with Kawasaki Disease (Use of MR Coronary Angiography)	Q8		A	U(5)	(48, 51)
Q11Equivocal stress test (exercise, stress SPECT, or stress echo)/ Intermediate CHD risk (Framingham)AU(6)(13, 17, 65)5. Evaluation of CAD: Post PCI or CABGEvaluation of Chest Pain Syndrome (Use of MR Coronary Angiography)Q13Evaluation of bypass graftsCU(4)(69, 70)6. CAD Risk Assessment: Preoperative Evaluation(Protocols may include vasodilator perfusion CMR or dobutamine stress function CMR)Q18Intermediate or high risk non-cardiac surgery in patients with intermediate perioperative risk predictorsCU(5)(82)Q19CAD evaluation before valve surgeryCU(6)(82)7. Evaluation of CAD: In Pediatric Patients with Kawasaki Disease (Use of MR Coronary Angiography)	4. De	tection of CAD: with Prior Test Results			
Q11AU(6)(13, 17, 65)Intermediate CHD risk (Framingham)AU(6)(13, 17, 65)5. Evaluation of CAD: Post PCI or CABGEvaluation of Chest Pain Syndrome (Use of MR Coronary Angiography)Q13Evaluation of bypass graftsCU(4)(69, 70)6. CAD Risk Assessment: Preoperative Evaluation(Protocols may include vasodilator perfusion CMR or dobutamine stress function CMR)Q18Intermediate or high risk non-cardiac surgery in patients with intermediate perioperative risk predictorsCU(5)(82)Q19CAD evaluation before valve surgeryCU(6)(82)7. Evaluation of CAD: In Pediatric Patients with Kawasaki Disease (Use of MR Coronary Angiography)	(Proto	ocols may include vasodilator perfusion CMR or dobutamine stres.	s functio	on CMR)	
Evaluation of Chest Pain Syndrome (Use of MR Coronary Angiography)Q13Evaluation of bypass graftsCU(4)(69, 70)6. CAD Risk Assessment: Preoperative Evaluation (Proto-ols may include vasodilator perfusion CMR or dobutamine stress function CMR)Q18Intermediate or high risk non-cardiac surgery in patients with intermediate perioperative risk predictorsCU(5)(82)Q19CAD evaluation before valve surgeryCU(6)(82)T. Evaluation of CAD: In Pediatric Patients with Kawasaki Disease (Use of MR Coronary Angiography)	Q11		А	U(6)	(13, 17, 65)
Q13 Evaluation of bypass grafts C U(4) (69, 70) 6. CAD Risk Assessment: Preoperative Evaluation (Protocols may include vasodilator perfusion CMR or dobutamine stress function CMR) Q18 Intermediate or high risk non-cardiac surgery in patients with intermediate perioperative risk predictors C U(5) (82) Q19 CAD evaluation before valve surgery C U(6) (82) 7. Evaluation of CAD: In Pediatric Patients with Kawasaki Disease (Use of MR Coronary Angiography) C U(6) (82)	5. Eva	luation of CAD: Post PCI or CABG		I	•
6. CAD Risk Assessment: Preoperative Evaluation (Protocols may include vasodilator perfusion CMR or dobutamine stress function CMR) Q18 Intermediate or high risk non-cardiac surgery in patients with intermediate perioperative risk predictors C U(5) (82) Q19 CAD evaluation before valve surgery C U(6) (82) 7. Evaluation of CAD: In Pediatric Patients with Kawasaki Disease (Use of MR Coronary Angiography)	Evalua	ation of Chest Pain Syndrome (Use of MR Coronary Angiography)			
(Proto-cols may include vasodilator perfusion CMR or dobutamine stress function CMR) Q18 Intermediate or high risk non-cardiac surgery in patients with intermediate perioperative risk predictors C U(5) (82) Q19 CAD evaluation before valve surgery C U(6) (82) T. Evaluation of CAD: In Pediatric Patients with Kawasaki Disease (Use of MR Coronary Angiography)	Q13	Evaluation of bypass grafts	С	U(4)	(69, 70)
Q18Intermediate or high risk non-cardiac surgery in patients with intermediate perioperative risk predictorsCU(5)(82)Q19CAD evaluation before valve surgeryCU(6)(82) 7. Evaluation of CAD: In Pediatric Patients with Kawasaki Disease (Use of MR Coronary Angiography)	6. CA	D Risk Assessment: Preoperative Evaluation			
Q18 intermediate perioperative risk predictors C U(5) (82) Q19 CAD evaluation before valve surgery C U(6) (82) 7. Evaluation of CAD: In Pediatric Patients with Kawasaki Disease (Use of MR Coronary Angiography)	(Proto	ocols may include vasodilator perfusion CMR or dobutamine stres.	s functio	on CMR)	
Q19CAD evaluation before valve surgeryCU(6)(82)7. Evaluation of CAD: In Pediatric Patients with Kawasaki Disease (Use of MR Coronary Angiography)	Q18		С	U(5)	(82)
7. Evaluation of CAD: In Pediatric Patients with Kawasaki Disease (Use of MR Coronary Angiography)	Q19		С	U(6)	(82)
	7. Eva		1		
Asymptomatic	(Use d	of MR Coronary Angiography)			
	Asym	otomatic			

Q20	No previous definitive test (catheter-based XCA, MR coronary angiography, or CT coronary angiography) available	В	U(5)	(84, 85, 87)					
8. Detection of CAD: Asymptomatic									
(Proto	(Protocols may include vasodilator perfusion CMR, dobutamine stress function CMR, and/or MR								
coronary angiography)									
Q25	Moderate CHD risk (Framingham)	А	U(4)	(89)					
Q26	High CHD risk (Framingham)	А	U(6)	(89)					

Table 3. Inappropriate Indications (Median score 1-3)

Г

Indicat	ion	Level of Evi- dence	Appro- priate- ness Criteria (score)	References
1. Eva	uation of Chest Pain Syndrome			
(Proto	cols may include vasodilator perfusion CMR, dobutamine stress fo	unction	CMR, and,	/or MR
corona	ary angiography)			
Q1	Low pre-test probability of CAD/ECG interpretable AND able to exercise	А	I(2)	(13, 34, 39, 65)
3. Acu	te Chest Pain	I		
(Proto	cols may include vasodilator perfusion CMR or dobutamine stress	s functio	n CMR)	
Q9	High pre-test probability of CAD/ECG—ST-segment elevation	А	I(2)	(48, 51)
Q.7	and/or positive cardiac enzymes		1(2)	(40, 51)
4. Det	ection of CAD: with Prior Test Results			
(Proto	cols may include vasodilator perfusion CMR or dobutamine stress	s functio	n CMR)	
Q10	Normal prior stress test (exercise, nuclear, echo, MRI)/High	А	I(2)	(13, 17,
	CHD risk (Framingham)/Within 1 year of prior stress test		-(-)	65)
5. Eval	uation of CAD: Post PCI or CABG			
Evalua	tion of Chest Pain Syndrome (Use of MR Coronary Angiography)		ſ	
Q14	History of percutaneous revascularization with stents	С	I(3)	(71, 72)
Asymp	tomatic (Use of MR Coronary Angiography)			
Q15	Evaluation of bypass grafts and coronary anatomy	С	I(3)	(69, 70)
Q16	Evaluation for in-stent restenosis and coronary anatomy after	С	I(3)	(71, 72)
QT0	PCI	C	1(3)	(/1, /2)
6. CAD	Risk Assessment: Preoperative Evaluation			
(Proto	cols may include vasodilator perfusion CMR or dobutamine stress	s functio	n CMR)	
Q17	Low-risk non-cardiac surgery in patients with intermediate	С	I(3)	(82)

	perioperative risk predictors							
8. Det	8. Detection of CAD: Asymptomatic							
(Proto	(Protocols may include vasodilator perfusion CMR, dobutamine stress function CMR, and/or MR							
corona	coronary angiography)							
Q24	Low CHD risk (Framingham)	А	I(1)	(89)				
10. Eva	10. Evaluation in Patients with Risk of Heart Failure or Overt Heart Failure (General)							
(Protocols may include LV/RV mass and volumes, MR angiography, quantification of valvular dis-								
ease, and LGE evaluation)								
Q38	Cardiac function follow up after ICD or CRT	С	I(3)	(138, 139)				

3. Definitions and Process for Determining Likelihood of Disease and Risk

Definition of Chest Pain Syndrome

Any constellation of symptoms that the physician feels may represent a complaint consistent with obstructive CAD (e.g., chest pain, chest tightness, burning sensation, dyspnea, shoulder pain, and jaw pain, etc.).

Definition of Angina

As defined by the ACC/AHA 2002 Guideline Update on Exercise Testing

- 1. Typical Angina (Definite): 1) Substernal pain or discomfort that is 2) provoked by exertion or emotional stress and 3) relieved by rest and/or nitroglycerin
- 2. Atypical Angina (Probable): Chest pain or discomfort that lacks one of the characteristics of typical angina
- 3. Non-anginal Chest Pain: Chest pain or discomfort that meets one or none of the typical angina characteristics

Determining Pretest Probability of CAD

As modified by the ACC/AHA guideline for chronic stable angina

Age	Sex	Typical Angina	Atypical Angina	Nonanginal Chest Pain	Asymptomatic
<20	Male	Intermediate	Intermediate	Low	Very low
≤39	Female	Intermediate	Very low	Very low	Very low
40.40	Male	High	Intermediate	Intermediate	Low
40-49	Female	Intermediate	Low	Very low	Very low
	Male	High	Intermediate	Intermediate	Low
50-59	Female	Intermediate	Intermediate	Low	Very low
	Male	High	Intermediate	Intermediate	Low
≥60	Female	High	Intermediate	Intermediate	Low

High: Greater than 90% pre-test probability, Intermediate: Between 10% and 90% pre-test probability, Low: Between 5% and 10% pre-test probability, Very Low: Less than 5% pre-test probability. No data exist for patients less than 30 years or greater than 69 years, but it can be assumed that prevalence of CAD increases with age.

Determining Risk Assessment of Coronary Heart Disease (CHD) in Asymptomatic Patients Estimation of CHD risk is determined according to the methods of Adult Treatment Panel III report.

- 1. Low CHD Risk: The age-specific risk level is below average (10-year absolute CHD risk <10%).
- 2. Intermediate CHD Risk: The age-specific risk level is average or above average (10-year absolute CHD risk between 10% to 20%).
- High CHD Risk: The presence of diabetes mellitus in a patient ≥40 years of age, peripheral arterial disease or other coronary risk equivalents, or 10-year absolute CHD risk of >20%.

-	-			-		
	Domain 1.	Domain 2.	Domain 3.	Domain 4.	Domain 5.	Domain 6. Edito-
	Scope and	Stakeholder	Rigour of De-	Clarity of	Applicability	rial Independ-
	Purpose	Involvement	velopment	Presentation	дрисавшту	ence
Guideline 1 (SCMR 2004)	22.2	19.4	10.4	25.0	20.8	12.5
Guideline 2 (ACCF 2006)	72.2	38.9	26.0	58.3	33.3	83.3
Guideline 3 (ASCI 2010)	58.3	36.1	21.9	58.3	22.9	29.2
Guideline 4 (IHD 2007)	38.9	47.2	51	38.9	20.8	20.8
Guideline 5 (HCMP 2011)	94.4	77.8	81.3	88.9	47.9	87.5
Guideline 6 (HF 2013)	86.1	69.4	69.8	86.1	45.8	91.7

4. Quality Assessment of Guidelines by K-AGREE

Guideline 1 Clinical indications for cardiovascular magnetic resonance (CMR): Consensus Panel report

Guideline 2 ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging

Guideline 3 ASCI 2010 appropriateness criteria for cardiac magnetic resonance imaging: a report of the Asian Society of Cardiovascular Imaging cardiac computed tomography and cardiac magnetic resonance imaging guideline working group

Guideline 4 CCS/CAR/CANM/CNCS/CanSCMR joint position statement on advanced noninvasive cardiac imaging using positron emission tomography, magnetic resonance imaging and multide-tector computed tomographic angiography in the diagnosis and evaluation of ischemic heart disease

Guideline 5 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: Executive summary: A report of the American College of cardiology foundation/American heart association task force on practice guidelines

Guideline 6 2013 ACCF/ACR/ASE/ASNC/SCCT/SCMR Appropriate Utilization of Cardiovascular Imaging in Heart Failure: A Joint Report of the American College of Radiology Appropriateness Criteria Committee and the American College of Cardiology Foundation Appropriate Use Criteria Task Force

5. Guideline Matrix

Table 1. Detection of CAD

		2006	2010	2007			
Data	stion of CAD. Summtomotic	ACCF	ASCI	Can IHD			
	ction of CAD: Symptomatic						
	ation of Chest Pain Syndrome	aut CLAD au	dian MD a				
	pcols may include vasodilator perfusion* CMR, dobutamine stress function percentry t	on' CIVIR, an	a/or MR co	pronary			
angio	graphy#)						
1	Low pre-test probability of CAD/ECG interpretable AND able to exercise	2	2				
2	Intermediate pre-test probability of CAD/ECG interpretable AND able to exercise	4	4	I*, IIa†,			
3	Intermediate pre-test probability of CAD/ECG uninterpretable OR unable to exercise	7	7	IIb‡/B			
4	High pre-test probability of CAD	5	6				
Evalu	nation of Intracardiac Structures (Use of MR Coronary Angiography	1)	• 				
5	Evaluation of suspected coronary anomalies	8	8	I/C			
Acut	e Chest Pain		•	•			
(Proto	ocols may include vasodilator perfusion CMR or dobutamine stress funct	tion CMR)					
6	Low pre-test probability of CAD/No ECG changes and serial cardiac enzyme negative	-	4	-			
7	Intermediate pre-test probability of CAD/No ECG changes and serial cardiac enzyme negative	6	5	-			
8	High pre-test probability of CAD/No ECG changes and serial cardiac enzyme negative	-	5	-			
9	High pre-test probability of CAD/ECG—ST-segment elevation and/or positive cardiac enzymes	1	2	-			
Dete	ction of CAD: with Prior Test Results						
(Proto	ocols may include vasodilator perfusion CMR or dobutamine stress funct	tion CMR)					
10	Normal prior stress test (exercise, nuclear, echo, MRI)/High CHD risk (Framingham)/Within 1 year of prior stress test	2	3				
11	Equivocal stress test (exercise, stress SPECT, or stress echo)/Intermediate CHD risk (Framingham)	6	6	_			
12	Coronary angiography (catheterization or CT)/Stenosis of unclear significance	7	7	-			
Evalu	ation of CAD: Post PCI or CABG		1				
	ation of Chest Pain Syndrome (Use of MR Coronary Angiography)						
Lvaiue	ation of chest rain synarome (ose of wirk coronary Angiography)						

13	Evaluation of bypass grafts	2	5		IIb/C
14	History of percutaneous revascularization with stent	1	4		110/ C
	ptomatic (Use of MR Coronary Angiography)			•	_
15	Evaluation of bypass grafts and coronary anatomy	_	4		_
16	Evaluation for in-stent restenosis and coronary anatomy after PCI	_	3		
	Risk Assessment: Preoperative Evaluation				
	ocols may include vasodilator perfusion CMR or dobutamine stress func	tion (MR)			
17	Low-risk non-cardiac surgery in patients with intermediate perioper- ative risk predictors	2	3		-
18	Intermediate or high risk non-cardiac surgery in patients with inter- mediate perioperative risk predictors	6	5		-
19	CAD evaluation before valve surgery		6		
					-
	uation of CAD: in pediatric patients with Kawasaki disease (Use	e of Wik Co	oronary	anglogi	rapny)
20	No previous definitive test (catheter-based XCA, MR coronary angi-	-	5		-
21	ography, or CT coronary angiography) available Previous tests (catheter-based XCA, MR coronary angiography, or CT coronary angiography) documented coronary aneurysm/stenosis, for follow up	_	7		-
Svmp	otomatic	<u> </u>			
22	No previous definitive test (catheter-based XCA, MR coronary angi- ography, or CT coronary angiography) available	-	7		-
23	Previous tests (catheter-based XCA, MR coronary angiography, or CT coronary angiography) documented coronary aneurysm/stenosis, for follow up	_	7		-
Dete	ction of CAD: Asymptomatic				
(Proto	ocols may include vasodilator perfusion* CMR, dobutamine stress function pgraphy#)	on†CMR, a	and/or N	AR coro	nary
24	Low CHD risk (Framingham)	_	1		-
25	Moderate CHD risk (Framingham)	-	4		_
26	High CHD risk (Framingham)	_	6		_
		2006 ACCF	2010 ASCI	2007 Can IHD	2013 HF [§]
	ction of Myocardial Scar and Viability in Ischemic Heart Disea ocols may include LGE evaluation or dobutamine stress function CMR)	se			
27	To determine the location and extent of myocardial necrosis includ- ing 'no reflow' regions/Post-acute myocardial infarction	7	9	-	-
28	To detect post PCI myocardial necrosis	4	8	-	-
		I		1	1

29	To determine viability prior to revascularization/Establish likelihood of recovery of function with revascularization (PCI or CABG) or medi- cal therapy	9		I/B	А
30	To determine viability prior to revascularization/Viability assessment by SPECT or dobutamine echo has provided "equivocal or indeter-	9	9	-	-
	minate" results				

[§] A (Appropriate Score 7 to 9), M (Maybe Appropriate Score 4 to 6), R (Rarely Appropriate Score 1 to 3)

Table 2. Structure and Myocardial Functional Evaluation in Patients with Riskof Heart Failure or Overt Heart Failure

		2006 ACCF	2010 ASCI	2013 HF [§]	2011 HCM
(Pro	uation in Patients with Risk of Heart Failure or Overt Heart Failu tocols may include LV/RV mass and volumes, MR angiography, quantification evaluation)	-	-	isease, a	nd
31	Evaluation of LV function following myocardial infarction OR in heart failure patients	6	8	A	-
32	Evaluation of LV function following myocardial infarction OR in heart failure patients/Patients with technically limited images from echocardi- ogram	8	9	-	-
33	Quantification of LV function/Discordant information that is clinically significant from prior tests	8	9	-	-
34	Evaluation in patients with new onset heart failure to assess etiology	-	8	А	-
35	Initial evaluation of structure and function for newly suspected or po- tential heart failure (also including malignancy on current or planned cardiotoxic therapy and no prior imaging evaluation/familial or genetic cardiomyopathy in first-degree relative, known adult congenital heart disease, acute myocardial infarction during initial hospitalization)	-	-	A	-
36	Evaluation determine patient candidacy of ICD therapy (ejection fraction and/or other structural information)	-	-	A	-
37	Initial evaluation determine patient candidacy of CRT or procedural planning (ejection fraction, fibrosis, scarring, coronary vein variation, and intra-cavitary thrombus)	-	-	A	-
38	Cardiac function follow up after ICD or CRT	_	_	R	-

LGE evaluation)

39	Assessment of complex congenital heart disease including anomalies of coronary circulation, great vessels, and cardiac chambers and valves	9	8	А	-
40	Assessment of post-operative congenital heart disease including ven- tricular and valvular function and anatomy evaluation	-	8	-	-
In V	alvular Heart Disease		1	1	
(Prot	tocols may include LV/RV mass and volumes, MR angiography, quantificatic	on of val	lvular di.	sease, ai	nd
	evaluation)				
41	Characterization of native and prosthetic cardiac valves—including pla- nimetry of stenotic disease and quantification of regurgitant dis- ease/Patients with technically limited images from transthoracic or transesophageal echocardiography	8	7	-	-
In S	uspected or diagnosed Myocardial Disease				
(Proi	tocols may include LV/RV mass and volumes, MR angiography, quantificatio	on of val	lvular di.	sease, ai	nd
LGE	evaluation)			-	
42	Evaluation for ARVD/C patients presenting with syncope or ventricular arrhythmia	9	8	-	-
43	Evaluation of myocarditis or myocardial infarction with normal coronary arteries/Positive cardiac enzymes without obstructive atherosclerosis on angiography	8	9	-	-
44	Evaluation of specific cardiomyopathies (infiltrative [amyloid, sarcoid, etc.] or due to cardiotoxic therapies)	8	9	-	IIb/ C
Eval	uation in HCM				
45	In HCM patients with inconclusive or inadequate echocardiography	-	-	-	I/B
46	To define apical hypertrophy and/or aneurysm if echocardiography is inconclusive	-	-	-	IIa/ C
47	In selected patients with known HCM, when SCD risk stratification is inconclusive after documentation of the conventional risk factors/Use of LGE evaluation	-	-	-	IIb/ C

[§] A (Appropriate Score 7 to 9), M (Maybe Appropriate Score 4 to 6), R (Rarely Appropriate Score 1 to 3)

Table 3. Miscellaneous

		2006	2010
		ACCF	ASCI
48	Evaluation of Cardiac Mass (Suspected Tumor or Thrombus)/Use of Contrast for Per- fusion and Enhancement	9	9
49	Evaluation of Pericardium (Pericardial mass, Constrictive Pericarditis)	8	8
50	Evaluation for Aortic Dissection	8	-

51	Evaluation of Pulmonary Veins Prior To Radiofrequency Ablation for Atrial Fibrilla- tion/Left Atrial and Pulmonary Venous Anatomy Including Dimensions of Veins for Mapping Purposes	8	7
52	Anatomic Assessment Before Percutaneous Device Closure of ASD or VSD/Anatomic Assessment Before Percutaneous Device Closure or Percutaneous Aortic Valve Re- placement	-	7

6. Delphi Summary

Table 1. Detection of CAD

		Appropri- ateness Criteria (Median Score)	Agree- ment Round	Ap- propri- ate (A)	Uncertain (U)	Inappropriate (I)
Dete	ction of CAD: Symptomatic			L	I	
1. Ev	aluation of Chest Pain Syndrome					
(Prote	ocols may include vasodilator perfusion CMR, do	obutamine st	ress funct	ion CMR,	. and/or M	'R coronary
angio	ography)					
Q1	Low pre-test probability of CAD/ECG inter- pretable AND able to exercise	I(2)	1	0%	10%	90%
Q2	Intermediate pre-test probability of CAD/ECG interpretable AND able to exercise	U(4)	1	5%	80%	15%
Q3	Intermediate pre-test probability of CAD/ECG uninterpretable OR unable to ex- ercise	A(7)	1	85%	10%	5%
Q4	High pre-test probability of CAD	U(6)	1	20%	80%	0%
2. Ev	aluation of Intracardiac Structures (Use of	^e MR Coronal	ry Angiogi	raphy)		
Q5	Evaluation of suspected coronary anomalies	A(8)	1	95%	5%	0%
3. Ac	cute Chest Pain			<u> </u>		
(Prote	ocols may include vasodilator perfusion CMR or	dobutamine	stress fur	nction CN	AR)	
Q6	Low pre-test probability of CAD/No ECG changes and serial cardiac enzyme negative	U(4)	1	0%	70%	30%
Q7	Intermediate pre-test probability of CAD/No ECG changes and serial cardiac enzyme negative	U(5)	1	10%	85%	5%
Q8	High pre-test probability of CAD/No ECG changes and serial cardiac enzyme negative	U(5)	1	5%	85%	10%
Q9	High pre-test probability of CAD/ECG—ST- segment elevation and/or positive cardiac enzymes	I(2)	1	0%	5%	95%
4. De	etection of CAD: with Prior Test Results					
(Prote	ocols may include vasodilator perfusion CMR or	dobutamine	stress fur	nction CN	AR)	
Q10	Normal prior stress test (exercise, nuclear, echo, MRI)/High CHD risk (Framing- ham)/Within 1 year of prior stress test	I(2)	1	0%	10%	90%
Q11	Equivocal stress test (exercise, stress SPECT, or stress echo)/Intermediate CHD risk (Fram-	U(6)	1	25%	75%	0%

	ingham)					
Q12	Coronary angiography (catheterization or	A(7)	1	95%	5%	0%
-	CT)/Stenosis of unclear significance					
5. Ev	aluation of CAD: Post PCI or CABG					
Evalu	ation of Chest Pain Syndrome (Use of MR Coror	nary Angiogi	raphy)	T		
Q13	Evaluation of bypass grafts	U(4)	2	0%	75%	25%
Q14	History of percutaneous revascularization with stents	I(3)	2	0%	15%	85%
Asym	ptomatic (Use of MR Coronary Angiography)					
Q15	Evaluation of bypass grafts and coronary anatomy	I(3)	2	0%	5%	95%
Q16	Evaluation for in-stent restenosis and coro- nary anatomy after PCI	I(3)	1	0%	0%	100%
6. CA	D Risk Assessment: Preoperative Evaluat	ion	1	I		
	ocols may include vasodilator perfusion CMR or		stress fui	nction CN	AR)	
Q17	Low-risk non-cardiac surgery in patients with intermediate perioperative risk predictors	I(3)	1	0%	5%	95%
Q18	Intermediate or high risk non-cardiac sur- gery in patients with intermediate periopera- tive risk predictors	U(5)	1	5%	95%	0%
Q19	CAD evaluation before valve surgery	U(6)	1	20%	75%	5%
	valuation of CAD: In Pediatric Patients wit			1	7370	370
	of MR Coronary Angiography)	II Nawasak	I Disease	-		
	ptomatic					
Q20	No previous definitive test (catheter-based XCA, MR coronary angiography, or CT coro-	U(5)	1	10%	85%	5%
	nary angiography) available					
Q21	Previous tests (catheter-based XCA, MR cor- onary angiography, or CT coronary angi- ography) documented coronary aneu- rysm/stenosis, for follow up	A(7)	1	80%	15%	5%
Symp	otomatic					
Q22	No previous definitive test (catheter-based XCA, MR coronary angiography, or CT coro- nary angiography) available	A(7)	1	85%	15%	0%
Q23	Previous tests (catheter-based XCA, MR cor- onary angiography, or CT coronary angi- ography) documented coronary aneu- rysm/stenosis, for follow up	A(7)	1	85%	15%	0%

8. Detection of CAD: Asymptomatic

(Protocols may include vasodilator perfusion CMR, dobutamine stress function CMR, and/or MR coronary angiography)

Q24	Low CHD risk (Framingham)	I(1)	1	0%	0%	100%
Q25	Moderate CHD risk (Framingham)	U(4)	1	0%	80%	20%
Q26	High CHD risk (Framingham)	U(6)	2	10%	85%	5%

Table 2. Detection of Myocardial Scar and Viability in Ischemic Heart Disease

		Appropri- ateness Criteria (Median Score)	Agree- ment Round	Ap- propri- ate (A)	Uncertain (U)	Inappropriate (I)
9. De	etection of Myocardial Scar and Viability					
(Prote	pcols may include LGE evaluation or dobutamine	e stress func	tion CMR)			
Q27	To determine the location and extent of myocardial necrosis including 'no reflow' regions/Post-acute myocardial infarction	A(9)	1	100%	0%	0%
Q28	To detect post PCI myocardial necrosis	A(8)	1	90%	10%	0%
Q29	To determine viability prior to revasculariza- tion/Establish likelihood of recovery of func- tion with revascularization (PCI or CABG) or medical therapy	A(9)	1	100%	0%	0%
Q30	To determine viability prior to revasculariza- tion/Viability assessment by SPECT or dobu- tamine echo has provided "equivocal or indeterminate" results	A(9)	1	100%	0%	0%

Table 3. Structure and Myocardial Functional Evaluation in Patients with Riskof Heart Failure or Overt Heart Failure

		Appropri- ateness Criteria (Median Score)	Agree- ment Round	Ap- propri- ate (A)	Uncertain (U)	Inappropriate (I)
(Proto	10. Evaluation in Patients with Risk of Heart Failure or Overt Heart Failure (General) (Protocols may include LV/RV mass and volumes, MR angiography, quantification of valvular disease, and LGE evaluation)					
Q31	Evaluation of LV function following myocar- dial infarction OR in heart failure patients	A(7)	1	90%	10%	0%

0%	0%
0%	0%
0%	0%
0%	0%
070	070
10%	0%
10%	0%
100/	00/
10%	0%
20%	70%
of valvular dis	sease, and
00/	00/
0%	0%
5%	0%
of valvular dis	sease, and LGE
	 0% 10% 10% 20%

r						
Q41	Characterization of native and prosthetic cardiac valves—including planimetry of ste- notic disease and quantification of regurgi- tant disease/ Patients with technically limited images from transthoracic or transesopha- geal echocardiography Suspected or Diagnosed Myocardial Disease	A(7.5)	1	85%	15%	0%
		anaioaranh	v quantifi	cation of	valuular dice	and ICE
evalu	pcols may include LV/RV mass and volumes, MR	angiograph	y, quantino		valvulai uise	ease, and LGE
evalue	Evaluation for ARVD/C					
Q42	patients presenting with syncope or ven- tricular arrhythmia	A(9)	1	100%	0%	0%
Q43	Evaluation of myocarditis or myocardial in- farction with normal coronary arteries/ Posi- tive cardiac enzymes without obstructive atherosclerosis on angiography	A(9)	1	100%	0%	0%
Q44	Evaluation of specific cardiomyopathies (in- filtrative [amyloid, sarcoid, etc.] or due to cardiotoxic therapies)	A(9)	1	100%	0%	0%
14. Ev	valuation in HCM					
Q45	In HCM patients with inconclusive or inade- quate echocardiography	A(9)	1	100%	0%	0%
Q46	To define apical hypertrophy and/or aneu- rysm if echocardiography is inconclusive	A(9)	1	95%	5%	0%
Q47	In selected patients with known HCM, when SCD risk stratification is inconclusive after documentation of the conventional risk fac- tors/Use of LGE evaluation	A(8)	1	85%	15%	0%

Table 4. Miscellaneous

		Appropri- ateness Criteria (Median Score)	Agree- ment Round	Ap- propri- ate (A)	Uncertain (U)	Inappropriate (I)
Q48	15. Evaluation of Cardiac Mass (Suspected Tumor or Thrombus) /Use of Contrast for Perfusion and Enhancement	A(9)	1	100%	0%	0%
Q49	16. Evaluation of Pericardium (Pericardial Mass, Constrictive Pericarditis)	A(8)	1	100%	0%	0%
Q50	17. Evaluation for Aortic Dissection	A(8)	1	85%	15%	0%

Q51	18. Evaluation of Pulmonary Veins Prior to Radiofrequency Ablation for Atrial Fibrilla- tion /Left atrial and Pulmonary Venous Anat- omy Including Dimensions of Veins for Mapping Purposes	A(7)	1	90%	10%	0%
Q52	 19. Anatomic Assessment Before Percutaneous Device Closure of ASD or VSD/Anatomic Assessment Before Percutaneous Device Closure or Percutaneous Aortic Valve Replacement 	A(7)	1	80%	20%	0%

7. Literature Review Strategies

(1) Search for Guidelines

A comprehensive search of previous publications on CMR application and related guidelines was done for the adaptive development. The following search field settings were used for each database.

PICO	Mesh Terms	Title/Abstract
Р	"heart"[MeSH]	"heart"[TIAB] OR "cardiac"[TIAB]
	"Heart Diseases"[MeSH]	"Heart Diseases"[TIAB]
		("Heart"[TIAB] AND "Diseases"[TIAB])
I	"magnetic resonance imaging"[MeSH]	("magnetic"[TIAB] AND "resonance"[TIAB] AND "imag- ing"[TIAB]) OR "magnetic resonance imaging"[TIAB]
		("magnetic"[TIAB] AND "resonance"[TIAB]) OR "mag- netic resonance"[TIAB] OR "mr"[TIAB] OR "mri"[TIAB]

PubMed (www.pubmed.gov)

For the Pubmed database, ("heart"[MeSH Terms] OR "heart"[TIAB] OR "cardiac"[TIAB] OR "Heart Diseases"[TIAB] OR ("Heart"[TIAB] AND "Diseases"[TIAB]) OR "Heart Diseases"[MeSH Terms]) AND (("magnetic"[TIAB] AND "resonance"[TIAB]) OR "magnetic resonance"[TIAB] OR "mri"[TIAB] OR "magnetic resonance imaging"[MeSH Terms] OR ("magnetic"[TIAB] AND "resonance"[TIAB] AND "imaging"[TIAB]) OR "magnetic resonance imaging"[TIAB]) AND (Guideline[ptyp] OR Practice Guideline[ptyp]) AND ("2000/01/01"[PDAT] : "3000/12/31"[PDAT]) was used to filter publication searches. Of these, 54 related publications were reviewed.

Cochrane Library (www.interscience.wiley.com)

No.	Search	Results
#1	MeSH descriptor: [Heart] explode all trees	5,219
#2	MeSH descriptor: [Heart Diseases] explode all trees	33,700
#3	heart or cardiac:ti,ab,kw (Word variations have been searched)	64,088
#4	Heart Diseases:ti,ab,kw	186
#5	#1 or #2 or #3 or #4	76,077
#6	MeSH descriptor: [Magnetic Resonance Imaging] explode all trees	4,621
#7	Magnetic Resonance Imaging:ti,ab,kw	9
#8	MRI	3,571
#9	#6 or #7 or #8	6,275
#10	MeSH descriptor: [Guideline] explode all trees	16
#11	MeSH descriptor: [Practice Guideline] explode all trees	13

#12	Practice Guideline or Guideline	14,150
#13	#10 or #11 or #12	14,150
#14	#5 and #9 and #13	43
#15	#14 from 2000 to 2013	40

For the Cochrane Library, above search strategy was uses to filter publication searches and 40 related publications were reviewed.

Embase (www.embase.com)

No.	Query	Results
#1	heart'/exp	588,122
#2	heart disease'/exp	1,256,355
#3	cardiac OR heart	2,164,164
#4	#1 OR #2 OR #3	2,164,164
#5	nuclear magnetic resonance imaging'/exp	470,289
#6	nuclear magnetic resonance'/exp	730,813
#7	magnetic resonance imaging	497,248
#8	MRI	198,734
#9	#5 OR #6 OR #7 OR #8	768,002
#10	practice guideline'/de	212,721
#11	#4 AND #9 OR #10	978
#12	#11 AND [humans]/lim AND [embase]/lim AND [2000-2013]/py	881
#13	#12 AND ([controlled clinical trial]/lim OR [meta analysis]/lim OR	55
	[randomized controlled trial]/lim OR [systematic review]/lim)	

For the Embase, above search strategy was uses to filter publication searches and 55 related publications were reviewed.

National Guideline Clearing House (http://www.guideline.gov/)

Keyword: (heart OR cardiac) AND (magnetic resonance imaging OR MRI) Clinical Specialty: Cardiology, Radiation Oncology, Radiology, Thoracic Surgery Publication Year: 2000-2013

These search field settings were used and 148 publications were found. Of these, 51 related publications were reviewed after additional title filtering by chest OR heart OR card* OR arter* OR artri* OR thorac* OR angina on EndNote program.

Scottish Intercollegiate Guidelines Network (SIGN)

(http://www.sign.ac.uk/guidelines/index.html)

Five guidelines (guideline number 93-97) about cardiac disease were reviewed.

National Institute for Clinical Excellence (NICE) (http://www.nice.org.uk/)

No.	Query	Results
#1	(heart OR cardiac) AND (magnetic resonance imaging OR MRI)	3,317
#2	#1 Filter by Types : Guideline	631
#3	#2 Filter by Sources : NICE, British thoracic society, Royal college of	130
	physicians of London, Royal college of Radiologists	
#4	#3 Filter by Years : 2000-2013	130

These search field settings were used and 130 publications were found. Of these, 6 related publications were reviewed after additional title filtering by chest OR heart OR card* OR arter* OR artri* OR thorac* OR angina on EndNote program.

(2) Literature Searches for Evidence

1. Detection of Coronary Artery Disease (CAD): Symptomatic

Scenario 1: Evaluation of chest pain syndrome

For the PubMed database, cardiac AND (Magnetic Resonance Imaging OR magnetic resonance OR MR) AND (coronary artery disease OR CAD OR electrocardiogram OR ECG) AND (Exercise Test OR exercise) AND (("2000/01/01"[PDAT] : "2013/06/31"[PDAT]) and cardiac AND (Magnetic Resonance Imaging OR magnetic resonance OR MR) AND (coronary artery disease OR CAD) AND (("2000/01/01"[PDAT] : "2013/06/31"[PDAT]) were used to filter publication searches, 16 and 97 RCTs, 2 and 8 Meta-analysis, 14 and 64 Systemic Reviews were found. Of these, 7 related publications were reviewed. In the Cochrane Library database, the same MeSH descriptors used in the PubMed database were used to find 115 and 268 publications, respectively. Search field settings of (cardiac OR 'heart'/exp OR heart) AND ('nuclear magnetic resonance'/exp OR (magnetic AND resonance AND imaging) OR (magnetic AND resonance) OR mr OR mri) AND ('coronary artery disease'/exp OR 'electrocardiogram'/exp OR 'coronary artery disease' OR cad OR 'electrocardiogram' OR electrocardiography OR ecg) AND ('exercise test'/exp OR 'exercise'/exp OR 'exercise test' OR exercise) AND [english]/lim NOT [medline]/lim AND [2000-2013]/py and (cardiac OR 'heart'/exp OR heart) AND ('nuclear magnetic resonance'/exp OR (magnetic AND resonance AND imaging) OR (magnetic AND resonance) OR mr OR mri) AND ('coronary artery disease'/exp OR 'coronary artery disease' OR cad) AND [english]/lim NOT [medline]/lim AND [2000-2013]/py were used to search the Embase database and 9 and 24 RCTs, 5 and 22 Meta-analysis, 6 and 17 Systemic Reviews were found. Of these, 42 related publications were reviewed.

Scenario 2: Evaluation of coronary artery anomaly (Use of MR coronary angiography)

For the PubMed database, (Magnetic Resonance Imaging OR magnetic resonance OR MR OR MRI) AND coronary angiography AND (coronary AND (anomaly OR anomalies OR abnormal)) AND ("2000/01/01"[PDAT] : "2013/06/31"[PDAT]) AND English[lang] was used to filter publication searches and 12 publications were found. In the Cochrane Library database, the same MeSH descriptors used in the PubMed database were used to find 4 publications. Search field settings of ('nuclear magnetic resonance'/exp OR (magnetic AND resonance AND imaging OR magnetic AND resonance) OR mr OR mri) AND ('angiocardiography'/exp OR (angiocardiography OR coronary AND angiography)) AND ('coronary artery anomaly'/exp OR coronary AND (anomal* OR abnormal*)) AND [english]/lim NOT [medline]/lim AND [2000-2013]/py were used to search the Embase database and 11 publications were found. Of these, 8 related publications were reviewed.

Scenario 3: Evaluation of acute chest pain

For the PubMed database, cardiac AND (Magnetic Resonance Imaging OR magnetic resonance OR MR OR MRI) AND (coronary artery disease OR CAD OR electrocardiogram OR ECG) AND cardiac enzyme AND ("2000/01/01"[PDAT] : "2013/06/31"[PDAT]) AND English[lang] was used to filter publication searches and 15 publications were found. In the Cochrane Library database, the same MeSH descriptors used in the PubMed database were used to find 12 publications. Search field settings of (cardiac OR 'heart'/exp OR heart) AND ('nuclear magnetic resonance'/exp OR (magnetic AND resonance AND imaging) OR (magnetic AND resonance) OR mr OR mri) AND ('coronary artery disease'/exp OR 'electrocardiogram'/exp OR 'coronary artery disease' OR cad OR 'electrocardiogram' OR electrocardiography OR ecg) AND ('enzyme'/exp OR enzymes OR enzyme) AND [english]/lim NOT [medline]/lim AND [2000-2013]/py were used to search the Embase database and 38 publications were found. Of these, 6 related publications were reviewed.

Scenario 4: Detection of CAD with prior test results

For the PubMed database, cardiac AND (Magnetic Resonance Imaging OR magnetic resonance OR MR OR MRI) AND (echocardiography stress test OR magnetic resonance imaging stress OR MRI stress test OR nuclear stress test OR stress SPECT OR stress single-photon emission-computed tomography OR stress test OR stress) AND (CHD OR coronary heart disease) AND (risk factors OR framingham risk score OR framingham OR risk) AND ("2000/01/01"[PDAT] : "2013/06/31"[PDAT]) AND English[lang] was used to filter publication searches and 22 publications were found. In the Cochrane Library database, the same MeSH descriptors used in the PubMed database were used to find 71 publications. Search field settings of (cardiac OR 'heart'/exp OR heart) AND ('nuclear magnetic resonance/exp OR (magnetic AND resonance AND imaging) OR (magnetic AND resonance) OR mr OR mri) AND ('stress echocardiography'/exp OR (('single photon emission computer tomography'/exp OR 'single photon emission computer tomography' OR spect OR 'nuclear magnetic resonance imaging'/exp OR 'magnetic resonance imaging' OR mri OR mr OR 'echocardiography'/exp OR echocardiograph*) AND ('exercise test'/exp OR stress AND test OR stress))) AND ('ischemic heart disease'/exp OR coronary heart disease OR CHD) AND ('risk factor'/exp OR risk AND factor* OR 'framingham risk score'/exp OR (framingham AND risk AND score) OR framingham OR risk) AND [english]/lim AND [humans]/lim AND [2000-2013]/py NOT [medline]/lim were used to search the Embase database and 16 publications were found. Of these, 14 related publications were reviewed.

Scenario 5: Evaluation of CAD in patients with post PCI or CABG

(1) Evaluation of coronary stents

For the PubMed database, (Magnetic Resonance Imaging OR magnetic resonance OR MR OR MRI) AND Coronary angiography AND (Post[All Fields] OR after[All] OR ("postoperative period"[MeSH Terms] OR ("postoperative"[All Fields] AND "period"[All Fields]) OR "postoperative period"[All Fields] OR "postoperative"[All Fields])) AND ((percutaneous[TIAB] AND ("heart"[MeSH Terms] OR "heart"[TIAB] OR "coronary"[TIAB]) AND intervention[TIAB]) OR stent[TIAB] OR "Stents"[Mesh]) AND ("2000/01/01"[PDAT] : "2013/06/31"[PDAT]) AND English[lang] was used to filter publication searches and 41 publications were found. In the Cochrane Library database, the same MeSH descriptors used in the PubMed database were used to find 11 publications. Search field settings of ('nuclear magnetic resonance'/exp OR (magnetic AND resonance AND imaging) OR (magnetic AND resonance) OR mr OR mri) AND ('angiocardiography'/exp OR Coronary angiograph*) AND ('postoperative period'/exp OR post OR after) AND ((percutaneous AND ('heart'/exp OR heart OR coronary) AND intervention) OR 'percutaneous coronary intervention'/exp OR 'stent'/exp OR stent OR Stents) AND ([english]/lim AND [humans]/lim AND [2000-2013]/py) NOT [medline]/lim were used to search the Embase database and 12 publications were found. Of these, 4 related publications were reviewed.

(2) Evaluation of CABG

For the PubMed database, (Magnetic Resonance Imaging OR magnetic resonance OR MR OR MRI) AND Coronary angiography AND (Post[All Fields] OR after[All] OR ("postoperative period"[MeSH Terms] OR ("postoperative"[All Fields] AND "period"[All Fields]) OR "postoperative period"[All Fields] OR "postoperative"[All Fields])) AND (("coronary artery bypass"[MeSH Terms] OR ("coronary"[TIAB] AND "artery"[TIAB] AND "bypass"[TIAB]) OR "coronary artery bypass"[TIAB] OR ("coronary"[TIAB] AND "artery"[TIAB] AND "bypass"[TIAB] AND "graft"[TIAB]) OR "coronary artery bypass graft"[TIAB]) OR ("coronary artery bypass"[MeSH Terms] OR ("coronary"[TIAB] AND "artery"[TIAB] AND "bypass" [TIAB]) OR "coronary artery bypass" [TIAB]) OR CABG [TIAB]) AND ("2000/01/01"[PDAT] : "2013/06/31"[PDAT]) AND English[lang] was used to filter publication searches and 10 publications were found. In the Cochrane Library database, the same MeSH descriptors used in the PubMed database were used to find 9 publications. Search field settings of ('nuclear magnetic resonance'/exp OR (magnetic AND resonance AND imaging) OR (magnetic AND resonance) OR mr OR mri) AND ('angiocardiography'/exp OR Coronary angiograph*) AND ('postoperative period'/exp OR post OR after) AND ('coronary artery bypass graft'/exp OR GABG OR bypass) AND ([english]/lim AND [humans]/lim AND [2000-2013]/py) NOT [medline]/lim were used to search the Embase database and 13 publications were found. Of these, 2 related publications were reviewed.

Scenario 6: CAD risk assessment: preoperative evaluation

(1) preoperative evaluation

For the PubMed database, cardiac AND (Magnetic Resonance Imaging OR magnetic resonance OR

MR OR MRI) AND ("Perioperative Period"[Mesh] OR perioperativ* OR after OR before OR preoperativ*) AND (Noncardiac surgery OR Vascular surgery OR Cardiac evaluation) AND (Risk assessment OR Risk factor OR Risk) AND ("2000/01/01"[PDAT] : "2013/06/31"[PDAT]) AND English[lang] was used to filter publication searches and 62 publications were found. In the Cochrane Library database, the same MeSH descriptors used in the PubMed database were used to find 13 publications. Search field settings of (cardiac OR 'heart'/exp OR heart) AND ('nuclear magnetic resonance'/exp OR (magnetic AND resonance AND imaging) OR (magnetic AND resonance) OR mr OR mri) AND ('perioperative period'/exp OR perioperativ* OR after OR before OR preoperativ*) AND (Noncardiac surgery OR Vascular surgery OR Cardiac evaluation) AND (Risk assessment OR Risk factor OR Risk) AND ([english]/lim AND [humans]/lim AND [2000-2013]/py) NOT [medline]/lim were used to earch the Embase database and 23 publications were found. Of these, 9 related publications were reviewed.

(2) before valve surgery

For the PubMed database, cardiac AND (Magnetic Resonance Imaging OR magnetic resonance OR MR OR MRI) AND ("Preoperative Period"[Mesh] OR before OR preoperativ*) AND ("Heart Valve Prosthesis"[Mesh] OR "Heart Valve Prosthesis Implantation"[Mesh] OR "Cardiac Valve Annuloplas-ty"[Mesh] OR Valve surgery) AND (coronary artery disease OR CAD) AND ("2000/01/01"[PDAT] : "2013/06/31"[PDAT]) AND English[lang] was used to filter publication searches and 50 publications were found. In the Cochrane Library database, the same MeSH descriptors used in the PubMed database were used to find 18 publications. Search field settings of (cardiac OR 'heart'/exp OR heart) AND ('nuclear magnetic resonance'/exp OR (magnetic AND resonance AND imaging) OR (magnetic AND resonance) OR mr OR mri) AND ('preoperative period'/exp OR before OR preoperativ*) AND ('heart valve prosthesis'/exp OR 'heart valve replacement'/exp OR 'annuloplas-ty'/exp OR valve surger*) AND ('coronary artery disease'/exp OR coronary artery diseas* OR CAD) AND ([english]/lim AND [humans]/lim AND [2000-2013]/py) NOT [medline]/lim were used to search the Embase database and 95 publications were found. Of these, 4 related publications were reviewed.

Scenario 7: Evaluation of CAD in pediatric patients with Kawasaki disease

For the PubMed database, (Magnetic Resonance Imaging OR magnetic resonance OR MR OR MRI) AND angiography AND (("mucocutaneous lymph node syndrome"[MeSH Terms] OR ("mucocutaneous"[TIAB] AND "lymph"[TIAB] AND "node"[TIAB] AND "syndrome"[TIAB]) OR "mucocutaneous lymph node syndrome"[TIAB] OR ("kawasaki"[TIAB] AND "disease"[TIAB]) OR "kawasaki disease"[TIAB]) OR ("mucocutaneous lymph node syndrome"[MeSH Terms] OR ("mucocutaneous"[TIAB] AND "lymph"[TIAB] AND "node"[TIAB] AND "syndrome"[TIAB]) OR "mucocutaneous lymph node syndrome"[TIAB] OR ("kawasaki"[TIAB] AND "syndrome"[TIAB]) OR "mucocutaneous lymph node syndrome"[TIAB] OR ("kawasaki"[TIAB] AND "syndrome"[TIAB]) OR "mucocutaneous lymph node syndrome"[TIAB] OR ("kawasaki"[TIAB] AND "syndrome"[TIAB]) OR "kawasaki syndrome"[TIAB])) AND ("infant"[MeSH Terms] OR "child"[MeSH Terms] OR "adolescent"[MeSH Terms] OR "Pediatrics"[Mesh] OR Pediatric[TIAB] OR Pediatrics[TIAB] OR Paediatrics[TIAB] OR children[TIAB] OR adolescent[TIAB] OR Teenager[TIAB] OR Youths[TIAB] OR Youth[TIAB]) AND ("2000/01/01"[PDAT] : "2013/06/31"[PDAT]) AND English[lang] AND ([cochrane review]/lim OR [controlled clinical trial]/lim OR [meta analysis]/lim OR [randomized controlled trial]/lim OR [systematic review]/lim) was used to filter publication searches and 34 publications were found. Search field settings of (cardiac OR 'heart'/exp OR heart) AND ('nuclear magnetic resonance'/exp OR (magnetic AND resonance AND imaging) OR (magnetic AND resonance) OR mr OR mri) AND ('angiocardiography'/exp OR angiography OR 'catheterization'/exp OR 'catheterization') AND ('mucocutaneous lymph node syndrome'/exp OR 'mucocutaneous lymph node syndrome' OR kawasaki) AND (infant OR child OR adolescent OR Pediatrics OR Pediatric OR Pediatrics OR Paediatric OR Paediatrics OR children OR adolescent OR Teenager OR Youths OR Youth) AND ([english]/lim AND [humans]/lim AND [2000-2013]/py) NOT [medline]/lim) AND ([cochrane review]/lim OR [controlled clinical trial]/lim OR [meta analysis]/lim OR [randomized controlled trial]/lim OR [systematic review]/lim) were used to search the Embase database and 33 publications were found. Of these, 7 related publications were reviewed.

Scenario 8: Detection of CAD: Asymptomatic

For the PubMed database, (cardiac OR coronary angiography) AND (Magnetic Resonance Imaging OR magnetic resonance OR MR OR MRI) AND ("Asymptomatic Diseases" [Mesh] OR asymptomat*) AND (CHD OR coronary Heart Disease OR coronary artery disease OR CAD) AND (risk factors OR framingham risk score OR framingham OR risk) AND ("2000/01/01"[PDAT] : "2013/06/31"[PDAT]) AND English[lang]) AND ([cochrane review]/lim OR [controlled clinical trial]/lim OR [meta analysis]/lim OR [randomized controlled trial]/lim OR [systematic review]/lim) was used to filter publication searches and 90 publications were found. Search field settings of (cardiac OR 'heart'/exp OR heart OR 'angiocardiography'/exp OR (coronary AND angiograph*)) AND ('nuclear magnetic resonance'/exp OR (magnetic AND resonance AND imaging) OR (magnetic AND resonance) OR mr OR mri) AND ('asymptomatic disease'/exp OR asymptomat*) AND ('coronary artery disease'/exp OR (coronary artery diseas*) OR CAD OR 'congenital heart disease'/exp OR (Coronary Heart Disease) OR CHD) AND (risk factor* OR framingham risk score OR framingham OR risk) AND ([english]/lim AND [humans]/lim AND [2000-2013]/py) NOT [medline]/lim) AND ([cochrane review]/lim OR [controlled clinical trial]/lim OR [meta analysis]/lim OR [randomized controlled trial]/lim OR [systematic review]/lim) were used to search the Embase database and 108 publications were found. Of these, 1 related systematic review article was reviewed.

Scenario 9: Detection of myocardial scar and viability in ischemic heart disease

(1) To determine the location and extent of myocardial necrosis including 'no reflow' regions/ Post-acute myocardial infarction

For the PubMed database, cardiac AND (Magnetic Resonance Imaging OR magnetic resonance OR MR OR MRI) AND (post OR after) AND acute AND ("Myocardial Infarction"[Mesh] OR Myocardial Infarction OR myocardial necrosis) AND ("2000/01/01"[PDAT] : "2013/06/31"[PDAT]) AND

([cochrane review]/lim OR [controlled clinical trial]/lim OR [meta analysis]/lim OR [randomized controlled trial]/lim OR [systematic review]/lim) was used to filter publication searches and 104 RCTs, 2 meta-analysis, and 4 systemic reviews were found. Search field settings of (cardiac OR 'heart'/exp OR heart) AND ('nuclear magnetic resonance'/exp OR (magnetic AND resonance AND imaging) OR (magnetic AND resonance) OR mr OR mri) AND (Post OR after) AND ('acute heart infarction'/exp OR (acute Myocardial Infarction) OR (acute myocardial necrosis)) AND ([english]/lim AND [humans]/lim AND [2000-2013]/py) NOT [medline]/lim AND ([cochrane review]/lim OR [controlled clinical trial]/lim OR [meta analysis]/lim OR [randomized controlled trial]/lim OR [systematic review]/lim) were used to search the Embase database and 16 RCTs, 6 meta-analysis, and 3 systematic reviews were found. Of these, 4 related publications were reviewed.

(2) To determine the location and extent of myocardial necrosis including 'no reflow' regions/ Post-acute myocardial infarction

For the PubMed database, cardiac AND (Magnetic Resonance Imaging OR magnetic resonance OR MR OR MRI) AND (Post[All Fields] OR after[All] OR ("postoperative period"[MeSH Terms] OR ("postoperative"[All Fields] AND "period"[All Fields]) OR "postoperative period"[All Fields] OR "postoperative"[All Fields])) AND ((percutaneous[TIAB] AND ("heart"[MeSH Terms] OR "heart"[TIAB] OR "coronary" [TIAB]) AND intervention [TIAB]) OR stent [TIAB] OR "Stents" [Mesh] OR "percutaneous coronary intervention"[MeSH Terms]) AND ("Myocardial Infarction"[Mesh] OR Myocardial Infarction OR myocardial necrosis) AND ("2000/01/01"[PDAT] : "2013/06/31"[PDAT]) AND English[lang] AND ([cochrane review]/lim OR [controlled clinical trial]/lim OR [meta analysis]/lim OR [randomized controlled trial]/lim OR [systematic review]/lim) was used to filter publication searches and 94 RCTs and 1 systematic review were found. Search field settings of (cardiac OR 'heart'/exp OR heart) AND ('nuclear magnetic resonance'/exp OR (magnetic AND resonance AND imaging) OR (magnetic AND resonance) OR mr OR mri) AND ('postoperative period'/exp OR post OR after) AND ((percutaneous AND ('heart'/exp OR heart OR coronary) AND intervention) OR 'percutaneous coronary intervention'/exp OR 'stent'/exp OR stent OR Stents) AND ('heart infarction'/exp OR (Myocardial Infarction) OR (myocardial necrosis)) AND ([english]/lim AND [humans]/lim AND [2000-2013]/py) NOT [medline]/lim) AND ([cochrane review]/lim OR [controlled clinical trial]/lim OR [meta analysis]/lim OR [randomized controlled trial]/lim OR [systematic review]/lim) were used to search the Embase database and 19 RCTs, 5 meta-analysis, and 2 systemic reviews were found. Of these, 3 related publications were reviewed.

(3) To determine the location and extent of myocardial necrosis including 'no reflow' regions/ Post-acute myocardial infarction

For the PubMed database, cardiac AND (Magnetic Resonance Imaging OR magnetic resonance OR MR OR MRI) AND ("Myocardial Revascularization"[Mesh] OR revascularization OR coronary artery bypass OR CABG OR bypass OR stent OR "Stents"[Mesh] OR percutaneous coronary intervention OR PCI) AND (myocardial AND (function OR recovery OR viability)) AND ("2000/01/01"[PDAT] :

"2013/06/31"[PDAT]) AND English[lang] AND ([cochrane review]/lim OR [controlled clinical trial]/lim OR [meta analysis]/lim OR [randomized controlled trial]/lim OR [systematic review]/lim) was used to filter publication searches and 121 RCTs, 3 meta-analysis, and, 9 systemic reviews were found. Search field settings of (cardiac OR 'heart'/exp OR heart) AND ('nuclear magnetic resonance'/exp OR (magnetic AND resonance AND imaging) OR (magnetic AND resonance) OR mr OR mri) AND ('heart muscle revascularization'/exp OR revascularization OR (percutaneous AND ('heart'/exp OR heart OR coronary) AND intervention) OR 'percutaneous coronary intervention'/exp OR 'stent'/exp OR stent OR Stents OR 'coronary artery bypass graft'/exp OR GABG OR bypass) AND ((myocardial OR myocardium) AND (function OR recovery OR viability)) AND ([english]/lim AND [humans]/lim AND [2000-2013]/py) NOT [medline]/lim) AND ([cochrane review]/lim OR [controlled clinical trial]/lim OR [meta analysis]/lim OR [randomized controlled trial]/lim OR [systematic review]/lim) were used to search the Embase database and 25 RCTs, 7 meta-analysis, and 5 systemic reviews were found. Of these, 5 related publications were reviewed. *(4) To determine the location and extent of myocardial necrosis including 'no reflow' regions/ Post-acute myocardial infarction*

For the PubMed database, cardiac AND (Magnetic Resonance Imaging OR magnetic resonance OR MR OR MRI) AND (SPECT OR single-photon emission-computed tomography OR dobutamine OR stress test OR stress) AND (viability OR Scar OR assessment) AND ("2000/01/01"[PDAT] : "2013/06/31"[PDAT]) AND English[lang]) AND ([cochrane review]/lim OR [controlled clinical tri-al]/lim OR [meta analysis]/lim OR [randomized controlled trial]/lim OR [systematic review]/lim) was used to filter publication searches and 21 RCTs, 3 meta-analysis, and 27 systemic reviews were found. Search field settings of (cardiac OR 'heart'/exp OR heart) AND ('nuclear magnetic resonance'/exp OR (magnetic AND resonance AND imaging) OR (magnetic AND resonance) OR mr OR mri) AND ('single photon emission computer tomography'/exp OR spect OR ('single photon' AND 'emission computed' AND tomography) OR 'stress test' OR stress OR dobutamine) AND (viability OR Scar OR assessment) AND ([english]/lim AND [humans]/lim AND [2000-2013]/py) NOT [med-line]/lim) OR [randomized controlled trial]/lim OR [systematic review]/lim) were used to search the Embase database and 7 RCTs, 6 meta-analysis, and 9 systemic reviews were found. Of these, 3 related publications were reviewed.

2. Structure and Myocardial Functional Evaluation in Patients with Risk of Heart Failure or Overt Heart Failure

Scenario 10: Evaluation in patients with risk of heart failure or overt heart failure (general) (1) Evaluation of LV function

For the PubMed database, (Magnetic Resonance Imaging OR magnetic resonance OR MR OR MRI) AND Coronary angiography AND ("ventricular function, left"[MeSH Terms] OR "Ventricular Dys-function, Left"[Mesh] OR "Hypertrophy, Left Ventricular"[Mesh] OR left ventricular function OR LV function) AND (heart failure OR myocardial infarction) AND ("2000/01/01"[PDAT] :

"2013/06/31"[PDAT]) AND English[lang] AND Randomized Controlled Trial[ptyp] was used to filter publication searches and 36 publications were found. In the Cochrane Library database, the same MeSH descriptors used in the PubMed database were used to find 74 publications. Search field settings of ('nuclear magnetic resonance'/exp OR (magnetic AND resonance AND imaging) OR (magnetic AND resonance) OR mr OR mri) AND ('angiocardiography'/exp OR Coronary angiograph*) AND ('heart left ventricle function'/exp OR 'heart left ventricle failure'/exp OR 'heart left ventricle hypertrophy'/exp OR left ventricular function OR LV function) AND ('heart failure'/exp AND 'heart infarction'/exp OR heart failure OR myocardial infarction) AND ([english]/lim AND [humans]/lim AND [2000-2013]/py) NOT [medline]/lim AND [randomized controlled trial]/lim were used to search the Embase database and 6 publications were found. Additionally, settings of ('nuclear magnetic resonance/exp OR (magnetic AND resonance AND imaging) OR (magnetic AND resonance) OR mr OR mri) AND ('angiocardiography'/exp OR Coronary angiograph*) AND ('heart left ventricle function'/exp OR 'heart left ventricle failure'/exp OR 'heart left ventricle hypertrophy/exp OR left ventricular function OR LV function) AND ('heart failure'/exp AND 'heart infarction'/exp OR heart failure OR myocardial infarction) AND ([english]/lim AND [humans]/lim AND [2000-2013]/py) NOT [medline]/lim [systematic review]/lim were used and 1 publication was found. Of these, 9 related publications were reviewed.

(2) Etiology evaluation

For the PubMed database, (Magnetic Resonance Imaging OR magnetic resonance OR MR OR MRI) AND Coronary angiography AND (new OR onset OR newly OR first OR potential OR suspected OR suspect) AND Heart failure AND ("2000/01/01"[PDAT]: "2013/06/31"[PDAT]) AND English[lang] was used to filter publication searches and 90 publications were found. In the Cochrane Library database, the same MeSH descriptors used in the PubMed database were used to find 48 publications. Search field settings of ('nuclear magnetic resonance'/exp OR (magnetic AND resonance AND imaging) OR (magnetic AND resonance) OR mr OR mri) AND ('angiocardiography'/exp OR Coronary angiograph*) AND (new* OR onset OR newly OR first OR potential OR suspected OR suspect*) AND ('heart failure'/exp OR heart failure) AND ([english]/lim AND [humans]/lim AND [2000-2013]/py) NOT [medline]/lim AND [randomized controlled trial]/lim were used to search the Embase database and 4 publications were found. Additional settings of ('nuclear magnetic resonance'/exp OR (magnetic AND resonance AND imaging) OR (magnetic AND resonance) OR mr OR mri) AND ('angiocardiography'/exp OR Coronary angiograph*) AND (new* OR onset OR newly OR first OR potential OR suspected OR suspect*) AND ('heart failure'/exp OR heart failure) AND ([english]/lim AND [humans]/lim AND [2000-2013]/py) NOT [medline]/lim AND [meta analysis]/lim displayed 2 publications and setting of ('nuclear magnetic resonance'/exp OR (magnetic AND resonance AND imaging) OR (magnetic AND resonance) OR mr OR mri) AND ('angiocardiography'/exp OR Coronary angiograph*) AND (new* OR onset OR newly OR first OR potential OR suspected OR suspect*) AND ('heart failure'/exp OR heart failure) AND ([english]/lim AND [humans]/lim AND [2000-2013]/py) NOT [medline]/lim AND [systematic review]/lim found 4 publications. Of these, 8 related publications were reviewed.

(3) ICD candidacy

For the PubMed database, (Magnetic Resonance Imaging OR magnetic resonance OR MR OR MRI) AND ("Defibrillators, Implantable"[Mesh] OR Implantable Defibrillators OR Implantable Defibrillator) AND (cardioverter OR cardio OR cardiac OR heart) AND ("2000/01/01"[PDAT] : "2013/06/31"[PDAT]) AND English[lang] AND Randomized Controlled Trial[ptyp] was used to filter publication searches and 3 publications were found. Additionally, (Magnetic Resonance Imaging OR magnetic resonance OR MR OR MRI) AND ("Defibrillators, Implantable"[Mesh] OR Implantable Defibrillators OR Implantable Defibrillator) AND (cardioverter OR cardio OR cardiac OR heart) AND ("2000/01/01"[PDAT] : "2013/06/31"[PDAT]) AND English[lang] AND systematic[sb] was used and 5 publications were found. In the Cochrane Library database, the same MeSH descriptors used in the PubMed database were used to find 52 publications. Search field settings of ('nuclear magnetic resonance'/exp OR (magnetic AND resonance AND imaging) OR (magnetic AND resonance) OR mr OR mri) AND ('implantable cardioverter defibrillator'/exp OR ((Implantable Defibrillators OR Implantable Defibrillator) AND (cardioverter OR cardio OR cardiac OR 'heart'/exp OR heart))) AND ([english]/lim AND [humans]/lim AND [2000-2013]/py) NOT [medline]/lim were used to search the Embase database and 219 publications were found. Of these, 9 related publications were reviewed. (4) CRT candidacy or planning

For the PubMed database, (Magnetic Resonance Imaging OR magnetic resonance OR MR OR MRI) AND cardiac resynchronization therapy AND ("2000/01/01"[PDAT] : "2013/06/31"[PDAT]) AND English[lang] AND Randomized Controlled Trial[ptyp] was used to filter publication searches and 9 publications were found.

Additionally, (Magnetic Resonance Imaging OR magnetic resonance OR MR OR MRI) AND cardiac resynchronization therapy AND ("2000/01/01"[PDAT] : "2013/06/31"[PDAT]) AND English[lang] AND Meta-Analysis[ptyp] was used and 1 publication was found. (Magnetic Resonance Imaging OR magnetic resonance OR MR OR MRI) AND cardiac resynchronization therapy AND ("2000/01/01"[PDAT] : "2013/06/31"[PDAT]) AND English[lang] AND systematic[sb] displayed 6 publications. In the Cochrane Library database, the same MeSH descriptors used in the PubMed database were used to find 45publications. Search field settings of ('nuclear magnetic resonance'/exp OR (magnetic AND resonance AND imaging) OR (magnetic AND resonance) OR mr OR mri) AND ('cardiac resynchronization therapy'/exp OR cardiac resynchronization therapy) AND ([english]/lim AND [humans]/lim AND [2000-2013]/py) NOT [medline]/lim were used to search the Embase database and 275 publications were found. Of these, 7 related publications were reviewed. **Scenario 11: Patients with congenital heart disease**

For the PubMed database, (Magnetic Resonance Imaging OR magnetic resonance OR MR OR MRI) AND Congenital Heart Disease AND ("2000/01/01"[PDAT] : "2013/06/31"[PDAT]) AND English[lang] AND Randomized Controlled Trial[ptyp] was used to filter publication searches and 6 publications were found. Additionally (Magnetic Resonance Imaging OR magnetic resonance OR MR OR MRI) AND Congenital Heart Disease AND ("2000/01/01"[PDAT] : "2013/06/31"[PDAT]) AND English[lang] AND systematic[sb] was used and 17 publications were found. In the Cochrane Library database, the same MeSH descriptors used in the PubMed database were used to find 67 publications. Search field settings of ('nuclear magnetic resonance'/exp OR (magnetic AND resonance AND imaging) OR (magnetic AND resonance) OR mr OR mri) AND ('congenital heart disease'/exp OR Congenital Heart Disease) AND ([english]/lim AND [humans]/lim AND [2000-2013]/py) NOT [medline]/lim AND [randomized controlled trial]/lim were used to search the Embase database and 4 publications were found. Additionally, ('nuclear magnetic resonance'/exp OR (magnetic AND resonance AND imaging) OR (magnetic AND resonance) OR mr OR mri) AND ('congenital heart disease'/exp OR Congenital Heart Disease) AND ([english]/lim AND [humans]/lim AND [2000-2013]/py) NOT [medline]/lim AND [meta analysis]/lim were used and 10 publications were found. Settings of ('nuclear magnetic resonance'/exp OR (magnetic AND resonance AND imaging) OR (magnetic AND resonance) OR mr OR mri) AND ('congenital heart disease'/exp OR Congenital Heart Disease) AND ([english]/lim AND [humans]/lim AND [2000-2013]/py) NOT [medline]/lim AND [systematic review]/lim displayed 12 publications. Of these, 9 related publications were reviewed.

Scenario 12: Patients with valvular heart disease

For the PubMed database, (Magnetic Resonance Imaging OR magnetic resonance OR MR OR MRI) AND ("Heart Valve Diseases" [Mesh] OR Heart Valve Diseases OR Heart Valve Disease OR Valvular Heart Disease OR Valvular Heart Disease) AND ("Echocardiography" [Mesh] OR echocardiogram OR Echocardiography OR "Echocardiography, Transesophageal" [Mesh] OR transesophageal echocardiography OR TEE) AND ("2000/01/01"[PDAT] : "2013/06/31"[PDAT]) AND English[lang] AND Randomized Controlled Trial[ptyp] was used to filter publication searches and 33 publications were found. When (Magnetic Resonance Imaging OR magnetic resonance OR MR OR MRI) AND ("Heart Valve Diseases"[Mesh] OR Heart Valve Diseases OR Heart Valve Disease OR Valvular Heart Disease OR Valvular Heart Disease) AND ("Echocardiography" [Mesh] OR echocardiogram OR Echocardiography OR "Echocardiography, Transesophageal" [Mesh] OR transesophageal echocardiography OR TEE) AND ("2000/01/01"[PDAT] : "2013/06/31"[PDAT]) AND English[lang] AND Meta-Analysis[ptyp] was used, 1 publication was found. Additionally, settings of (Magnetic Resonance Imaging OR magnetic resonance OR MR OR MRI) AND ("Heart Valve Diseases" [Mesh] OR Heart Valve Diseases OR Heart Valve Disease OR Valvular Heart Disease OR Valvular Heart Disease) AND ("Echocardiography"[Mesh] OR echocardiogram OR Echocardiography OR "Echocardiography, Transesophageal"[Mesh] OR transesophageal echocardiography OR TEE) AND ("2000/01/01"[PDAT] : "2013/06/31"[PDAT]) AND English[lang] AND systematic[sb] displayed 26 publications. In the Cochrane Library database, the same MeSH descriptors used in the PubMed database were used

to find 69 publications. Search field settings of ('nuclear magnetic resonance'/exp OR (magnetic AND resonance AND imaging) OR (magnetic AND resonance) OR mr OR mri) AND ('valvular heart disease'/exp OR Heart Valve Diseases OR Heart Valve Disease OR Valvular Heart Diseases OR Valvular Heart Disease) AND ('echocardiography'/exp OR echocardiogram OR Echocardiograp* OR 'transesophageal echocardiography'/exp OR transesophageal echocardiograp* OR TEE) AND ([english]/lim AND [humans]/lim AND [2000-2013]/py) NOT [medline]/lim AND [randomized controlled trial]/lim were used to search the Embase database and 10 publications were found. Settings of ('nuclear magnetic resonance'/exp OR (magnetic AND resonance AND imaging) OR (magnetic AND resonance) OR mr OR mri) AND ('valvular heart disease'/exp OR Heart Valve Diseases OR Heart Valve Disease OR Valvular Heart Diseases OR Valvular Heart Disease) AND ('echocardiography'/exp OR echocardiogram OR Echocardiograp* OR 'transesophageal echocardiography'/exp OR transesophageal echocardiograp* OR TEE) AND ([english]/lim AND [humans]/lim AND [2000-2013]/py) NOT [medline]/lim AND [meta analysis]/lim displayed 4 publications, and settings of ('nuclear magnetic resonance'/exp OR (magnetic AND resonance AND imaging) OR (magnetic AND resonance) OR mr OR mri) AND ('valvular heart disease'/exp OR Heart Valve Diseases OR Heart Valve Disease OR Valvular Heart Diseases OR Valvular Heart Disease) AND ('echocardiography'/exp OR echocardiogram OR Echocardiograp* OR 'transesophageal echocardiography'/exp OR transesophageal echocardiograp* OR TEE) AND ([english]/lim AND [humans]/lim AND [2000-2013]/py) NOT [medline]/lim AND [systematic review]/lim displayed 7 publications. Of these, 5 related publications were reviewed.

Scenario 13: Patients with suspected or diagnosed myocardial disease

(1) ARVC or ventricular arrhythmia

For the PubMed database, (Magnetic Resonance Imaging OR magnetic resonance OR MR OR MRI) AND (arrhythmogenic right ventricular cardiomyopathy OR ARVC OR syncope OR ventricular arrhythmia) AND ("2000/01/01"[PDAT] : "2013/06/31"[PDAT]) AND English[lang] AND Randomized Controlled Trial[ptyp] was used to filter publication searches and 13 publications were found. Additionally, settings of (Magnetic Resonance Imaging OR magnetic resonance OR MR OR MRI) AND (arrhythmogenic right ventricular cardiomyopathy OR ARVC OR syncope OR ventricular arrhythmia) AND ("2000/01/01"[PDAT] : "2013/06/31"[PDAT]) AND English[lang] AND Meta-Analysis[ptyp] displayed 2 publications and settings of (Magnetic Resonance Imaging OR magnetic resonance OR MR OR MRI) AND (arrhythmogenic right ventricular cardiomyopathy OR ARVC OR syncope OR ventricular arrhythmia) AND ("2000/01/01"[PDAT] : "2013/06/31"[PDAT]) AND English[lang] AND systematic[sb] displayed 19 publications. In the Cochrane Library database, the same MeSH descriptors used in the PubMed database were used to find 121 publications. Search field settings of ('nuclear magnetic resonance'/exp OR (magnetic AND resonance AND imaging) OR (magnetic AND resonance) OR mr OR mri) AND ('heart right ventricle dysplasia'/exp OR arrhythmogenic right ventricular cardiomyopathy OR ARVC OR syncope I lish]/lim AND [humans]/lim AND [2000-2013]/py) NOT [medline]/lim AND [randomized controlled trial]/lim were used to search the Embase database and 9 publications were found. Additionally, settings of ('nuclear magnetic resonance'/exp OR (magnetic AND resonance AND imaging) OR (magnetic AND resonance) OR mr OR mri) AND ('heart right ventricle dysplasia'/exp OR ar-rhythmogenic right ventricular cardiomyopathy OR ARVC OR syncope OR ventricular arrhythmia) AND ([english]/lim AND [humans]/lim AND [2000-2013]/py) NOT [medline]/lim AND [meta analy-sis]/lim displayed 4 publications, and settings of ('nuclear magnetic resonance'/exp OR (magnetic AND resonance AND imaging) OR (magnetic AND resonance AND imaging) OR (magnetic AND resonance) OR mr OR mri) AND ('heart right ventricle dysplasia'/exp OR arrhythmogenic right ventricular cardiomyopathy OR ARVC OR syncope OR ventricular arrhythmia) AND ([english]/lim AND [resonance) OR mr OR mri) AND ('heart right ventricle dysplasia'/exp OR arrhythmogenic right ventricular cardiomyopathy OR ARVC OR syncope OR ventricular arrhythmia) AND ([english]/lim AND [humans]/lim AND [2000-2013]/py) NOT [medline]/lim AND [systematic review]/lim displayed 9 publications. Of these, 4 related publications were reviewed.

(2) Myocarditis or MI with normal coronary

For the PubMed database, (Magnetic Resonance Imaging OR magnetic resonance OR MR OR MRI) AND (myocarditis OR myocardial infarction) AND (coronary arteries OR coronary artery OR cardiac enzymes OR cardiac enzyme) AND ("2000/01/01"[PDAT] : "2013/06/31"[PDAT]) AND English[lang] AND Randomized Controlled Trial[ptyp] was used to filter publication searches and 93 publications were found. Settings of (Magnetic Resonance Imaging OR magnetic resonance OR MR OR MRI) AND (myocarditis OR myocardial infarction) AND (coronary arteries OR coronary artery OR cardiac enzymes OR cardiac enzyme) AND ("2000/01/01"[PDAT] : "2013/06/31"[PDAT]) AND English[lang] AND Meta-Analysis[ptyp] displayed 3 and settings of (Magnetic Resonance Imaging OR magnetic resonance OR MR OR MRI) AND (myocarditis OR myocardial infarction) AND (coronary arteries OR coronary artery OR cardiac enzymes OR cardiac enzyme) AND ("2000/01/01"[PDAT] : "2013/06/31"[PDAT]) AND English[lang] AND systematic[sb] displayed 15 publications. In the Cochrane Library database, the same MeSH descriptors used in the PubMed database were used to find 111 publications. Search field settings of ('nuclear magnetic resonance'/exp OR (magnetic AND resonance AND imaging) OR (magnetic AND resonance) OR mr OR mri) AND ('myocarditis'/exp OR myocarditis OR 'heart infarction'/exp OR myocardial infarction) AND ('coronary blood vessel'/exp OR coronary arter* OR cardiac enzym*) AND ([english]/lim AND [humans]/lim AND [2000-2013]/py) NOT [medline]/lim AND [randomized controlled trial]/lim were used to search the Embase database and 12 publications were found. Additionally, settings of ('nuclear magnetic resonance/exp OR (magnetic AND resonance AND imaging) OR (magnetic AND resonance) OR mr OR mri) AND ('myocarditis'/exp OR myocarditis OR 'heart infarction'/exp OR myocardial infarction) AND ('coronary blood vessel'/exp OR coronary arter* OR cardiac enzym*) AND ([english]/lim AND [humans]/lim AND [2000-2013]/py) NOT [medline]/lim AND [meta analysis]/lim displayed 5 and settings of ('nuclear magnetic resonance'/exp OR (magnetic AND resonance AND imaging) OR (magnetic AND resonance) OR mr OR mri) AND ('myocarditis'/exp OR myocarditis OR 'heart infarction'/exp OR myocardial infarction) AND ('coronary blood vessel'/exp OR coronary arter* OR cardiac enzym*) AND ([english]/lim AND [humans]/lim AND [2000-2013]/py) NOT [medline]/lim AND [systematic review]/lim displayed 7 publications. Of these, 7 related publications were reviewed.

(3) Specific cardiomyopathy

For the PubMed database, (Magnetic Resonance Imaging OR magnetic resonance OR MR OR MRI) AND (cardiomyopathies OR cardiomyopathy) AND ("2000/01/01"[PDAT] : "2013/06/31"[PDAT]) AND English[lang] AND Randomized Controlled Trial[ptyp] was used to filter publication searches and 47 publications were found. Additionally, settings of (Magnetic Resonance Imaging OR magnetic resonance OR MR OR MRI) AND (cardiomyopathies OR cardiomyopathy) AND ("2000/01/01"[PDAT] : "2013/06/31"[PDAT]) AND English[lang] AND Meta-Analysis[ptyp] displayed 4 and settings of (Magnetic Resonance Imaging OR magnetic resonance OR MR OR MRI) AND (cardiomyopathies OR cardiomyopathy) AND ("2000/01/01"[PDAT] : "2013/06/31"[PDAT]) AND English[lang] AND systematic[sb] displayed 32 publications. In the Cochrane Library database, the same MeSH descriptors used in the PubMed database were used to find 93 publications. Search field settings of ('nuclear magnetic resonance'/exp OR (magnetic AND resonance AND imaging) OR (magnetic AND resonance) OR mr OR mri) AND ('cardiomyopathy'/exp OR cardiomyopathies OR cardiomyopathy) AND ([english]/lim AND [humans]/lim AND [2000-2013]/py) NOT [medline]/lim AND [randomized controlled trial]/lim were used to search the Embase database and 5 publications were found. Additionally, setting of ('nuclear magnetic resonance'/exp OR (magnetic AND resonance AND imaging) OR (magnetic AND resonance) OR mr OR mri) AND ('cardiomyopathy'/exp OR cardiomyopathies OR cardiomyopathy) AND ([english]/lim AND [humans]/lim AND [2000-2013]/py) NOT [medline]/lim AND [meta analysis]/lim displayed 11 and settings of ('nuclear magnetic resonance/exp OR (magnetic AND resonance AND imaging) OR (magnetic AND resonance) OR mr OR mri) AND ('cardiomyopathy'/exp OR cardiomyopathies OR cardiomyopathy) AND ([english]/lim AND [humans]/lim AND [2000-2013]/py) NOT [medline]/lim AND [systematic review]/lim diaplayed 15 publications. Of these, 14 related publications were reviewed.

Scenario 14: Evaluation in patients with HCM

For the PubMed database, (Magnetic Resonance Imaging OR magnetic resonance OR MR OR MRI) AND (hypertrophic cardiomyopathies OR hypertrophic cardiomyopathy OR hypertrophy cardiomyopathies) AND ("2000/01/01"[PDAT] : "2013/06/31"[PDAT]) AND English[lang] AND Randomized Controlled Trial[ptyp] was used to filter publication searches and 9 publications were found.

Additionally, settings of (Magnetic Resonance Imaging OR magnetic resonance OR MR OR MRI) AND (hypertrophic cardiomyopathies OR hypertrophic cardiomyopathy OR hypertrophy cardiomyopathy OR hypertrophy cardiomyopathies) AND ("2000/01/01"[PDAT] : "2013/06/31"[PDAT]) AND English[lang] AND Meta-Analysis[ptyp] AND (Magnetic Resonance Imaging OR magnetic resonance OR MR OR MRI) AND (hypertrophic cardiomyopathies OR hypertrophic cardiomyopathy OR hypertrophy cardiomyopathy OR hypertrophy cardiomyopathies) AND ("2000/01/01"[PDAT] : "2013/06/31"[PDAT]) AND English[lang] AND systematic[sb] displayed 9 publications. In the Cochrane Library database, the same MeSH descriptors used in the PubMed database were used to find 30 publications. Search field settings of ('nuclear magnetic resonance'/exp OR (magnetic AND resonance AND imaging) OR (magnetic AND resonance) OR mr OR mri) AND ('hypertrophic cardiomyopathy'/exp OR (hypertroph* AND cardiomyopath*)) AND ([english]/lim AND [humans]/lim AND [2000-2013]/py) NOT [medline]/lim AND [meta analysis]/lim were used to search the Embase database and 6 publications were found. Additionally, settings of ('nuclear magnetic resonance) OR mr OR mri) AND ('hypertrophic cardiomyopathy'/exp OR (hypertroph* AND resonance AND imaging) OR (magnetic AND resonance) OR mr OR mri) AND [humans]/lim AND [2000-2013]/py) NOT [medline]/lim AND [meta analysis]/lim were used to search the Embase database and 6 publications were found. Additionally, settings of ('nuclear magnetic resonance) OR mr OR mri) AND ('hypertrophic cardiomyopathy'/exp OR (hypertroph* AND cardiomyopath*)) AND ([english]/lim AND [humans]/lim AND [2000-2013]/py) NOT [medline]/lim AND [systematic review]/lim displayed 4 publications. Of these, 14 related publications were reviewed.

3. Miscellaneous disease

Scenario 15: Evaluation of cardiac mass (suspected tumor or thrombus)

For the PubMed database, (Magnetic Resonance Imaging OR magnetic resonance OR MR OR MRI) AND cardiac mass AND ("2000/01/01"[PDAT] : "2013/06/31"[PDAT]) AND English[lang] AND ([cochrane review]/lim OR [controlled clinical trial]/lim OR [meta analysis]/lim OR [randomized controlled trial]/lim OR [systematic review]/lim) was used to filter publication searches and 125 RCTs, 3 meta-analysis, and 24 systematic reviews were found. For the EmBase database, ('nuclear magnetic resonance'/exp OR (magnetic AND resonance AND imaging) OR (magnetic AND resonance) OR mr OR mri) AND cardiac mass AND ([english]/lim AND [humans]/lim AND [2000-2013]/py) NOT [medline]/lim OR [randomized controlled trial]/lim OR [systematic review]/lim) was used to filter publication searches and 13 RCTs, 13 meta-analysis, and 11 systematic reviews were found. Of these, 9 related publications were reviewed.

Scenario 16: Evaluation of pericardium

For the PubMed database, (Magnetic Resonance Imaging OR magnetic resonance OR MR OR MRI) AND (pericardium OR pericarditis OR pericardial) AND ("2000/01/01"[PDAT] : "2013/06/31"[PDAT]) AND English[lang]) AND ([cochrane review]/lim OR [controlled clinical trial]/lim OR [meta analysis]/lim OR [randomized controlled trial]/lim OR [systematic review]/lim) was used to filter publication searches and 8 RCTs and 4 systematic reviews were found. For the Embase database, ('nuclear magnetic resonance'/exp OR (magnetic AND resonance AND imaging) OR (magnetic AND resonance) OR mr OR mri) AND ('pericardium'/exp OR 'pericarditis'/exp OR pericardium OR pericarditis OR pericardial) AND ([english]/lim AND [humans]/lim AND [2000-2013]/py) NOT [medline]/lim OR [randomized controlled trial]/lim OR [systematic review]/lim) was used to filter publication searches and 3 RCTs, 2 meta-analysis, and 5 systematic reviews were found. Of these, 5 related publications were reviewed.

Scenario 17: Evaluation of aortic dissection

For the PubMed database, (Magnetic Resonance Imaging OR magnetic resonance OR MR OR MRI) AND aortic dissection AND ("2000/01/01"[PDAT] : "2013/06/31"[PDAT]) AND English[lang] AND ([cochrane review]/lim OR [controlled clinical trial]/lim OR [meta analysis]/lim OR [randomized controlled trial]/lim OR [systematic review]/lim) was used to filter publication searches and 4 RCTs, 1 meta-analysis, and 13 systematic reviews were found. For the EmBase database, ('nuclear magnetic resonance'/exp OR (magnetic AND resonance AND imaging) OR (magnetic AND resonance) OR mr OR mri) AND ('aorta dissection'/exp OR ((aortic OR aorta) AND dissection)) AND ([english]/lim AND [humans]/lim AND [2000-2013]/py) NOT [medline]/lim OR [randomized controlled trial]/lim OR [systematic review]/lim) was used to filter publication searches and 1 RCT, 4 metaanalysis, and 3 systematic reviews were found. Of these, 6 related publications were reviewed. **Scenario 18: Evaluation of pulmonary veins prior to radiofrequency ablation for atrial fibrillation/ Left atrial and pulmonary venous anatomy including dimensions of veins for mapping purposes**

For the PubMed database, (Magnetic Resonance Imaging OR magnetic resonance OR MR OR MRI) AND (pulmonary veins OR pulmonary vein OR pulmonary venous) AND ("2000/01/01"[PDAT] : "2013/06/31"[PDAT]) AND English[lang]) AND ([cochrane review]/lim OR [controlled clinical trial]/lim OR [meta analysis]/lim OR [randomized controlled trial]/lim OR [systematic review]/lim) was used to filter publication searches and 24 RCTs, 5 meta-analysis, and 13 systematic reviews were found. For the EmBase database, ('nuclear magnetic resonance'/exp OR (magnetic AND resonance AND imaging) OR (magnetic AND resonance) OR mr OR mri) AND ('pulmonary vein'/exp OR 'pulmonary veins' OR 'pulmonary vein' OR 'pulmonary venous') AND ([english]/lim AND [humans]/lim AND [2000-2013]/py) NOT [medline]/lim) OR [randomized controlled trial]/lim OR [systematic review]/lim) was used to filter publication searches and 2 RCTs, 2 meta-analysis, and 1 systematic review were found. Of these, 5 related publications were reviewed.

Scenario 19: Anatomic assessment before percutaneous device closure of ASD or VSD/Anatomic assessment before percutaneous aortic valve replacement

For the PubMed database, (Magnetic Resonance Imaging OR magnetic resonance OR MR OR MRI) AND (ASD OR Atrial Septal Defect OR VSD OR Ventricular Septal Defect OR percutaneous aortic valve replacement) NOT autism spectrum disorder AND ("2000/01/01"[PDAT] : "2013/06/31"[PDAT]) AND English[lang]) AND ([cochrane review]/lim OR [controlled clinical trial]/lim OR [meta analysis]/lim OR [randomized controlled trial]/lim OR [systematic review]/lim) was used to filter publication searches and 9 RCTs, 1 meta-analysis, and 7 systematic reviews were found. For the EmBase database, ('nuclear magnetic resonance'/exp OR (magnetic AND resonance AND imaging) OR (magnetic AND resonance) OR mr OR mri) AND ('heart atrium septum defect'/exp OR ASD OR (Atrial Septal Defect) OR 'heart ventricle septum defect'/exp OR VSD OR (Ventricular Septal Defect) OR 'transcatheter aortic valve implantation'/exp OR (percutaneous aortic valve replacement)) NOT (autism AND spectrum AND disorder) AND ([english]/lim AND [humans]/lim AND [2000-2013]/py) NOT [medline]/lim) OR [randomized controlled trial]/lim OR [systematic review]/lim) was used to filter publication searches and 4 meta-analysis and 1 systematic review were found. Of these, 5 related publications were reviewed.

8. Level o	f Evidence	of the	References
------------	------------	--------	------------

Que- stion	Reference	Study type	Patients	Purpose of Study	Study Results	Level of Study
Q1-4	Lipinski MJ, McVey CM, Berger JS, Kramer CM, Sa- lerno M. Prognostic Value of Stress Cardiac Magnetic Resonance Imaging in Pa- tients with Known or Sus- pected Coronary Artery Disease: A Systematic Re- view and Meta-Analysis. J Am Coll Cardiol 2013;62(9):826-838	Meta- Analysis	11636 pa- tients (19 studies)	We performed systematic review and meta-analysis to understand the role of stress CMR in assessing cardiovascular prognosis in patients with known or suspected CAD.	Nineteen studies (14 vasodilator, 4 dobutamine, and 1 that used both) had a total of 11,636 patients and a mean follow-up of 32 months. Patients had a mean age of 63 +/- 12 years, 63% were male, 26% with prior MI, LV ejection fraction of 61 +/- 12%, late gadolinium en- hancement (LGE) in 29%, and ischemia in 32%. Patients with ischemia had a higher incidence of MI (OR 7.7, p<0.0001), cardiovascular death (OR 7.0, p<0.0001), and the combined endpoint (OR 6.5, p<0.0001) as compared with those with a negative study. The combined outcome annualized events rates were 4.9% for a positive versus 0.8% for negative stress CMR (p<0.0001), 2.8% versus 0.3% for cardiovascular death (p<0.0001), and 2.6% ver- sus 0.4% for MI (p<0.0005). The presence of LGE also was significantly associated with worse prognosis. CON- CLUSION: A negative stress CMR study is associated with very low risk of cardiovascular death and myocardial in-	Study 1
					farction. Stress CMR has excellent prognostic characteris- tics and may help guide risk stratification of patients with known or suspected CAD.	

Greenwood, J. P. et al.	Randomized	752 patients	The aim of this study was	In the 752 recruited patients, 39% had significant CHD	2
		/ of patients	,		-
5			5		
Ū.					
			•		
•			,		
			,		
				<u> </u>	
3/9(9814):453-460			•		
			suspected coronary heart	for both) but specificity and positive predictive value did	
			disease.	not (p=0.916 and p=0.061, respectively). INTERPRETA-	
				TION: CE-MARC is the largest, prospective, real world	
				evaluation of CMR and has established CMR's high diag-	
				nostic accuracy in coronary heart disease and CMR's su-	
				periority over SPECT. It should be adopted more widely	
				than at present for the investigation of coronary heart	
				disease.	
Jaarsma, C., et al. Diag-	Meta-	32 articles	This study aimed to de-	RESULTS: Of the 3,635 citations, 166 articles (n = 17,901)	1
nostic performance of	Analysis	(CMR)	termine the diagnostic	met the inclusion criteria: 114 SPECT, 37 CMR, and 15	
noninvasive myocardial		114 articles	accuracy of the 3 most	PET articles. There were not enough publications on oth-	
perfusion imaging using		(SPECT)	commonly used noninva-	er perfusion techniques such as perfusion echocardiog-	
single-photon emission		15 articles	sive myocardial perfusion	raphy and computed tomography to include these mo-	
computed tomography,		(PET)		dalities into the study. The patient-based analysis per	
Ū.					
	nostic performance of noninvasive myocardial perfusion imaging using single-photon emission	Cardiovascular magnetic resonance and single- photon emission comput- ed tomography for diag- nosis of coronary heart disease (CE-MARC): a pro- spective trial. Lancet 2012; 379(9814):453-460 Jaarsma, C., et al. Diag- nostic performance of noninvasive myocardial perfusion imaging using single-photon emission computed tomography, cardiac magnetic reso-	Cardiovascular magnetic resonance and single- photon emission comput- ed tomography for diag- nosis of coronary heart disease (CE-MARC): a pro- spective trial. Lancet 2012; 379(9814):453-460trialJaarsma, C., et al. Diag- nostic performance of noninvasive myocardial perfusion imaging using single-photon emission computed tomography, cardiac magnetic reso-Meta- Analysis32 articles (CMR) 114 articles (SPECT) 15 articles (PET)	Cardiovascular magnetic resonance and single- photon emission comput- ed tomography for diag- nosis of coronary heart disease (CE-MARC): a pro- spective trial. Lancet 2012; 379(9814):453-460trial spective trial. Lancet 2012; 379(9814):453-460to establish the diagnostic accuracy of a multipara- metric cardiovascular magnetic resonance (CMR) protocol with x-ray coronary angiography as the reference standard, and to compare CMR with SPECT, in patients with suspected coronary heart disease.Jaarsma, C., et al. Diag- nostic performance of noninvasive myocardial perfusion imaging using single-photon emission computed tomography, cardiac magnetic reso-Meta- Analysis32 articles (CMR) 114 articles (SPECT) 15 articles (SPECT) imaging modalities, sin- gle-photon emissionThis study aimed to de- termine the diagnostic accuracy of the 3 most commonly used noninva- sive myocardial perfusion imaging modalities, sin- gle-photon emission	Cardiovascular magnetic resonance and single- photon emission comput- ed tomography for diag- nosis of coronary heart disease (CE-MARC): a pro- spective trial. Lancet 2012; 379(9814):453-460trialtial substraint to establish the diagnostic accuracy of a multipara- metric cardiovascular (CMR) protocol with x-ray coronary negiography as the reference standard, and to compare CMR with SPECT, in patients with suspected coronary heart disease.as identified by x-ray angiography. For multiparametric CMR the sensitivity was 86.5% (95% CI 81.8-90.1), speci- ficity 83.4% (79.5-86.7), positive predictive value 90.5% (87.1- 93.0). The sensitivity of SPECT was 66.5% (95% CI 60.4- 72.1), specificity 82.6% (78.5-86.1), positive predictive value 93.0). The sensitivity of SPECT was 66.5% (95% CI 60.4- 72.1), specificity 82.6% (78.5-86.1), positive predictive value value 71.4% (65.3-76.9), and negative predictive value value of CMR and SPECT differed significantly (p<0.0001 for both) but specificity and positive predictive value did not (p=0.916 and p=0.061, respectively). INTERPRETA- TION: CE-MARC is the largest, prospective, real world evaluation of CMR and has established CMR's high diag- nostic accuracy in coronary heart disease and CMR's su- periority over SPECT. It should be adopted more widely than at present for the investigation of coronary heart disease.Jaarsma, C., et al. Diag- noninvasive myocardial perfusion imaging using single-photon emissionMeta- Analysis32 articles (CMR)This study aimed to de- termine the diagnostic accuracy of the 3 most gie-photon emissionRESULTS: Of the 3,635 citations, 166 articles (n = 17,901) met the inclusion criteria: 114 SPECT, 37 CMR, and 15 PET articles. There were not enough publications on oth as perfusion rimag

-				1		
	sion tomography imaging			(SPECT), cardiac magnetic	(95% CI: 88% to 91%), and 84% (95% CI: 81% to 87%) for	
	for the detection of ob-			resonance (CMR), and	SPECT, CMR, and PET, respectively; with a pooled speci-	
	structive coronary artery			positron emission tomog-	ficity of 61% (95% CI: 59% to 62%), 76% (95% CI: 73% to	
	disease: a meta-analysis. J			raphy (PET) perfusion im-	78%), and 81% (95% CI: 74% to 87%). This resulted in a	
	Am Coll Cardiol			aging for the diagnosis of	pooled diagnostic odds ratio (DOR) of 15.31 (95% CI:	
	2012;59(19):1719-1728			obstructive coronary ar-	12.66 to 18.52; I(2) 63.6%), 26.42 (95% CI: 17.69 to 39.47;	
				tery disease (CAD). Addi-	I(2) 58.3%), and 36.47 (95% CI: 21.48 to 61.92; I(2) 0%).	
				tionally, the effect of test	Most of the evaluated test and study characteristics did	
				and study characteristics	not affect the ranking of diagnostic performances. CON-	
				was explored.	CLUSIONS: SPECT, CMR, and PET all yielded a high sensi-	
					tivity, while a broad range of specificity was observed.	
					SPECT is widely available and most extensively validated;	
					PET achieved the highest diagnostic performance; CMR	
					may provide an alternative without ionizing radiation and	
					a similar diagnostic accuracy as PET. We suggest that	
					referring physicians consider these findings in the con-	
					text of local expertise and infrastructure.	
Q1-4	Schuetz, G. M., et al. Me-	Meta-	20 articles	To compare CT and MRI	DATA SYNTHESIS: 89 and 20 studies (comprising 7516	1
	ta-analysis: noninvasive	Analysis	(MRA)	for ruling out clinically	and 989 patients) assessed CT and MRI, respectively. Bi-	
	coronary angiography us-		89 articles	significant coronary artery	variate analysis of data yielded a mean sensitivity and	
	ing computed tomogra-		(CTA)	disease (CAD) in adults	specificity of 97.2% (95% CI, 96.2% to 98.0%) and 87.4%	
	phy versus magnetic res-			with suspected or known	(CI, 84.5% to 89.8%) for CT and 87.1% (CI, 83.0% to	
	onance imaging. Ann In-			CAD.	90.3%) and 70.3% (CI, 58.8% to 79.7%) for MRI. In studies	
	tern Med 2010;152(3):				that included only patients with suspected CAD, sensitivi-	
	167-177				ty and specificity of CT were 97.6% (CI, 96.1% to 98.5%)	
					and 89.2% (CI, 86.0% to 91.8%). Covariate analysis yield-	

					ed a significantly higher sensitivity for CT scanners with	
					more than 16 rows (98.1% [CI, 97.0% to 99.0%]; P <	
					0.050) than for older-generation scanners (95.6% [CI,	
					94.0% to 97.0%]). Heart rates less than 60 beats/min dur-	
					ing CT yielded significantly better values for sensitivity	
					than did higher heart rates (P < 0.001). LIMITATIONS:	
					Few studies investigated coronary angiography with MRI.	
					Only 5 studies were direct head-to-head comparisons of	
					CT and MRI. Covariate analyses explained only part of	
					the observed heterogeneity. CONCLUSION: For ruling out	
					CAD, CT is more accurate than MRI. Scanners with more	
					than 16 rows improve sensitivity, as do slowed heart	
					rates.	
Q5	Casolo, G., et al. Detection	Non-	336	Coronary artery anomalies	Nineteen patients with CAAs (12 men, 7 women; mean	3
	and assessment of coro-	consecutive		(CAAs) are a relatively rare	age, 53+/-18 years) were identified by MRCA. Six out of	
	nary artery anomalies by	studies		condition usually diag-	the 19 CAAs subjects had already been detected by oth-	
	three-dimensional mag-			nosed in vivo by conven-	er means (coronary angiography in 5, and transesopha-	
	netic resonance coronary			tional angiography. In the	geal echocardiography in 1 case). However in none of	
	angiography. Int J Cardiol			past few years Magnetic	them a complete anatomical assessment was achieved. In	
	2005;103(3):317-322			resonance coronary angi-	13 patients CAAs were an unexpected and new finding.	
				ography (MRCA) has been	MRCA was able to assess the origin and proximal course	
				used to detect CAAs and	of the anomalous artery in all the cases. CONCLUSIONS:	
				found to be highly accu-	MRCA is able to detect the presence and anomalous	
				rate. No data is available	course of CAAs. Besides offering precise information	
				regarding the ability of	about already suspected CAAs, MRCA can identify anom-	
				MRCA to detect previous-	alies previously not suspected. This study suggests a po-	

				ly not suspected anoma-	tential role for MRCA as a screening tool for CAAs in	
				lies.	young patients with angina, ventricular arrhythmias, or	
					unexplained syncope as well as in highly competitive	
					athletes.	
Q5	Clemente, A., et al. Anom-	Non-	15	We tested the diagnostic	AOCA was confirmed by 3D-CMRA in 8 out of 15 cases	3
	alous origin of the coro-	consecutive		potential of CMRA angi-	(53%) and three different anatomical variants were	
	nary arteries in children:	studies		ography in a prospective	demonstrated, that is, ectopic origin of the left circumflex	
	diagnostic role of three-			study on AOCA in young	artery arising from the right coronary artery with retro-	
	dimensional coronary MR			patients.	aortic course in four cases, single coronary artery arising	
	angiography. Clin Imaging				from the right sinus of Valsalva with interarterial course	
	2010;34(5):337-343				in one case, ectopic right coronary artery arising from	
					the left sinus of Valsalva with interarterial course in one	
					case; in two patients without anomalies of origin of the	
					coronary arteries, elongated LMCA with angulation of the	
					proximal segment of the left circumflex artery was pre-	
					sent. When AOCA is suspected particularly in children	
					(especially athletes), CMRA without the use of contrast	
					medium is an effective diagnostic technique, which is	
					useful to clarify the spatial position of the anomalous	
					course of the main coronary branches in order to sug-	
					gest the most convenient management of the disease.	
					CMRA does not need contrast medium, needles, and	
					beta-blockers; is repeatable in the same examination	
					without the exposure to X-rays; allows a parent to stay	
					near the child; and needs low collaboration in low-stress	
					conditions.	

r .						1
Q6-	Plein, S., et al. Assessment	Follow-up	68	The goal of this study was	RESULTS: Comprehensive CMR analysis yielded a sensitiv-	3
Q9	of non-ST-segment eleva-	study of non-		to determine: 1) if the	ity of 96% and a specificity of 83% to predict the pres-	
ľ	tion acute coronary syn-	randomized		presence of significant	ence of significant coronary stenosis and was more accu-	
ľ	dromes with cardiac mag-	controlled		coronary stenosis in pa-	rate than analysis of any individual CMR method; CMR	
1	netic resonance imaging. J	cohort		tients presenting with	was significantly more sensitive and accurate than the	
1	Am Coll Cardiol			non-ST-segment elevation	Thrombolysis In Myocardial Infarction risk score (p <	
1	2004;44(11):2173-2181			acute coronary syndromes	0.001). CONCLUSIONS: Cardiac magnetic resonance im-	
1				(NSTE-ACS) can be pre-	aging accurately predicts the presence of significant CAD	
1				dicted by cardiac magnet-	in patients with NSTE-ACS. In this study, a comprehensive	
1				ic resonance (CMR) imag-	analysis of several CMR methods improved the accuracy	
				ing; and 2) if the analysis	of the test.	
				of several CMR methods		
1				improves its diagnostic		
				yield compared with anal-		
				ysis of individual methods.		
Q6-	Miller, C. D., et al. Stress	Randomized	109	This study sought to	RESULTS: We included 109 randomized subjects in this	2
Q9	CMR imaging observation	trial		compare the direct cost of	analysis (52 OU-CMR, 57 inpatient care). The median age	
	unit in the emergency de-			medical care and clinical	was 56 years; baseline characteristics were similar in both	
1	partment reduces 1-year			events during the first	groups. At 1 year, 6% of OU-CMR and 9% of inpatient	
1	medical care costs in pa-			year after patients with	care participants experienced a major cardiac event (p =	
	tients with acute chest			intermediate risk acute	0.72) with 1 patient in each group experiencing a cardiac	
	pain: a randomized study			chest pain were random-	event after discharge. First-year cardiac-related costs	
	for comparison with inpa-			ized to stress cardiac	were significantly lower for participants randomized to	
	tient care. JACC Cardio-			magnetic resonance	OU-CMR than for participants receiving inpatient care	
	vasc Imaging 2011;4(8):			(CMR) observation unit	(geometric mean = \$3,101 vs. \$4,742 including the index	
	862-870			(OU) testing versus inpa-	visit [p = 0.004] and \$29 vs. \$152 following discharge [p	

				tient care.	= 0.012]). During the year following randomization, 6%	
					of OU-CMR and 9% of inpatient care participants experi-	
					enced a major cardiac event ($p = 0.72$). CONCLUSIONS:	
					An OU-CMR strategy reduces cardiac-related costs of	
					medical care during the index visit and over the first year	
					subsequent to discharge, without an observed increase in	
					major cardiac events.	
Q6-	Miller, C. D., et al. Stress	Randomized	105	The aim of this study was	RESULTS: The median age of participants was 56 years	2
Q9	CMR Reduces Revasculari-	trial		to determine the effect of	(range 35 to 91 years), 54% were men, and 20% had pre-	
	zation, Hospital Readmis-			stress cardiac magnetic	existing coronary disease. Index hospital admission was	
	sion, and Recurrent Cardi-			resonance (CMR) imaging	avoided in 85% of the OU CMR participants. The primary	
	ac Testing in Intermedi-			in an observation unit	outcome occurred in 20 usual care participants (38%)	
	ate-Risk Patients With			(OU) on revascularization,	versus 7 OU CMR participants (13%) (hazard ratio: 3.4;	
	Acute Chest Pain. JACC			hospital readmission, and	95% confidence interval: 1.4 to 8.0, $p = 0.006$). The OU	
	Cardiovasc Imaging 2013;			recurrent cardiac testing	CMR group experienced significant reductions in all	
	6(7):785-794			in intermediate-risk pa-	components: revascularizations (15% vs. 2%, p = 0.03),	
				tients with possible acute	hospital readmissions (23% vs. 8%, p = 0.03), and recur-	
				coronary syndromes	rent cardiac testing (17% vs. 4%, p = 0.03). Median	
				(ACS).	length of stay was 26 h (interquartile range: 23 to 45 h)	
					in the usual care group and 21 h (interquartile range: 15	
					to 25 h) in the OU CMR group (p < 0.001). ACS after	
					discharge occurred in 3 usual care participants (6%) and	
					no OU CMR participants. CONCLUSIONS: In this single-	
					center trial, management of intermediate-risk patients	
					with possible ACS in an OU with stress CMR reduced	
					coronary artery revascularization, hospital readmissions,	

					and recurrent cardiac testing, without an increase in	
					post-discharge ACS at 90 days.	
Q10,	Schwitter, J., et al. Superior	Randomized	533	Perfusion-cardiovascular	RESULTS: The diagnostic performance (= area under ROC	2
11	diagnostic performance of	trial		magnetic resonance	= AUC) of CMR was superior to SPECT (p = 0.0004, n =	
	perfusion-cardiovascular			(CMR) is generally accept-	425) and to gated-SPECT (p = 0.018, n = 253). CMR per-	
	magnetic resonance ver-			ed as an alternative to	formed better than SPECT in MVD ($p = 0.003$ vs all	
	sus SPECT to detect coro-			SPECT to assess myocar-	SPECT, $p = 0.04$ vs gated-SPECT), in men ($p = 0.004$, $n =$	
	nary artery disease: The			dial ischemia non-	313) and in women ($p = 0.03$, $n = 112$) as well as in the	
	secondary endpoints of			invasively. However its	non-infarct patients (p = 0.005, n = 186 in 1-3 vessel	
	the multicenter multiven-			performance vs gated-	disease and $p = 0.015$, $n = 140$ in MVD). CONCLUSION:	
	dor MR-IMPACT II (Mag-			SPECT and in sub-	In this large multicenter, multivendor study the diagnos-	
	netic Resonance Imaging			populations is not fully	tic performance of perfusion-CMR to detect CAD was	
	for Myocardial Perfusion			established.	superior to perfusion SPECT in the entire population and	
	Assessment in Coronary				in sub-groups. Perfusion-CMR can be recommended as	
	Artery Disease Trial). J				an alternative for SPECT imaging. TRIAL REGISTRATION:	
	Cardiovasc Magn Reson				ClinicalTrials.gov, Identifier: NCT00977093.	
	2012;14:61					
Q12	Groothuis, J. G., et al.	Follow-up	192	The combined use of car-	A total of 192 patients with low or intermediate pre-test	3
	Combined non-invasive	study of non-		diac computed tomogra-	probability of CAD underwent CTCA and CMR. All pa-	
	functional and anatomical	randomized		phy (CT) coronary angi-	tients with obstructive CAD on CTCA and/or myocardial	
	diagnostic work-up in	controlled		ography (CTCA) and myo-	ischaemia on CMR were referred for invasive coronary	
	clinical practice: the mag-	coho studies		cardial perfusion imaging	angiography (ICA). Fractional flow reserve was measured	
	netic resonance and com-	without con-		allows the non-invasive	in case of intermediate lesions (30-70% diameter steno-	
	puted tomography in sus-	sistently ap-		evaluation of coronary	sis) on ICA. Additional cardiac and extra-cardiac findings	
	pected coronary artery	plied refer-		morphology and function.	by CTCA and CMR were registered. The combination of	
	disease (MARCC) study.	ence stand-		Cardiovascular magnetic	CTCA and CMR significantly improved specificity and	

	Eur Heart J 2013;34(26):	ards		resonance (CMR) imaging	overall accuracy (94 and 91%) for the detection of signif-	
	1990-1998			has several advantages: it	icant CAD compared with their use as a single technique	
				can simultaneously assess	(CTCA 39 and 57%, P < 0.0001; CMR 82 and 83%, P =	
				myocardial perfusion, ven-	0.016). No events were recorded during follow-up (18	
				tricular and valvular func-	+/- 6 months) in 104 patients who did not undergo ICA.	
				tion, cardiomyopathy, and	Furthermore, the combined strategy provided an alterna-	
				aortic disease and does	tive diagnosis in 19 patients. CONCLUSION: The com-	
				not involve any additional	bined use of CTCA and CMR significantly improved	
				ionizing radiation. We	specificity and overall diagnostic accuracy for the detec-	
				investigated the combined	tion of significant CAD and allowed the detection of al-	
				use of cardiac CT and	ternative (extra-)cardiac disease in patients without sig-	
				CMR for the diagnostic	nificant CAD.	
				evaluation of patients with		
				suspected coronary artery		
				disease (CAD) in clinical		
				practice.		
Q13,	Langerak, S. E., et al. De-	Individual	38	The purpose of our study	MR angiography was performed in addition to coronary	2
15	tection of vein graft dis-	cross sec-		was to determine the ac-	angiography with quantitative coronary analysis in 56	
	ease using high-resolution	tional studies		curacy of high-resolution	vein grafts from 38 patients (mean age 66.6+/-9.3 years),	
	magnetic resonance angi-	with consist-		navigator-gated 3-	who presented with recurrent chest pain after bypass	
	ography. Circulation	ently applied		dimensional (3-D) MR	surgery. Eighteen grafts showed a luminal stenosis	
	2002;105(3):328-333	reference		angiography in detecting	>/=50%, 11 grafts a stenosis >/=70%, and 6 grafts were	
		standard		vein graft disease.	occluded. All MR angiograms were evaluated inde-	
					pendently by 2 blinded observers, who scored the pres-	
					ence of graft occlusion and graft stenosis >/=50% and	
					>/=70% with a confidence level of 1 to 10. MR image	
					,	

quality was judged as insufficient in 6 grafts and the	
	iese
were excluded. Receiver-operator characteristic ana	lysis
revealed an area under the curve of 0.89 and 0.89	for
identifying graft occlusion, 0.81 and 0.87 for stenos	sis
>/=50%, and 0.82 and 0.79 for stenosis >/=70% fo	or the
2 observers, respectively. Interobserver agreement i	in as-
sessing graft occlusion and stenosis >/=50% and	
>/=70% was 94% (kappa=0.74, r=0.81), 72% (kap-	
pa=0.40, r=0.66), and 82% (kappa=0.53, r=0.72), re-	spec-
tively. CONCLUSIONS: High-resolution navigator-ga	ited 3-
D MR angiography allows not only good differentia	ation
between patent and occluded vein grafts but also t	the
assessment of vein graft disease with a fair diagnos	stic
accuracy. This approach offers perspective as a non	iinva-
sive diagnostic tool for patients who present with r	ecur-
rent chest pain after vein graft surgery.	
Q13, Galjee, M. A., et al. Value non- 47 The objectives of this The 47 patients had 98 proximal aortotomies, of wh	hich 4
15 of magnetic resonance independent study were first to investi- 60 were single and 38 sequential grafts. Seventy-th	iree
imaging in assessing pa- reference gate whether MR cine GE grafts were patent; 25 were occluded. Eighty-four g	grafts
tency and function of cor- standard images, performed in ad- (86%) were eligible for comparison of the results of	f SE
onary artery bypass dition to standard SE im- and GE images. Assessment of patency was inconcl	usive
grafts. An angiographical- ages, have additional val- on SE images in 7 grafts (5 occluded by angiographical-	hy)
ly controlled study. Circu- ue for the assessment of and on GE images in 7 grafts (2 occluded). A comp	parison
lation 1996;93(4):660-666 graft patency and second of the results of contrast angiography and SE and G	GE MR
to assess the graft func- imaging techniques showed that both techniques h	nad a
tion by measuring the high sensitivity (both 98%) and somewhat lower sp	ecifici-

				flow pattern and flow rate	ty (85% and 88%, respectively) for graft patency. Com-	
				with MR phase velocity	bined analysis of the SE and GE images did not improve	
				imaging.	the accuracy. The strength of the interobserver agree-	
				imaging.		
					ment on GE images was good (kappa = 0.66), whereas	
					on SE images the agreement was moderate (kappa =	
					0.51). Adequate MR phase velocity profiles were obtained	
					in 62 (85%) of the 73 angiographically patent grafts.	
					Graft flow was characterized by a balanced biphasic for-	
					ward flow pattern. The volume flow of sequential grafts	
					to 3 regions (136 +/- 106 mL/min) was significantly	
					higher than in single grafts (63 +/- 41 mL/min, P < .01).	
					CONCLUSIONS: Considering the good interobserver	
					agreement and the 85% success rate of quantitative flow	
					measurements, cine GE phase velocity mapping is a	
					promising clinical tool in the noninvasive assessment of	
					graft patency and function.	
Q14,	Sardanelli, F., et al. MR	Individual	38	The aim of this study was	All the stents were recognized as signal void with GE,	2
16	evaluation of coronary	cross sec-		to evaluate coronary ar-	and all but one with NE. Of the 2 patients with positive	
	stents with navigator echo	tional studies		tery stents with MR.	EET, the first one, with a stent on the left anterior de-	
	and breath-hold cine gra-	with consist-			scending coronary artery, presented low signal distal to	
	dient-echo techniques. Eur	ently applied			the stent at both MR sequences, suggesting dysfunction	
	Radiol 2002;12(1):193-200	reference			[60% stenosis at conventional coronary angiography	
		standard			(CCA)]; the second one, with two sequential stents on the	
					right coronary artery, presented lack of signal distal to	
					the stents at both MR sequences, suggesting occlusion	
					(97% stenosis at CCA). For the 44 remaining stents in 36	

					patients with negative EET, MR high signal before and	
					distal to the stent suggested patency at both sequences.	
					MR seems to be a safe and promising technique for	
					non-invasive evaluation of coronary stents.	
Q14,	Duerinckx, A. J., et al. As-	Case series	16	The ability to noninvasive-	Coronary MR angiography was performed with a com-	4
16	sessment of coronary ar-			ly assess the patency of	mercial 1.5-T MR imager using an electrocardiographical-	
	tery patency after stent			coronary stents would	ly gated pulse sequence with breath-holding. Images	
	placement using magnetic			represent a significant	were obtained in mid-diastole with and without fat sup-	
	resonance angiography. J			advance. We evaluated	pression. Image artifacts caused by the metal in the	
	Magn Reson Imaging			the safety and ability of	stents were clearly visualized in all 26 stents (100% sensi-	
	1998;8(4):896-902			two-dimensional coronary	tivity for stent detection). Arterial flow signal was seen in	
				MR angiography in imag-	the coronary artery or graft distal to the stent in 25 of	
				ing stents and suggesting	26 cases (96%). All patients, except for the one in which	
				patency.	distal flow could not be seen, remained symptom free for	
					>2 years. The distribution of stent locations was as fol-	
					lows: 10 in the right coronary artery (RCA), 10 in the left	
					anterior descending coronary artery (LAD), 2 in the left	
					circumflex coronary artery, and 4 in saphenous vein	
					grafts (SVGs) to RCA. One patient had 2 RCA and 2 LAD	
					stents, one had 3 RCA and 1 LAD stents, one had 3 SVG	
					stents, and two had double RCA stents. Coronary MR	
					angiography is safe for noninvasive imaging of coronary	
					stents, and in the proper clinical setting, it can be used	
					to help suggest patency.	
O17,	Fathala, A. and W. Hassan.	Review				5
-						
Q17, 18	Fathala, A. and W. Hassan. Role of multimodality car-	Review			The preoperative cardiac assessment of patients under- going noncardiac surgery is common in the daily prac-	5

diac imaging in preopera-	tice of medical consultants, anesthesiologists, and sur-
tive cardiovascular evalua-	geons. The number of patients undergoing noncardiac
tion before noncardiac	surgery worldwide is increasing. Currently, there are sev-
surgery. Ann Card Anaesth	eral noninvasive diagnostic tests available for preopera-
2011;14(2):134-145	tive evaluation. Both nuclear cardiology with myocardial
	perfusion single photon emission computed tomography
	(SPECT) and stress echocardiography are well-established
	techniques for preoperative cardiac evaluation. Recently,
	some studies demonstrated that both coronary angi-
	ography by gated multidetector computed tomography
	and stress cardiac magnetic resonance might potentially
	play a role in preoperative evaluation as well, but more
	studies are needed to assess the role of these new mo-
	dalities in preoperative risk stratification. A common
	question that arises in preoperative evaluation is if fur-
	ther preoperative testing is needed, which preoperative
	test should be used. The preferred stress test is the exer-
	cise electrocardiogram (ECG). Stress imaging with exer-
	cise or pharmacologic stress agents is to be considered
	in patients with abnormal rest ECG or patients who are
	unable to exercise. After reviewing this article, the reader
	should develop an understanding of the following: (1)
	the magnitude of the cardiac preoperative morbidity and
	mortality, (2) how to select a patient for further preoper-
	ative testing, (3) currently available noninvasive cardiac
	testing for the detection of coronary artery disease and

					assessment of left ventricular function, and (4) an ap- proach to select the most appropriate noninvasive cardi- ac test, if needed.	
Q20- 23	Mavrogeni S, et al. Mag- netic resonance angi- ography is equivalent to x-ray coronary angi- ography for the evalua- tion of coronary arteries in kawasaki disease. Jour- nal of the American Col- lege of Cardiology 2004;43:649-652	Individual cross sec- tional studies with consist- ently applied reference standard	Thirteen patients	The purpose of this study was to compare the re- sults of magnetic reso- nance angiography(MRA) with X-ray coronary angi- ography (XCA) in a pedi- atric population	In six patients, aneurysms of the coronary arteries were identified, while coronary ectasia alone was present in the remaining seven patients. Magnetic resonance angi- ography and XCA diagnosis of coronary artery aneurysm agreed completely. Maximal aneurysm diameter and length and ectasia diameter by MRA and XCA were simi- lar. No stenotic lesion was identified by either technique.	2
Q20- 23	Greil GF, et al. Coronary magnetic resonance angi- ography in adolescents and young adults with kawasaki disease. Circula- tion 2002;105:908-911	Individual cross sec- tional studies with consist- ently applied reference standard, small number	Six subjects	To evaluate the clinical usefulness of coronary MRA in Kawasaki disease, this study prospectively compared coronary MRA and x-ray coronary angi- ography findings inpa- tients with CAAs.	There was complete agreement between MRA and x-ray angiography in the detection of CAA (n=11), coronary artery stenoses (n=2), and coronary occlusions (n=2). Excellent agreement was found between the 2 tech- niques for detection of CAA maximal diameter (mean difference= 0.4 ± 0.6 mm) and length (mean differ- ence= 1.4 ± 1.6 mm). The 2 methods showed very similar results for proximal coronary artery diameter (mean Dif- ference= 0.2 ± 0.5 mm) and CAA distance from the ostia (mean difference= 0.1 ± 1.5 mm).	3
Q20- 23	Mavrogeni S, et al. How to image kawasaki dis- ease: A validation of dif-	Review		Kawasaki disease contrib- utes to coronary artery aneurysm in 25% of pa-	Echocardiography is the bedside technique of choice during the acute phase of the disease. MRI can be a val- uable tool especially in adolescents, where sometimes	4

	former time all a tools !			tionte Condiana de l	and a secolar manda of the tendent second	
	ferent imaging techniques.			tients. Cardiovascular im-	echocardiography fails to detect coronary abnormalities	
	International journal of			aging has an important	and it has also the advantage of simultaneous perfusion,	
	cardiology 2008;124:27-			role in diagnosis and fol-	function and viability evaluation. If MRI is not available, a	
	31.			low-up of these cases.	combination of echocardiography and SPECT gives an	
					overview of anatomy, function and perfusion. MSCT is of	
					limited value for follow-up because of radiation and the	
					misleading data due to coronary calcifications. X-ray cor-	
					onary angiography is kept mainly for cases where an	
					invasive procedure should be performed.	
Q24-	Ferket BS, et al. Systemat-	Systematic	Guidelines in	The purpose of this study	Of 2,415 titles identified, 14 guidelines met our inclusion	1
26	ic review of guidelines on	review	English pub-	was to critically appraise	criteria. Eleven of 14 guidelines reported relationship with	
	imaging of asymptomatic		lished be-	guidelines on imaging of	industry. The AGREE scores varied across guidelines from	
	coronary artery disease.		tween Janu-	asymptomatic coronary	21% to 93%. Two guidelines considered cost effective-	
	Journal of the American		ary 1, 2003,	artery disease (CAD).	ness. Eight guidelines recommended against or found	
	College of Cardiology		and Febru-		insufficient evidence for testing of asymptomatic CAD.	
	2011;57:1591-1600		ary 26, 2010		The other 6 guidelines recommended imaging patients at	
					intermediate or high CAD risk based on the Framingham	
					risk score, and 5 considered computed tomography cal-	
					cium scoring useful for this purpose.	

0.07				TI : (.1		4
Q27,	Romero J, et al. CMR im-	Meta-analysis	17 studies,	The aim of the study was	DE-CMR had a weighted sensitivity of 87% and specificity	1
29	aging for the evaluation		634 patients	to evaluate and compare	of 68% to detect myocardial stunning using 50% trans-	
	of myocardial stunning			the sensitivity, specificity,	murality as a cut-off, with a PPV and NPV of 83 and 72%,	
	after acute myocardial in-			negative predictive value	respectively. With an overall diagnostic accuracy of 82%,	
	farction: A meta-analysis			(NPV), and positive pre-	LDD-CMR had a sensitivity of 67% and a specificity of	
	of prospective trials. Euro-			dictive value (PPV) of car-	81%, with a PPV and NPV of 82 and 63%, respectively.	
	pean heart journal cardio-			diac magnetic resonance	LDD showed an overall accuracy of 74%.	
	vascular Imaging			imaging (CMR) assessing		
	2013;14(11):1080-1091			myocardial stunning after		
				acute myocardial infarc-		
				tion using low-dose do-		
				butamine (LDD), end-		
				diastolic wall thickness,		
				and contrast delayed en-		
				hancement (DE).		
Q27	Chan RH, et al. Prognostic	Meta-analysis	115 full-text	We sought to quantify the	A total of 4,438 patients were included in the analysis.	1
	utility of late gadolinium		articles x	risk of major adverse car-	The overall hazard ratio (HR) for MACE was 2.65 (95%	
	enhancement cardiac		subjects	diovascular events (MACE)	confidence intervals, CI, 1.98-3.56) for the presence of	
	magnetic resonance imag-			among patients with LGE	any LGE, with large amounts of heterogeneity between	
	ing in coronary artery dis-			and CAD.	studies (I2, 83.5%). Furthermore, there was a continuous	
	ease: A meta-analysis.				relationship between risk and the amount of LGE detect-	
	Journal of Cardiovascular				ed. For every 10% of the left ventricular mass with LGE,	
	Magnetic Resonance				the risk of MACE increased by 56% (HR 1.56/10% LGE,	
	2013;15:169-170				95% CI 1.39-1.75; I2, 63.6%). Pre-specified meta-	
	,				regression analyses revealed that the HR for MACE de-	
					creased with declining ejection fraction (p=0.02) when	

					LGE was continuous, and was inversely related to age	
					(p<0.001) when LGE was binary.	
Q28	Selvanayagam JB, et al.	Individual	Fifty patients	To investigate the quanti-	After the procedure, 14 patients (28%) had evidence of	2
	Troponin elevation after	cross sec-		tative relationship be-	new myocardial hyperenhancement, with a mean mass of	
	percutaneous coronary	tional studies		tween irreversible injury	6.0±5.8 g, or 5.0±4.8% of total left ventricular mass. All	
	intervention directly rep-	with consist-		and cardiac troponin re-	of these patients had raised troponin I levels (range 1.0	
	resents the extent of irre-	ently applied		lease, we studied the inci-	to 9.4 µg/L). Thirty-four patients (68%) had no elevated	
	versible myocardial injury:	reference		dence and extent of new	troponin I and no evidence of new myocardial necrosis	
	Insights from cardiovascu-	standard		irreversible injury in pa-	on MRI. There was a strong correlation between the rise	
	lar magnetic resonance			tients undergoing PCI and	in troponin I measurements at 24 hours and mean mass	
	imaging. Circulation			correlated it to postpro-	of new myocardial hyperenhancement, both early	
	2005;111:1027-1032			cedural changes in cardiac	(r=0.84; P < 0.001) and late (r=0.71; P < 0.001) after PCI,	
				troponin I.	although there was a trend for a reduction in the size of	
					PCI-induced myocardial injury in the late follow-up scan	
					(P=0.07).	
Q28	Ricciardi MJ, et al. Visuali-	Individual	Fourteen	Mild elevations in creatine	Contrast-enhanced MRI demonstrated discrete regions of	2
	zation of discrete microin-	cross sec-	patients	kinase-MB (CK-MB) are	hyperenhancement within the target vessel perfusion	
	farction after percutane-	tional studies		common after successful	territory in all 9 patients. Only one developed a new wall	
	ous coronary intervention	with consist-		percutaneous coronary	motion abnormality. The median estimated mass of my-	
	associated with mild crea-	ently applied		interventions and are as-	onecrosis was 2.0 g (range, 0.7 to 12.2 g), or 1.5% of left	
	tine kinase-mb elevation.	reference		sociated with future ad-	ventricular mass (range, 0.4% to 6.0%). Hyperenhance-	
	Circulation 2001;103:2780-	standard		verse cardiac events. The	ment persisted in 5 of the 6 who underwent a repeat	
	2783			mechanism for CK-MB	MRI at 3 to 12 months. No control patient had hyperen-	
				release remains unclear. A	hancement.	
				new contrast-enhanced		
				MRI technique allows di-		

				rect visualization of my-		
				onecrosis.		
Q28	Eitel I, et al. Long-term	Follow-up	208 consec-	The aim of this study was	The median MSI was 48 (IQR 27 to 73). Long term fol-	3
	prognostic value of myo-	study of non-	utive pa-	to investigate whether the	low-up was available in 202 patients (97%) at a median	
	cardial salvage assessed	randomized	tients with	early prognostic signifi-	of 18.5 months (IQR 13.8 to 20.8). Major adverse cardio-	
	by cardiovascular magnet-	controlled	STEMI un-	cance of myocardial sal-	vascular events occurred in 33 patients (16%), with a sig-	
	ic resonance in acute	cohort	dergoing	vage assessed by CMR is	nificantly lower event rate in the MSI≥ median group (7	
	reperfused myocardial in-		primary an-	sustained at long-term	vs 26 events, p<0.001). Mortality was significantly re-	
	farction. Heart 2011:		gioplasty	clinical follow-up in pa-	duced in the MSI \geq median group (2 vs 12 deaths,	
	97:2038-2045		<12 h after	tients with ST-elevation	p¼0.001). MSI was a significant independent predictor	
			symptom	myocardial infarction	for a favourable long-term survival on multivariable Cox	
			onset	(STEMI) undergoing pri-	regression analysis after adjustment for established	
				mary angioplasty.	prognostic markers.	
Q29	Romero J, et al. CMR im-	Meta-analysis	A total of 24	The purpose of this study	Eleven studies used DE, 9 studies used LDD, and 4 stud-	1
	aging assessing viability in		studies of	was to compare the diag-	ies used EDWT. Our meta-analysis indicates that among	
	patients with chronic ven-		CMR evalu-	nostic accuracy of cardiac	CMR methods, DE CMR provides the highest sensitivity	
	tricular dysfunction due to		ating myo-	magnetic resonance	as well as the highest NPV (95% and 90%, respectively)	
	coronary artery disease: A		cardial via-	(CMR) assessing myocar-	for predicting improved segmental LV contractile func-	
	meta-analysis of prospec-		bility with	dial viability in patients	tion after revascularization, followed by EDWT CMR,	
	tive trials. JACC. Cardio-		698 patients	with chronic left ventricu-	whereas LDD CMR demonstrated the lowest sensitivi-	
	vascular imaging		fulfilled the	lar (LV) dysfunction due to	ty/NPV among all modalities. On the other hand, LDD	
	2012;5:494-508		inclusion	coronary artery disease	CMR offered the highest specificity and PPV (91% and	
			criteria.	using 3 techniques: 1)	93%, respectively), followed by DE CMR, whereas EDWT	
				end-diastolic wall thick-	showed the lowest of these parameters.	
				ness (EDWT); 2) low-dose		
				dobutamine (LDD); and 3)		

				contrast delayed en-		
				\$		
				hancement (DE).		-
Q30	Roes SD, et al. Agreement	Individual	60 patients	The purpose of this study	Minimal scar tissue was observed on contrastenhanced	2
	and disagreement be-	cross sec-		was to compare con-	MRI (scar score 0.4±0.8) in segments with normal perfu-	
	tween contrast-enhanced	tional studies		trastenhanced MRI and	sion/18F-FDG uptake, whereas extensive scar tissue (scar	
	magnetic resonance imag-	with consist-		nuclear imaging with	score 3.1±1.0) was noted in segments with severe perfu-	
	ing and nuclear imaging	ently applied		99mTc-tetrofosmin and	sion/18F-FDG match (p<0.001). High agreement (91%)	
	for assessment of myo-	reference		18F-fluorodeoxyglucose	for viability assessment between contrastenhanced MRI	
	cardial viability. European	standard		(18F-FDG) single photon	and nuclear imaging was observed in segments without	
	journal of nuclear medi-			emission computed to-	scar tissue on contrast-enhanced MRI as well as in seg-	
	cine and molecular imag-			mography (SPECT) for	ments with transmural scar tissue (83%). Of interest, dis-	
	ing 2009;36:594-601			assessment of myocardial	agreement was observed in segments with subendocar-	
				viability.	dial scar tissue on contrast-enhanced MRI.	
Q30	Crean A, et al. Assessment	Individual	35 patients	Patients with heart failure	More segments were identified as nonviable scar using	2
	of myocardial scar; com-	cross sec-	-	and ischaemic heart dis-	MIBI than with FDG or CMR. FDG identified the least	
	parison between 18f-	tional studies		ease may obtain benefit	number of scar segments per patient (7.4 +/- 4.8 with	
	FDGpet, cmr and 99tc-	with consist-		from revascularisation if	MIBI vs. 4.9 +/- 4.2 with FDG vs. 5.8 +/- 5.0 with CMR, p	
	sestamibi. Clinical Medi-	ently applied		viable dysfunctional myo-	= 0.0001 by ANOVA). The strongest agreement between	
	cine: Cardiology 2009:69-	reference		cardium is present. Such	modalities was in the anterior wall with the weakest	
	76	standard		patients have an increased	agreement in the inferior wall. Overall, the agreement	
				operative risk, so it is im-	between modalities was moderate to good.	
				portant to ensure that		
				viability is correctly identi-		
				fied.		
				In this study, we have		
				compared the utility of 3		

				imaging modalities to		
				detect myocardial scar.		
Q31-	Klem I, Shah DJ, White RD,	Inception	10 centers in	To perform an interna-	The primary end point was all-cause mortality. A total of	2
33	et al. Prognostic value of	cohort	6 countries,	tional, multicenter study	1560 patients (age, 59±14 years; 70% men) were en-	
	routine cardiac magnetic		consecutive	to assess the prognostic	rolled. Mean LVEF was 45±18%, and 1049 (67%) patients	
	resonance assessment of		patients,	importance of routine	had hyperenhanced tissue (HE) on DE-CMR indicative of	
	left ventricular ejection		1560 pa-	CMR in patients with	damage. During a median follow-up time of 2.4 years	
	fraction and myocardial		tients	known or suspected heart	(interquartile range, 1.2, 2.9 years), 176 (11.3%) patients	
	damage: aninternational,			disease.	died. Patients who died were more likely to be older	
	multicenter study. Circ				(P<0.0001), have coronary disease (P=0.004), have lower	
	Cardiovasc Imaging				LVEF (<i>P</i> <0.0001), and have more segments with HE	
	2011;4:610-619				(P<0.0001). In multivariable analysis, age, LVEF, and num-	
					ber of segments with HE were independent predictors of	
					mortality. Among patients with near-normal LVEF (\geq 50%),	
					those with above-median HE (>4 segments) had reduced	
					survival compared to patients with below- or at-median	
					HE (<i>P</i> =0.02).	
Q31-	Jenkins C et al. Left ven-	Individual	50 patients	To examine the accuracy	The mean LV end-diastolic volume (LVEDV) of the group	2
33	tricular volume measure-	cross sec-	(46 men,	of non-contrast (NC) and	by MRI was 207 \pm 79 mL and was underestimated by	
	ment with echocardiog-	tional studies	age 63 ± 10	CE-2DE and 3DE for cal-	2DE (125 ± 54 mL, P = 0.005), and less by CE-2DE (172 ±	
	raphy: A comparison of LV	with consist-	year) with	culation of LV volumes	58 mL, <i>P</i> = 0.02) or 3DE (177 ± 64 mL, <i>P</i> = 0.08), but	
	opacification, 3D-	ently applied	past myo-	and ejection fraction (EF),	EDV was comparable by CE-3DE (196 \pm 69 mL, P = 0.16).	
	echocardiography, or both	reference	cardial in-	relative to cardiac mag-	Limits of agreement with MRI were similar for NC-3DE	
	with magnetic resonance	standard	farction	netic resonance imaging	and CE-2DE, with the best results for CE-3D. Results were	
	imaging. European heart			(MRI).	similar for calculation of LVESV. Patients were categorized	
	journal 2009;30:98-106				into groups of EF (≤35, 35–50, >50%) by MRI. NC-2DE	

					demonstrated a 68% agreement (kappa 0.45, $P = 0.001$),	
					CE-2DE a 62% agreement (kappa 0.20, $P = 136$), NC-3DE	
					a 74% agreement (kappa 0.39, $P = 0.005$) and CE-3DE an	
					80% agreement (kappa 0.56, <i>P</i> < 0.001).	
Q31-	Bellenger NG, Burgess MI,	Individual	Fifty two	To prospectively compare	The mean left ventricular ejection fraction by M-mode	2
33	Ray SG, Lahiri A, Coats AJ,	cross sec-	patients with	the agreement of left ven-	cube method was 39+/-16% and 29+/-15% by Teichholz	
	Cleland JG, et al. Compar-	tional studies	chronic sta-	tricular volumes and ejec-	M-mode method. The mean left ventricular ejection frac-	
	ison of left ventricular	with consist-	ble heart	tion fraction by M-mode	tion by 2D echo Simpson's biplane was 31+/-10%, by	
	ejection fraction and vol-	ently applied	failure	echocardiography (echo),	radionuclude ventriculography was 24+/-9% and by car-	
	umes in heart failure by	reference		2D echo, radionuclide	diovascular magnetic resonance was 30+/-11. All the	
	echocardiography, radio-	standard		ventriculography and car-	mean left ventricular ejection fractions by each technique	
	nuclide ventriculography			diovascular magnetic res-	were significantly different from all other techniques	
	and cardiovascular mag-			onance performed in pa-	(P<0.001), except for cardiovascular magnetic resonance	
	netic resonance; are they			tients with chronic stable	ejection fraction and 2D echo ejection fraction by Simp-	
	interchangeable? Europe-			heart failure.	son's rule (P=0.23). The Bland-Altman limits of agreement	
	an heart journal				encompassing four standard deviations was widest for	
	2000;21:1387-1396				both cardiovascular magnetic resonance vs cube M-	
					mode echo and cardiovascular magnetic resonance vs	
					Teichholz M-mode echo at 66% each, and was 58% for	
					radionuclude ventriculography vs cube M-mode echo,	
					44% for cardiovascular magnetic resonance vs Simpson's	
					2D echo, 39% for radionuclide ventriculography vs Simp-	
					son's 2D echo, and smallest at 31% for cardiovascular	
					magnetic resonance-radionuclide ventriculography. Simi-	
					larly, the end-diastolic volume and end-systolic volume	
					by 2D echo and cardiovascular magnetic resonance re-	

					vealed wide limits of agreement (52 ml to 216 ml and 11	
					ml to 188 ml, respectively).	
Q31-	Grothues F. et al. Compar-	Individual	60 sub-	To compare the inter-	The interstudy reproducibility coefficient of variability was	2
33	ison of interstudy repro-	cross sec-	jects(normal	study reproducibility of	superior for CMR in all groups for all parameters. Statisti-	
	ducibility of cardiovascular	tional studies	volunteers	CMR with 2D echocardi-	cal significance was reached for end-systolic volume	
	magnetic resonance with	with consist-	[n = 20], or	ography in normal sub-	(4.4% to 9.2% vs 13.7% to 20.3%, p <0.001), ejection	
	two-dimensional echocar-	ently applied	patients with	jects and in patients with-	fraction (2.4% to 7.3% vs 8.6% to 19.4%, p <0.001), and	
	diography in normal sub-	reference	heart	heart failure or LV hyper-	mass (2.8% to 4.8% vs 11.6% to 15.7% p <0.001), with a	
	jects and in patients with	standard	failure [n =	trophy.	trend for end-diastolic volume (2.9% to 4.9% vs 5.5% to	
	heart failure or left ven-		20] or LV		10.5%, $p = 0.17$). The superior interstudy reproducibility	
	tricular hypertrophy. The		hypertrophy		resulted in considerably lower calculated sample sizes	
	American journal of cardi-		[n = 20])		(reductions of 55% to 93%) required by CMR compared	
	ology 2002;90:29-34				with echocardiography to show clinically relevant chang-	
					es in LV dimensions and function.	
Q34	Hamilton-Craig, C., et al.	Individual	28 prospec-	To demonstrate the hy-	The per-patient sensitivity and specificity of CCTA was	2
	CT angiography with car-	cross sec-	tively en-	pothesis that a combined	100% and 90%, respectively, negative predictive value	
	diac MRI: non-invasive	tional studies	rolled pa-	non-invasive strategy of	(NPV) 100%, positive predictive value (PPV) 78%. Mean	
	functionaland anatomical	with consist-	tients	CCTA with CMR accurately	ejection fraction by CMR was 24%. Presence of ischemic-	
	assessment for the etiolo-	ently applied		delineates the distribution	type LGE on CMR conferred a 67% sensitivity, 100%	
	gy in newly diagnosed	reference		and severity of coronary	specificity, 90% NPV and 100% PPV. Combining CCTA	
	heart failure. Int J Cardio-	standard		artery disease, as well as	with CMR conferred 100% specificity, 100% sensitivity,	
	vasc Imaging			quantifying the degree of	100% PPV and 100% NPV for detection or exclusion of	
	2012;28(5):1111-1122			left ventricular dysfunction	coronary disease.	
				and viability, in patients		
				with newly diagnosed HF.		

· · · · · · · · · · · · · · · · · · ·			I			1
Q34,	Valle-Munoz A et al. Late	Individual	100 consec-	To evaluate the ability of	Hundred consecutive patients admitted with acute new-	2
35	gadolinium enhancement-	cross sec-	utive pa-	late gadolinium enhance-	onset decompensated HF and EF<40%, with no clinical	
	cardiovascular magnetic	tional studies	tients	ment (LGE) using cardio-	or electrocardiographic data suggestive of CAD. The pa-	
	resonance identifies coro-	with consist-		vascular magnetic reso-	tients were classified according to the presence or ab-	
	nary artery disease as the	ently applied		nance (CMR) to identify	sence of significant CAD (stenosis \geq 70% in at least one	
	aetiology of left ventricu-	reference		acute new-onset heart	major vessel). Twenty-one patients (21%) had significant	
	lar dysfunction in acute	standard		failure (HF) with left ven-	CAD. Seventy-nine (79%) had no lesions. Eighteen of the	
	new-onset congestive			tricular systolic dysfunc-	21 patients (85%) with CAD had subendocardi-	
	heart failure. Eur J Echo-			tion (LVSD), whether or	al/transmural LGE. In the diagnosis of CAD, LGE has a	
	cardiogr 2009;10(8):968-			not in relation to underly-	sensitivity of 85.7% (95% CI, 80–91) and specificity of	
	974			ing coronary artery dis-	92.4% (95% CI, 87–96), respectively, with a negative pre-	
				ease (CAD), in patients	dictive value of 96% (95% CI, 90–99). It has an area un-	
				with no clinical evidence	der the receiver operating characteristic curve of 0.906	
				of associated ischaemic	(95% CI, 0.814–0.998).	
				cardiomyopathy.		
Q36	Joshi SB, Connelly KA,	Individual	Fifty-two	To investigate the poten-	Fifty-two patients (age 62±15 years, 81% male) had a	2
	Jimenez-Juan L, Hansen	cross sec-	patients	tial impact of performing	mean EF of 38 \pm 14% by echocardiography and 35 \pm	
	M, Kirpalani A, Dorian P,	tional studies		cardiovascular magnetic	14% by CMR. CMR had greater reproducibility than	
	et al. Potential clinical im-	with consist-		resonance (CMR) for EF	echocardiography for both intra-observer (ICC, 0.98 vs	
	pact of cardiovascular	ently applied		on ICD eligibility.	0.94) and inter-observer comparisons (ICC 0.99 vs 0.93).	
	magnetic resonance as-	reference			The limits of agreement comparing CMR and echocardi-	
	sessment of ejection frac-	standard			ographic EF were – 16 to +10 percentage points. CMR	
	tion on eligibility for car-				resulted in 11 of 52 (21%) and 5 of 52 (10%) of patients	
	dioverter defibrillator im-				being reclassified regarding ICD eligibility at the EF	
	plantation. Journal of car-				thresholds of 35 and 30% respectively. Among patients	
	diovascular magnetic res-				with an echocardiographic EF of between 25 and 40%, 9	

	onance : official journal of the Society for Cardiovas- cular Magnetic Resonance 2012;14:69				of 22 (41%) were reclassified by CMR at either the 35 or 30% threshold. Echocardiography identified only 1 of the 6 patients with left ventricular thrombus noted incidentally on CMR.	
Q36	Gao P, Yee R, Gula L, Krahn AD, Skanes A, Leong-Sit P, et al. Predic- tion of arrhythmic events in ischemic and dilated cardiomyopathy patients referred for implantable cardiac defibrillator: Eval- uation of multiple scar quantification measures for late gadolinium en- hancement magnetic res- onance imaging. Circula- tion. Cardiovascular imag- ing 2012;5:448-456	Inception cohort	One hun- dred twenty- four consec- utive pa- tients	To evaluate the predictive use of multiple scar quan- tification measures in ICM and DCM patients being referred for ICD.	Patients were followed prospectively for the primary combined outcome of appropriate ICD therapy, survived cardiac arrest, or sudden cardiac death. At a mean fol- low-up of 632 ± 262 days, 18 patients (15%) had suf- fered the primary outcome. Total scar was significantly higher among those suffering a primary outcome, a rela- tionship maintained within each cardiomyopathy cohort (P<0.01 for all comparisons). Total scar was the strongest independent predictor of the primary outcome and demonstrated a negative predictive value of 86%. In the ICM subcohort, peri-infarct signal showed only a nonsig- nificant trend toward elevation among those having a primary end point.	2
Q36	Klem I, Weinsaft JW, Bahnson TD, Hegland D, Kim HW, Hayes B, et al. Assessment of myocardial scarring improves risk stratification in patients evaluated for cardiac de-	Inception cohort	One hun- dred thirty- seven pa- tients	To test whether an as- sessment of myocardial scarring by cardiac mag- netic resonance imaging (MRI) would improve risk stratification in patients evaluated for implantable	During a median follow-up of 24 months the primary endpoint occurred in 39 patients.Whereas the rate of adverse events steadily increased with decreasing LVEF, a sharp step-up was observed for scar size >5% of LV mass (HR=5.2 [95% CI, 2.0-13.3]). On multivariable Cox proportional hazards analysis, including LVEF and elec- trophysiological-study results, scar size (as a continuous	2

	fibrillator implantation.			cardioverter-defibrillator	variable or dichotomized at 5%) was an independent	
	Journal of the American			(ICD) implantation.	predictor of adverse outcome. Among patients with LVEF	
	College of Cardiology				>30%, those with significant scarring (>5%) had higher	
	2012;60:408-420				risk than those with minimal-or-no (≤5%) scarring	
					(HR=6.3 [1.4-28.0]). Those with LVEF >30% and signifi-	
					cant scarring had similar risk to patients with LVEF \leq 30%	
					(p=0.56). Among patients with LVEF \leq 30%, those with	
					significant scarring again had higher risk than those with	
					minimal-or-no scarring (HR=3.9 [1.2-13.1]). Those with	
					LVEF \leq 30% and minimal scarring had similar risk to pa-	
					tients with LVEF > 30% (p=0.71).	
Q37	Leyva F, Foley PW, Chalil	Inception	559 patients	To determine whether the	Over a maximum follow-up of 9.1 yrs, +CMR+S had the	2
	S, Ratib K, Smith RE, Prin-	cohort		use of late gadolinium	highest risk of cardiovascular death (HR: 6.34), cardiovas-	
	zen F, et al. Cardiac resyn-			cardiovascular magnetic	cular death or hospitalizations for heart failure (HR: 5.57)	
	chronization therapy			resonance (LGE-CMR) to	and death from any cause or hospitalizations for major	
	guided by late gadolini-			guide left ventricular (LV)	adverse cardiovascular events (HR: 4.74) (all P < 0.0001),	
	um-enhancement cardio-			lead deployment influ-	compared with +CMR-S. An intermediate risk of meeting	
	vascular magnetic reso-			ences the long-term out-	these endpoints was observed for -CMR, with HRs of	
	nance. Journal of cardio-			come of cardiac resyn-	1.51 (P = 0.0726), 1.61 (P = 0.0169) and 1.87 (p =	
	vascular magnetic reso-			chronization therapy	0.0005), respectively. The +CMR+S group had the highest	
	nance : official journal of			(CRT).	risk of death from pump failure (HR: 5.40, p < 0.0001)	
	the Society for Cardiovas-				and sudden cardiac death (HR: 4.40, p = 0.0218), in rela-	
	cular Magnetic Resonance				tion to the +CMR-S group.	
	2011;13:29					
Q37	Delgado V, van Bommel	Inception	397 patients	To evaluate whether the	Mean baseline LV radial dyssynchrony was 133_98 milli-	2
	RJ, Bertini M, Borleffs CJ,	cohort		relative merits of left ven-	seconds. In 271 patients (68%), the LV lead was placed at	

						· · · · · ·
	Marsan NA, Arnold CT, et			tricular (LV) dyssynchrony,	the latest activated segment (concordant LV lead posi-	
	al. Relative merits of left			LV lead position, and my-	tion), and the mean value of peak radial strain at the	
	ventricular dyssynchrony,			ocardial scar can predict	targeted segment was 18.9±12.6%. Larger LV radial dys-	
	left ventricular lead posi-			long-term outcome after	synchrony at baseline was an independent predictor of	
	tion, and myocardial scar			cardiac resynchronization	superior long-term survival (hazard ratio, 0.995; P=0.001),	
	to predict long-term sur-			therapy.	whereas a discordant LV lead position (hazard ratio,	
	vival of ischemic heart				2.086; <i>P</i> =0.001) and myocardial scar in the segment tar-	
	failure patients undergo-				geted by the LV lead (hazard ratio, 2.913; P< 0.001) were	
	ing cardiac resynchroniza-				independent predictors of worse outcome. Addition of	
	tion therapy. Circulation				these 3 parameters yielded incremental prognostic value	
	2011;123:70-78				over the combination of clinical parameters.	
Q38	Dickfeld T, Tian J, Ahmad	Case series	22 patients	To demonstrate that an	ICD imaging artifacts were most prominent in the anteri-	4
	G, Jimenez A, Turgeman			integrated 3D scar recon-	or wall and allowed full and partial assessment of LGE in	
	A, Kuk R, et al. Mri-guided			struction from late gado-	9±4 and 12±3 of 17 segments, respectively. In 14 pa-	
	ventricular tachycardia ab-			linium enhancement (LGE)	tients with LGE, a 3D scar model was reconstructed and	
	lation: Integration of late			MRI could facilitate VT	successfully registered with the clinical mapping system	
	gadolinium-enhanced 3d			ablations.	(accuracy, 3.9±1.8 mm). Using receiver operating charac-	
	scar in patients with im-				teristic curves, bipolar and unipolar voltages of 1.49 and	
	plantable cardioverter-				4.46 mV correlated best with endocardial MRI scar. Scar	
	defibrillators. Circulation.				visualization allowed the elimination of falsely low volt-	
	Arrhythmia and electro-				age recordings (suboptimal catheter contact) in 4.1±1.9%	
	physiology 2011;4:172-				of <1.5-mV mapping points. Display of scar border zone	
	184				allowed identification of excellent pace mapping sites,	
					with only limited voltage mapping in 64% of patients.	
					Viable endocardium of >2 mm resulted in >1.5-mV volt-	
					age recordings despite up to 63% transmural midmyo-	

-						1
					cardial scar successfully ablated with MRI guidance. All	
					successful ablation sites demonstrated LGE (transmurality,	
					68±26%) and were located within 10 mm of transition	
					zones to 0% to 25% scar in 71%.	
Q38	Junttila MJ, Fishman JE,	Case series	10patients	To evaluated the safety of	In all patients MR scanning occurred without complica-	4
	Lopera GA, Pattany PM,			serial cardiac MR scans in	tions. There were no differences between pre and post-	
	Velazquez DL, Williams			patients with implantable	MR pacing capture threshold, pacing lead or high volt-	
	AR, et al. Safety of serial			cardioverter defibrillators	age lead impedance, or battery voltage values. During	
	MRI in patients with im-			(ICDs).	follow-up there were no occurrences of ICD dysfunction.	
	plantable cardioverter de-				Although most patients had image artifacts, the studies	
	fibrillators. Heart				were generally diagnostic regarding left ventricular func-	
	2011;97:1852-1856				tion and wall motion. Delayed enhancement imaging was	
					of good quality for inferior wall and inferolateral infarcts,	
					but ICD artifacts often affected the imaging of anterior	
					wall infarcts.	
Q39	Beerbaum P, Korperich H,	Studies with-	22	Parallel imaging by sensi-	In 22 pediatric patients (mean age, 7.2+/-6.2 years) with	3
	Gieseke J, Barth P, Peuster	out consist-		tivity encoding (SENSE)	cardiac left-to-right shunt, blood flow rate in the pulmo-	
	M, Meyer H. Rapid left-to-	ently applied		may considerably reduce	nary artery (Qp) and ascending aorta (Qs) and flow ratio	
	right shunt quantification	reference		scan time in MRI. For rap-	Qp/Qs were determined by PC-MRI with SENSE reduc-	
	in children by phase-	standards		id flow quantification in	tion-factor 2 and 3 (SF-2 and SF-3). Additionally, we used	
	contrast magnetic reso-			children with congenital	PC-MRI with higher spatial in-plane resolution (1.6x2.1	
	nance imaging combined			heart disease, we evaluat-	versus 2.3x3.1 mm) with and without SF-3. Results were	
	with sensitivity encoding			ed phase-contrast MRI	compared with a recently validated standard PC-MRI	
	(sense). Circulation			(PC-MRI) techniques com-	protocol and tested in vitro using a pulsatile flow phan-	
	2003;108:1355-1361			bined with SENSE.	tom. Reduction of signal averages from 2 to 1 and appli-	
					cation of SENSE accelerated flow measurements by a	

					factor of 3.5 (5.2) using PC-MRI with SF-2 (SF-3) com- pared with standard PC-MRI. For blood flow rate through the pulmonary artery and aorta, as well as for the Qp/Qs ratio we found negligible differences of +/-3%, lower limits of agreement (mean+/-2 SD) of -7% to -18%, and upper limits of agreement (mean+/-2 SD) of +3 to +24%, demonstrating good agreement with standard PC- MRI. Mean Qp/Qs ratio by standard PC-MRI was 1.69+/- 0.45 (range, 1.27 to 2.79). Interobserver variability was low, and high accuracy was confirmed in vitro for all pro- tocols.	
Q39	Korperich H, Gieseke J,	Studies with-	14 pediatric	Flow quantification in real	In 14 pediatric patients (mean age 5.2+/-2.0 years) with	3
	Barth P, Hoogeveen R,	out consist-	patients	time by phase-contrast	cardiac left-to-right shunt, pulmonary (Q(p)) and aortic	
	Esdorn H, Peterschroder	ently applied		MRI (PC-MRI) may provide	(Q(s)) flow rates were determined by nontriggered free-	
	A, et al. Flow volume and	reference		unique hemodynamic	breathing real-time PC-MRI with single-shot echo-planar	
	shunt quantification in	standards		information in congenital	imaging combined with sensitivity encoding, which yield-	
	pediatric congenital heart			heart disease, but availa-	ed 25 phase images per second at 2.7x2.7-mm in-plane	
	disease by real-time mag-			ble techniques have im-	resolution (field of view 30x34 cm2). Over a 9.5-second	
	netic resonance velocity			portant limitations. We	period that included 2 to 5 respiratory cycles, 16.6+/-2.6	
	mapping: A validation			sought to validate a novel	subsequent stroke volumes (range 13 to 22) were ac-	
	study. Circulation			real-time magnetic reso-	quired in each vessel. Results were compared with con-	
	2004;109:1987-1993			nance flow sequence in	ventional retrospectively ECG-gated PC-MRI. Mean	
				children.	Q(p)/Q(s) by conventional PC-MRI was 1.91+/-0.64, and	
					it was 1.94+/-0.68 (mean+/-SD) by real-time PC-MRI. For	
					blood flow rate through pulmonary artery and aorta, we	
					found differences of 2% to 3% (Bland-Altman analysis),	

			1	1		
					with lower limits of agreement of -11% to -13% (mean-2	
					SD) and upper limits of 18% to 19% (mean+2 SD), which	
					demonstrated good agreement between both methods.	
					Mean difference for $Q(p)/Q(s)$ was 1%, with limits of	
					agreement ranging between -18% and 22% (mean+/-2	
					SD). High repeatability but some flow overestimation was	
					observed in vitro (pulsatile flow phantom) with real-time	
					PC-MRI, whereas conventional PC-MRI was accurate.	
					Beat-to-beat stroke-volume variation was 6.1+/-2.3% in	
					vivo and 3.7+/-0.3% in vitro.	
Q39	Prasad SK, Soukias N,	Studies with-	29 consecu-	Accurate diagnosis of ma-	We assessed the role of contrast-enhanced 3D MRA in	3
	Hornung T, Khan M, Pen-	out consist-	tive adult	jor aortopulmonary col-	29 consecutive adult patients with a diagnosis of MAP-	
	nell DJ, Gatzoulis MA, et	ently applied	patients	laterals (MAPCAs) and	CAs (n=16) or PAPVD (n=13) made by echocardiogram,	
	al. Role of magnetic reso-	reference		partial anomalous pulmo-	cardiac catheterization, or surgical inspection. MRA was	
	nance angiography in the	standards		nary venous drainage	performed with a 3D spoiled gradient-echo technique	
	diagnosis of major aor-			(PAPVD) in adult patients	with intravenous gadolinium-DTPA (0.2 mmol/kg). In both	
	topulmonary collateral ar-			with congenital heart dis-	types of pathology, there was excellent correlation be-	
	teries and partial anoma-			ease is important but	tween MRA and the cardiac catheterization, echocardio-	
	lous pulmonary venous			problematic. Three-	gram, or surgical inspection. Additional information was	
	drainage. Circulation			dimensional contrast-	gained for patients with MAPCAs on confluence and size	
	2004;109:207-214			enhanced magnetic reso-	of pulmonary arteries (n=13 had central arteries), pul-	
				nance angiography (MRA)	monary artery stenosis (n=3), aneurysmal dilatation of	
				provides a minimally inva-	pulmonary artery (n=1), and additional anomalous vascu-	
				sive technique to allow	lar abnormality (n=3). Shunt assessment, where present	
				detailed studies in a sin-	(9 of 16), showed patency in all cases (100%). For adults	
				gle breath-hold.	with PAPVD, further information was obtained on drain-	

					age origin (n=11). There were no complications.	
Q39	Taylor AM, Thorne SA,	Individual	Twenty-five	To compare the use of x-	Twenty-five adults with various congenital heart abnor-	2
	Rubens MB, Jhooti P, Kee-	cross sec-	adults with	ray angiography and	malities were studied. X-ray coronary angiography and	
	gan J, Gatehouse PD, et al.	tional studies	various con-	MRCA for identification of	respiratory-gated MRCA were performed in all subjects.	
	Coronary artery imaging	with consist-	genital heart	the coronary artery origin	Coronary artery origin and proximal course were as-	
	in grown up congenital	ently applied	abnormali-	and proximal course in	sessed for each imaging modality by separate, blinded	
	heart disease: Comple-	reference	ties	adults with a variety of	investigators. Images were then compared, and a con-	
	mentary role of magnetic	standard		congenital heart abnor-	sensus diagnosis was reached. With the consensus read-	
	resonance and x-ray cor-			malities.	ings for both magnetic resonance and x-ray coronary	
	onary angiography. Circu-				angiography, it was possible to identify the origin and	
	lation 2000;101:1670-1678				course of the proximal coronary arteries in all 25 sub-	
					jects: 16 with coronary anomalies and 9 with normal cor-	
					onary arteries. Respiratory-gated MRCA had an accuracy	
					of 92%, a sensitivity of 88%, and a specificity of 100% for	
					the detection of abnormal coronary arteries. The MRCA	
					results were more likely to agree with the consensus for	
					definition of the proximal course of the coronary arteries	
					(P<0.02).	
Q40	Lemmer, J. et al. Right	Individual	104 GUCH	We investigated whether a	Prospective, cross-sectional, multicenter study of 104	2
	ventricular function in	cross sec-	patients,	correlation exists between	GUCH patients (median) 16 years (range 6-43 years) after	
	grown-up patients after	tional studies	multicenter,	biomarkers of the neuro-	corrective surgery with RV pressure and/or volume over-	
	correction of congenital	with consist-	prospective	humoral system and clini-	load and 54 healthy controls. Clinical, functional, and	
	right heart disease. Clin	ently applied		cal markers in grown-up	laboratory parameters were assessed. Natriuretic peptide	
	Res Cardiol 2011;100(4):	reference		patients with congenital	levels were significantly increased in GUCH patients	
	289-296	standard		heart disease (GUCH) and	(NTproBNP 101 vs. 25 pg/ml, p < 0.001), but we ob-	
				right ventricular function.	served no differences in norepinephrine, aldosterone,	

					angiotensin II and Endothelin-1 levels. NTproBNP corre-	
					lated significantly with clinical markers such as NYHA	
					classification, prolonged QRS duration and reduced exer-	
					cise capacity (VO(2) peak) (all p < 0.001), as well as self-	
					reported quality of life (p < 0.001). MRI and echocardi-	
					ography derived RV volumes were elevated and ejection	
					fraction reduced in the patients (both $p < 0.001$). Tissue	
					Doppler parameter showed significantly restricted ven-	
					tricular longitudinal systolic function (longitudinal tricus-	
					pid valve movement, 1.7 vs. 2.3 cm, p < 0.001), suggest-	
					ing stiffness and reduced RV compliance.	
Q40	Oosterhof T, Mulder BJ,	Studies with-	24 consecu-	To evaluate retrospectively	Delayed enhancement was seen in 17 patients in the	3
	Vliegen HW, de Roos A.	out consist-	tive patients	the presence of fibrosis	RVOT. During initial surgery, transannular patching was	
	Corrected tetralogy of fal-	ently applied		and largest diameter of	performed in 13 (76%) of 17 patients, RVOT patching in	
	lot: Delayed enhancement	reference		the right ventricular out-	one (6%) of 17 patients, and the Brock procedure in two	
	in right ventricular outflow	standards		flow tract (RVOT) by using	(12%) of 17 patients. In one patient, the type of initial	
	tract. Radiology			delayed enhancement	RVOT repair was unknown. Patients with delayed en-	
	2005;237:868-871			magnetic resonance (MR)	hancement in the RVOT, as compared with those without	
				imaging in patients who	delayed enhancement in the RVOT, had increased RVOT	
				had undergone initial cor-	diameter (32 mm +/- 7 [standard deviation] vs 22 mm	
				rection for tetralogy of	+/- 3, P < .01), decreased right ventricular ejection frac-	
				Fallot.	tion (43% +/- 6.3 vs 54% +/- 10, P < .001), and in-	
					creased end-diastolic volume (175 mL/m2 +/- 42 vs 118	
					mL/m2 +/- 34, P < .01). The diameter of the RVOT corre-	
					lated with increased right ventricular end-systolic volume	
					(R = 0.86) and was inversely related to ejection fraction	

					(R = -0.65).	
Q40	Davlouros PA et al. Right	Case-control	85 consecu-	We examined the rela-	Patients had higher right ventricular end-diastolic volume	4
	ventricular function in	studies	tive adults	tionship among biventric-	index (RVEDVi) (p < 0.001), right ventricular end-systolic	
	adults with repaired te-		with rTOF	ular hemodynamics, pul-	volume index (RVESVi) (p < 0.001), right ventricular mass	
	tralogy of fallot assessed		and 26	monary regurgitant frac-	index (RVMi) (p < 0.001), and lower right ventricular ejec-	
	with cardiovascular mag-		matched	tion (PRF), right ventricular	tion fraction (RVEF) (p < 0.001) and left ventricular ejec-	
	netic resonance imaging:		healthy con-	outflow tract (RVOT) an-	tion fraction (LVEF) ($p = 0.002$) compared to controls. The	
	Detrimental role of right		trols	eurysm or akinesia, and	PRF (range 0% to 55%) independently predicted RVEDVi	
	ventricular outflow aneu-			baseline and surgical	(p < 0.01) and the latter predicted RVESVi (p < 0.01) and	
	rysms or akinesia and ad-			characteristics in adults	RVMi (p < 0.01). The RVOT aneurysm/akinesia was pre-	
	verse right-to-left ventric-			with repaired tetralogy of	sent in 48/85 (56.9%) of patients and predicted RV vol-	
	ular interaction. Journal of			Fallot (rTOF).	umes (RVEDVi, $p = 0.01$, and RVESVi, $p = 0.03$). There	
	the American College of				was a negative effect of RVOT aneurysm/akinesia and	
	Cardiology 2002;40:2044-				RVMi on RVEF ($p < 0.01$ and $p = 0.02$, respectively).	
	2052				There was only a tendency among patients with transan-	
					nular or RVOT patching toward RVOT aneurysm/akinesia	
					(p = 0.09). The LVEF correlated with RVEF (r = 0.67, p <	
					0.001).	
Q41	Caruthers SD, Lin SJ,	Individual	24	To define the reliability of	Patients (n=24) with aortic stenosis (ranging from 0.5 to	2
	Brown P, Watkins MP, Wil-	cross sec-		velocity-encoded CMR as	1.8 cm2) were imaged with CMR and echocardiography.	
	liams TA, Lehr KA, et al.	tional studies		a routine method for	Velocity-encoded CMR was used to obtain velocity in-	
	Practical value of cardiac	with consist-		quantifying stenotic aortic	formation in the aorta and left ventricular outflow tract.	
	magnetic resonance imag-	ently applied		valve area, to compare	From this flow data, pressure gradients were estimated	
	ing for clinical quantifica-	reference		this method with the ac-	by means of the modified Bernoulli equation, and VTIs	
	tion of aortic valve steno-	standard		cepted standard, and to	were calculated to estimate aortic valve orifice dimen-	
	sis: Comparison with			evaluate its reproducibility.	sions by means of the continuity equation. The correla-	

	echocardiography. Circula-				tion coefficients between modalities for pressure gradi-	
	tion 2003;108:2236-2243				ents were r=0.83 for peak and r=0.87 for mean. The	
					measurements of VTI correlated well, leading to an over-	
					all strong correlation between modalities for the estima-	
					tion of valve dimension (r=0.83, by means of the identi-	
					fied best approach). For 5 patients, the CMR examination	
					was repeated using the best approach. The repeat calcu-	
					lations of valve size correlated well (r=0.94).	
Q41	Botnar, R., et al. Assess-	Individual	13 patients	Magnetic resonance (MRI)	Peak flow velocity during mid-systole was significantly	2
	ment of prosthetic aortic	cross sec-		velocity mapping was	higher in patients with valvular prosthesis than in nor-	
	valve performance by	tional studies		used to evaluate non-	mals (mean + SD, 1.9 +/- 0.4 m/s vs. 1.2 +/- 0.03 m/s, P	
	magnetic resonance ve-	with consist-		invasively the flow profiles	< 0.001) with a double peak and a zone of reversed flow	
	locity imaging. MAGMA	ently applied		of the ascending aorta in	close to the inner (left lateral) wall of the ascending aorta	
	2000;10(1):18-26	reference		normal volunteers and in	of the patients. Closing volume was significantly larger in	
		standard		patients with an aortic	patients than in controls (-3.3 +/- 1.2 ml/beat vs0.9 +/-	
				(mechanical) valve pros-	0.5 ml/beat; P < 0.001). There was reverse flow during	
				thesis.	systole in valvular patients amounting to 15.7 +/- 6.7% of	
					total cardiac output compared to 2.3 +/- 1.2% in controls	
					(P < 0.001). Diastolic mean flow was negative in patients	
					after valve replacement but not in controls (-11.0 +/-	
					15.2 ml/beat vs. 6.8 +/- 3.2 ml/beat; P < 0.01).	
Q41	von Knobelsdorff-	Individual	65 patients	To investigate the feasibil-	CMR planimetry was readily feasible in 80.0%; feasible	2
	Brenkenhoff F, Rudolph A,	cross sec-		ity of cardiovascular mag-	with limitation in 15.4% because of stent, flow, and ster-	
	Wassmuth R, et al:	tional studies		netic resonance (CMR) to	nal wire artifacts; and impossible in 4.6% because of flow	
	Feasibility of cardiovascu-	with consist-		assess the orifice areas of	artifacts. Correlations of the orifice areas by CMR with	
	lar magnetic resonance to	ently applied		aortic bioprostheses.	TTE (r=0.82) and CMR with TEE (r=0.92) were significant.	

	assess the orifice	reference			The average difference between the methods was -	
	area of aortic bioprosthe-	standard			0.02+/-0.24 cm(2) (TTE) and 0.05+/-0.15 cm(2) (TEE).	
	ses. Circ Cardiovasc Imag-				Agreement was present for stented and stentless devices	
	ing 2009;2:397-404				and independent of orifice size. Intraobserver and in-	
					terobserver variabilities of CMR planimetry were 6.7+/-	
					5.4% and 11.5+/-7.8%.	
Q42	Keller, D. I., et al.	Individual	Thirty-six	The aim of this study was	Thirty-six patients with suspected ARVC (26 male, 10	2
	Arrhythmogenic right	cross sec-	patients with	to evaluate the diagnostic	female, median age 41 years) underwent non-invasive	
	ventricular	tional studies	suspected	and prognostic value of	and invasive clinical tests as gold standard for ARVC di-	
	cardiomyopathy:	with consist-	ARVC	CMR in patients with sus-	agnosis. ARVC was clinically diagnosed in 19 patients and	
	Diagnostic and prognostic	ently applied		pected ARVC and to as-	excluded in 17 patients. Both groups underwent CMR,	
	value of the cardiac mri in	reference		sess the long-term out-	and diagnosis was confirmed by CMR in 16/18 patients	
	relation to arrhythmia-free	standard		come of patients with	with clinically diagnosed ARVC (sensitivity 89%), and cor-	
	survival 2003:19(6):537-			CMR-diagnosed ARVC.	rectly excluded in 14/17 of patients with clinically exclud-	
	543				ed ARVC (specificity 82%). This result indicates a positive	
					predictive value of the CMR of 84%, and a negative pre-	
					dictive value of 88%, respectively (p < 0.0001). Using a	
					scoring system, multiple CMR parameters were compared	
					in the two groups in regard of the clinical diagnosis. By	
					univariate analysis, right ventricular fatty tissue infiltration	
					(p = 0.0003) was predictive for diagnosis. Compared by	
					outcome, 37% of patients with clinically and by CMR-	
					diagnosed ARVC had an arrhythmic event during a mean	
					follow-up of 16 +/- 11 months.	
Q42	Tandri H, Saranathan M,	Individual	30 patients	We evaluated the role of	Twelve (40%) of 30 patients met the Task Force criteria	2
	Rodriguez ER, et al. Non-	cross sec-		myocardial delayed-	for ARVD/C. Eight (67%) of the 12 ARVD/C patients	

		1			r
,	tional studies		enhancement (MDE)	demonstrated increased signal on MDE-MRI in the RV	
ocardial fibrosis in-	with consist-		magnetic resonance imag-	compared with none (0%) of the 18 patients without	
arrhythmogenic right ven-	ently applied		ing (MRI) for noninvasive	ARVD/C (p <0.001). Endomyocardial biopsy was per-	
tricular cardiomyopathy	reference		detection of fibrosis in	formed in 9 of the 12 ARVD/C patients. Of the nine pa-	
using delayed-	standard		Arrhythmogenic right ven-	tients, four had fibro-fatty changes consistent with the	
enhancement magnetic			tricular dyspla-	diagnosis of ARVD/C. Each of these patients had in-	
resonance imaging. J Am			sia/cardiomyopathy	creased RV signal on MDE-MRI. None of the patients	
Coll Cardiol 2005;45:98-			(ARVD/C).	without ARVD/C had any abnormalities either on histo-	
103				pathology or on MDE-MRI. Electrophysiologic testing	
				revealed inducible sustained ventricular tachycardia (VT)	
				in six of the eight ARVD/C patients with delayed en-	
				hancement, compared with none of the ARVD/C patients	
				without delayed enhancement (p=0.01).	
Sen-Chowdhry S, Prasad	Individual	232 patients	We sought to assess the	CMR studies were positive in all 64 patients who pro-	2
SK, Syrris P, et al. Cardio-	cross sec-		utility of cardiovascular	spectively fulfilled Task Force criteria, resulting in 100%	
vascular magnetic reso-	tional studies		magnetic resonance	sensitivity. Specificity in relation to Task Force criteria was	
nance in arrhythmogenic	with consist-		(CMR) in the evaluation of	low (29%). Of the 119 apparent false positives detected	
right ventricular cardio-	ently applied		arrhythmogenic right ven-	by CMR, however, 63 fulfilled modified diagnostic criteria	
myopathy revisited: com-	reference		tricular cardiomyopathy	for familial ARVC and 7 were obligate gene carriers, sug-	
parison with task force	standard		(ARVC) in relation to di-	gesting that CMR frequently identifies individuals with	
criteria and genotype. J			agnostic criteria and gen-		
Am Coll Cardiol			otype.		
2006;48:2132-2140					
				of 78%.	
	arrhythmogenic right ven- tricular cardiomyopathy using delayed- enhancement magnetic resonance imaging. J Am Coll Cardiol 2005;45:98- 103 Sen-Chowdhry S, Prasad SK, Syrris P, et al. Cardio- vascular magnetic reso- nance in arrhythmogenic right ventricular cardio- myopathy revisited: com- parison with task force criteria and genotype. J Am Coll Cardiol	ocardial fibrosis in- arrhythmogenic right ven- tricular cardiomyopathy using delayed- enhancement magnetic resonance imaging. J Am Coll Cardiol 2005;45:98- 103with consist- ently applied reference standardSen-Chowdhry S, Prasad SK, Syrris P, et al. Cardio- vascular magnetic reso- nance in arrhythmogenic right ventricular cardio- myopathy revisited: com- parison with task force criteria and genotype. J Am Coll CardiolIndividual cright ventricular cardio- standard	ocardial fibrosis in- arrhythmogenic right ven- tricular cardiomyopathy using delayed- enhancement magnetic resonance imaging. J Am Coll Cardiol 2005;45:98- 103with consist- ently applied reference standardSen-Chowdhry S, Prasad SK, Syrris P, et al. Cardio- vascular magnetic reso- nance in arrhythmogenic right ventricular cardio- myopathy revisited: com- parison with task force criteria and genotype. J Am Coll CardiolIndividual cross sec- tional studies with consist- ently applied reference standard	ocardial fibrosis in- arrhythmogenic right ven- tricular cardiomyopathy using delayed- enhancement magnetic resonance imaging. J Am Coll Cardiol 2005;45:98- 103with consist- ently applied reference standardmagnetic resonance imagi- ing (MRI) for noninvasive detection of fibrosis in Arrhythmogenic right ven- tricular dyspla- sia/cardiomyopathy (ARVD/C).Sen-Chowdhry S, Prasad SK, Syrris P, et al. Cardio- vascular magnetic reso- nance in arrhythmogenic right ventricular cardio- myopathy revisited: com- parison with task force criteria and genotype. J Am Coll CardiolIndividual cross sec- tional studies with consist- ently applied reference232 patients magnetic resonance (CMR) in the evaluation of arrhythmogenic right ven- tricular cardiomyopathy (ARVC) in relation to di- agnostic criteria and genotype. J Am Coll CardiolCardiol	ocardial fibrosis in- arrhythmogenic right ven- tricular cardiomyopathy using delayed- enhancement magnetic resonance imaging. J Am Coll Cardiol 2005;45:98- 103with consist- ently applied standardmagnetic resonance imag- ing (MRI) for noninvasive detection of fibrosis in Arrhythmogenic right ven- tricular dyspla- sia/cardiomyopathy (ARVD/C).compared with none (0%) of the 18 patients without ARVD/C (p <0.001). Endomyocardial biopsy was per- formed in 9 of the 12 ARVD/C patients. Of the nine pa- tients, four had fibro-fatty changes consistent with the diagnosis of ARVD/C. Each of these patients had in- creased RV signal on MDE-MRI. None of the patients without ARVD/C had any abnormalities either on histo- pathology or on MDE-MRI. Electrophysiologic testing revealed inducible sustained ventricular tachycardia (VT) in six of the eight ARVD/C patients with delayed en- hancement, compared with none of the ARVD/C patients without delayed en- hancement (p=0.01).Sen-Chowdhry S, Prasad SK, Syris P, et al. Cardio- vascular magnetic reso- nance in arrhythmogenic right ventricular cardio- myopathy revisited: com- parison with task force criteria and genotype. J Am Coll Cardiol 2006;48:2132-2140232 patients and addWe sought to assess the arrhythmogenic right ven- tricular cardiomyopathy (ARVC) in relation to di- agnostic criteria and genotype. J Am Coll Cardiol 2006;48:2132-2140Individual sensitive. This was borne out by evaluation of arrhythmogenic right ven- tricular cardio ype.CMR subases the arright ven- tricular cardiomyopathy (ARVC) in relation to di- agnostic criteria and genotype. J Am Coll Cardiol 2006;48:2132-2140232 patients subases force criteria are relatively in whom CMR had a sensitivity of

			1	1		
	Acute myocarditis pre-			netic resonance (CMR)	presumed ACS and raised serum troponin in whom no	
	senting as acute coronary			findings in patients with a	culprit lesion was detected were studied. 13% had un-	
	syndrome: role of early			provisional diagnosis of	recognised myocardial infarction and 6% takotsubo car-	
	cardiac magnetic reso-			acute coronary syndrome	diomyopathy. The remainder (81%) were diagnosed with	
	nance in its diagnosis.			(ACS) in whom acute my-	myocarditis. Mean age was 45+/-15 years and 70% were	
	Heart 2011;97(16):1312-			ocarditis was subsequently	male. Left ventricular ejection fraction (EF) was 58+/-10%;	
	1318			considered more likely.	myocardial oedema was detected in 58%. A myocarditic	
					pattern of late gadolinium enhancement (LGE) was de-	
					tected in 92%. Abnormalities were detected more fre-	
					quently in scans performed within 2 weeks of symptom	
					onset: oedema in 81% vs 11% (p<0.0005), and LGE in	
					100% vs 76% (p<0.005). In 20 patients with both an	
					acute (<2 weeks) and convalescent scan (>3 weeks), oe-	
					dema decreased from 84% to 39% (p<0.01) and LGE	
					from 5.6 to 3.0 segments (p=0.005). Three patients pre-	
					sented with sustained ventricular tachycardia, another	
					died suddenly 4 days after admission and one resuscitat-	
					ed 7 weeks following presentation. All 5 patients had	
					preserved EF.	
Q43	Mahrholdt H, Goedecke C,	Individual	58 consecu-	To determine whether	Contrast enhancement was present in 28 patients (88%)	2
-	Wagner A, <i>et al.</i> : Cardio-	cross sec-	tive patients	contrast CMR using new	and was usually seen with one or several foci in the my-	
	vascular magnetic reso-	tional studies		IR-GRE techniques visual-	ocardium. Foci were most frequently located in the lat-	
	nance assessment of hu-	with consist-		izes areas of active myo-	eral free wall. In the 21 patients in whom biopsy was	
	man myocarditis: a com-	ently applied		carditis compared with the	obtained from the region of contrast enhancement, his-	
	parison to histology and	reference		"gold standard," histo-	topathologic analysis revealed active myocarditis in 19	
	molecular pathology. Cir-	standard		pathology.	patients (parvovirus B19, n=12; human herpes virus type	
	. 35		1	,		

	culation 2004;109:1250-				6 [HHV 6], n=5). Conversely, in the remaining 11 patients,	
	1258				in whom biopsy could not be taken from the region of	
					contrast enhancement, active myocarditis was found in	
					one case only (HHV6). At follow-up, the area of contrast	
					enhancement decreased from 9+/-11% to 3+/-4% of left	
					ventricular mass as the left ventricular ejection fraction	
					improved from 47+/-19% to 60+/-10%.	
Q43	Jeserich. M. et al. Diagno-	Individual	55 consecu-	We assessed the associa-	The specificity of viral amplification products was con-	2
	sis of viral myocarditis by	cross sec-	tive patients	tion of viral genome pres-	firmed by automatic DNA sequencing. Of a total of 55	
	cardiac magnetic reso-	tional studies		ence in peripheral blood	patients (53.5 +/- 15.6 years), 21 were positive for viral	
	nance and viral genome	with consist-		samples with myocardial	genome in peripheral leukocytes. Interestingly, 18 (86%)	
	detection in peripheral	ently applied		edema and irreversible	of these patients also showed global myocardial edema,	
	blood. Int J Cardiovasc	reference		injury.	as compared to only 7/34 (21%) without PCR evidence	
	Imaging 2013;29(1):121-	standard			for viral genome. The overall agreement between CMR	
	129				criteria for edema and viral PCR was 84%. In contrast,	
					there was no significant relationship of viral genome	
					presence with myocardial necrosis or scars. In patients	
					with clinically suspected myocarditis, myocardial edema	
					but not irreversible myocardial injury is associated with	
					the presence of viral genome in peripheral blood.	
Q44	Hosch, W., et al. Late en-	Individual	5 patients	To correlate LE and histo-	Histological amyloid and collagenous fiber deposition	2
	hancement in cardiac am-	cross sec-		morphological findings in	was correlated with LE in corresponding MRI slides. LE	
	yloidosis: correlation of	tional studies		five patients with ad-	was visualized in 103/180 (57.2%) predominantly suben-	
	MRI enhancement pattern	with consist-		vanced CA	docardial segments. Histological analysis of amyloid	
	with histopathological	ently applied			deposition was (peri-)vascular (n=5), diffuse interstitial	
	findings. Amyloid 2008;	reference			(n=3) and/or nodular (n=4). Extent of fibrosis was mod-	

	15(3):196-204	standard			erate to severe. Cytoplasmatic vacuolization and decline of myofibrils was seen in all patients. Fibrosis was signifi- cantly associated with LE in subendocardial and mid- mural localizations (p<0.05), whereas the extent of amy- loid deposition was not associated with LE findings in any region. LE seems to be associated with fibrosis due to ischemia of cardiomyocytes by small vessel amyloid deposition rather than with amyloid deposition in CA,	
					suggesting that amyloid deposition might be present prior to LE detection.	
Q44	Smedema, J. P., et al. Eval- uation of the Accuracy of Gadolinium-Enhanced Cardiovascular Magnetic Resonance in the Diagno- sis of Cardiac Sarcoidosis. J Am Coll Cardiol 2005;45(10):1683-1690	Individual cross sec- tional studies with consist- ently applied reference standard	58 patients	To analyze the accuracy of gadolinium-enhanced cardiovascular magnetic resonance (CMR) for the diagnosis of cardiac sar- coidosis (CS).	The diagnosis of CS was made in 12 of 58 patients (21%); CMR revealed late gadolinium enhancement (LGE), most- ly involving basal and lateral segments (73%), in 19 pa- tients. In 8 of the 19 patients, scintigraphy was normal, while patchy LGE was present. The sensitivity and speci- ficity of CMR were 100% (95% confidence interval, 78% to 100%) and 78% (95% confidence interval, 64% to 89%), and the positive and negative predictive values were 55% and 100%, respectively, with an overall accura- cy of 83%.	2
Q45, 46	Moon JC, Fisher NG, McKenna WJ, <i>et al.</i> : De- tection of apical hyper- trophic cardiomyopathy by cardiovascular magnet- ic resonance in patients	Individual cross sec- tional studies with consist- ently applied reference		To investigate the role of cardiovascular magnetic resonance (CMR) in a se- ries of patients with ECG repolarisation changes and normal echocardiog-	Apical HCM detected by CMR could be morphologically severe with wall thickness up to 28 mm, or mild. The extent of repolarisation abnormalities did not correlate to the morphological severity.	2

	with non-diagnostic echo- cardiography. Heart 2004;90:645-649	standard		raphy.		
Q45, 46	Maron, M. S., et al. Hypertrophic cardiomyopathy phenotype revisited after 50 years with cardiovascular magnetic resonance. J Am Coll Cardiol 2009;54(3):220- 228	Case-series	333 consec- utive HCM patients	To characterize the pattern and distribution of left ventricular (LV) hypertro- phy by cardiovascular magnetic resonance (CMR) to more precisely define phenotypic expres- sion and its clinical impli- cations in hypertrophic cardiomyopathy (HCM).	Basal anterior LV free wall and the contiguous anterior ventricular septum were the most commonly hypertrophied segments (n = 256; 77%). LV hypertrophy was focal (involving < or = 2 segments [< or = 12% of LV]) in 41 patients (12%), intermediate (3 to 7 segments [13% to 49% of LV]) in 112 patients (34%), and diffuse (> or = 8 segments [> or = 50% of LV]) in 180 patients (54%); 42 patients (13%) showed hypertrophied segments separated by regions of normal thickness. The number of hypertrophied segments was greater in patients with LV outflow tract obstruction (> or = 30 mm Hg) than without (10 +/- 4 vs. 8 +/- 4 per patient; p = 0.0001) and was associated with an advanced New York Heart Association functional class (p = 0.007). LV wall thickness was greater in segments with late gadolinium enhancement than without (20 +/- 6 mm vs. 16 +/- 6 mm; p < 0.001). We also identified 40 (12%) of HCM patients with segmental LV hypertrophy largely confined to the anterolateral free	4
Q45, 46	Rickers, C., et al. Utility of cardiac magnetic reso-	Individual cross sec-	48 patients	To determine whether cardiac MRI (CMR) affords	 wall, posterior septum, or apex, which was underestimated or undetected by echocardiography. Forty-eight patients (age 34+/-16 years) suspected of having HCM (or with a confirmed diagnosis) were im- 	2
	nance imaging in the di-	tional studies		greater accuracy than	aged by both echocardiography and CMR to assess LV	

	1	1		1		1
	agnosis of hypertrophic	with consist-		echocardiography in es-	wall thickness in 8 anatomic segments (total n=384 seg-	
	cardiomyopathy. Circula-	ently applied		tablishing the diagnosis	ments) and compared in a blinded fashion. Maximum LV	
	tion 2005;112(6):855-861	reference		and assessing the magni-	thickness was similar by echocardiography (21.7+/-9.1	
		standard		tude of left ventricular	mm) and CMR (22.5+/-9.6 mm; P=0.21). However, in 3	
				(LV) hypertrophy in HCM.	(6%) of the 48 patients, echocardiography did not	
					demonstrate LV hypertrophy, and CMR identified other-	
					wise undetected areas of wall thickening in the anterol-	
					ateral LV free wall (17 to 20 mm), which resulted in a	
					new diagnosis of HCM. In the overall study group, com-	
					pared with CMR, echocardiography also underestimated	
					the magnitude of hypertrophy in the basal anterolateral	
					free wall (by 20+/-6%; P=0.001), as well as the presence	
					of extreme LV wall thickness (> or =30 mm) in 10% of	
					patients (P<0.05).	
Q47	Green, J. J., et al. Prognos-	Systematic	Four studies,	The objective of this study	Four studies evaluated 1,063 patients over an average	1
	tic value of late gadolini-	review	1,063 pa-	was to perform a system-	follow-up of 3.1 years. The pooled prevalence of LGE was	
	um enhancement in clini-		tients	atic review and meta-	60%. The pooled odds ratios (OR) demonstrate that LGE	
	cal outcomes for hyper-			analysis of the predictive	by CMR correlated with cardiac death (pooled OR: 2.92,	
	trophic cardiomyopathy.			value of late gadolinium	95% confidence interval [CI]: 1.01 to 8.42; p = 0.047),	
	JACC Cardiovasc Imaging			enhancement (LGE) cardi-	heart failure death (pooled OR: 5.68, 95% CI: 1.04 to	
	2012;5(4):370-377			ac magnetic resonance	31.07; $p = 0.045$), and all-cause mortality (pooled OR:	
				(CMR) for future cardio-	4.46, 95% CI: 1.53 to 13.01; p = 0.006), and showed a	
				vascular events and death	trend toward significance for predicting sudden	
				in hypertrophic cardiomy-	death/aborted sudden death (pooled OR: 2.39, 95% CI:	
				opathy (HCM).	0.87 to 6.58; p = 0.091).	
						1

			r		r
Beroukhim RS, et al. Char-	Individual	Cases (n	The aim of this study was	Fibroma (n = 30), rhabdomyoma (n = 14), malignant	2
acterization of cardiac tu-	cross sec-	=78) sub-	to report the results of an	tumor (n = 12), hemangioma (n = 9), thrombus (n = 4),	
mors in children by cardi-	tional studies	mitted from	international multicenter	myxoma (n = 3), teratoma(n = 2), and paraganglioma,	
ovascular magnetic reso-	with consist-	15 centers in	experience of cardiac	pericardial cyst, Purkinje cell tumor, and papillary fibroe-	
nance imaging: A multi-	ently applied	4 countries	magnetic resonance imag-	lastoma (n = 1, each). Reviewers who were blinded to the	
center experience. Journal	reference	had the fol-	ing (MRI) evaluation of	histologic diagnoses correctly diagnosed 97% of the cas-	
of the American College	standard	lowing di-	cardiac tumors in children,	es but included a differential diagnosis in 42%. Better	
of Cardiology 2011;		agnoses	each with histology corre-	image quality grade and more complete examination	
58:1044-1054			lation or a diagnosis of	were associated with higher diagnostic accuracy.	
			tuberous sclerosis, and to		
			determine which charac-		
			teristics are predictive of		
			tumor type.		
Hong YJ, et al. The useful-	Individual	22 patients	The objectives of this	On cine-CMR, the mean SI ratios for tumors and thrombi	2
ness of delayed contrast-	cross sec-		study were to evaluate the	were 1.45 \pm 0.45 (range, 1.12–2.16) and 1.39 \pm 0.33	
enhanced cardiovascular	tional studies		diagnostic value of de-	(range, 0.87–2.09), respectively (P =0.745). On DE-CMR,	
magnetic resonance imag-	with consist-		layed-enhancement cardi-	the mean SI ratios for tumors and thrombi were 5.65 \pm	
ing in differentiating car-	ently applied		ovascular magnetic reso-	2.96 (range, 2.98–9.92) and 1.06 ± 0.43 (range, 0.67–	
diac tumors from thrombi	reference		nance (DE-CMR) imaging	1.95), respectively (P0.001). DE-CMR is a non-invasive	
in stroke patients. The in-	standard		in differentiating cardiac	modality for detecting intra-cardiac mass can differenti-	
ternational journal of car-			tumors from thrombi in	ate tumors from thrombi in cardio-embolic stroke pa-	
diovascular imaging 2011;			patients with suspected	tients.	
27 Suppl 1:89-95			cardio-embolic stroke.		
Motwani M, et al. MR im-	Review		We provide a detailed	Cardiac MR imaging features reliably detect thrombus	4
aging of cardiac tumors			description of a core pro-	and have been shown to accurately differentiate between	
and masses: A review of			tocol for the MR assess-	benign and malignant tumors. A core protocol of MR	
	acterization of cardiac tu- mors in children by cardi- ovascular magnetic reso- nance imaging: A multi- center experience. Journal of the American College of Cardiology 2011; 58:1044-1054 Hong YJ, et al. The useful- ness of delayed contrast- enhanced cardiovascular magnetic resonance imag- ing in differentiating car- diac tumors from thrombi in stroke patients. The in- ternational journal of car- diovascular imaging 2011; 27 Suppl 1:89-95 Motwani M, et al. MR im- aging of cardiac tumors	acterization of cardiac tu- mors in children by cardi- iovascular magnetic reso- nance imaging: A multi- center experience. Journal of the American College of Cardiology 2011; 58:1044-1054center experience standardHong YJ, et al. The useful- ness of delayed contrast- enhanced cardiovascular ing in differentiating car- diac tumors from thrombi in stroke patients. The in- ternational journal of car- diovascular imaging 2011; 27 Suppl 1:89-95Individual reference standardMotwani M, et al. MR im- aging of cardiac tumorsReview	acterization of cardiac tu- mors in children by cardi- tional studies=78) sub- mitted fromovascular magnetic reso- nance imaging: A multi- center experience. Journal of the American College of Cardiology 2011; 58:1044-1054reference standardhad the fol- lowing di- agnosesHong YJ, et al. The useful- ness of delayed contrast- enhanced cardiovascular ing in differentiating car- diac tumors from thrombi in stroke patients. The in- ternational journal of car- diovascular imaging 2011; 27 Suppl 1:89-95Individual reference22 patientsMotwani M, et al. MR im- aging of cardiac tumorsReviewIIMotwani M, et al. MR im- aging of cardiac tumorsIIIMotwani M, et al. MR im- aging of cardiac tumorsIIIMotwani M, et al. MR im- aging of cardiac tumorsIIIMotwani M, et al. MRIIII<	acterization of cardiac tu- mors in children by cardi- ovascular magnetic reso- nance imaging: A multi- center experience. Journal of the American College of Cardiology 2011; 58:1044-1054cross sec- terference standardagnoses tagnosesto report the results of an mitted from agnosesHong YJ, et al. The useful- enhanced cardiovascular ing in differentiating car- diac tumors from thrombi in stroke patients. The in- ternational journal of car- cardiac tumors from thrombi in stroke patients. The in- ternational journal of car- cardiac tumorsIndividual toros sec- teristics22 patientsThe objectives of this study were to evaluate the diagnostic value of de- layed enhanced cardiovascular ing in differentiating car- diac tumors from thrombi in stroke patients. The in- ternational journal of car- diac tumors from thrombiIndividual teres22 patientsThe objectives of this study were to evaluate the diagnostic value of de- layed-enhancement cardi- ovascular magnetic reso- nance (DE-CMR) imaging in differentiating cardiac tumors from thrombi in ternational journal of car- diac tumors from thrombiReviewWe provide a detailed description of a core pro-	acterization of cardiac tu- mors in children by cardi- ovascular magnetic reso- nance imaging: A multi- center experience. Journal of Cardiology 2011;cross sec- tional studies=78) sub- mitted fromto report the results of an international multicenter magnetic resonance imag- ing (MRI) evaluation of cardiac tumors in children, agnosestumor (n = 12), hemangioma (n = 9), thrombus (n = 4), myxoma (n = 3), teratoma(n = 2), and paraganglioma, pericardial cyst, Purkinje cell tumor, and papillary fibroe- lastoma (n = 1, each). Reviewers who were blinded to the histologi cliagnoses correctly diagnosed 97% of the cas- es but included a differential diagnosis in 42%. Better image quality grade and more complete examination were associated with higher diagnostic accuracy.Hong YJ, et al. The useful- ness of delayed contrast- enhanced cardiovascular ing in differentiating car- diac tumors from thrombi in stokp patients. The in- ternational journal of car- divascular imaging 2011;Individual 22 patients tional studies with consist- enty applied enhanced cardiovascularIndividual reso of delayed contrast- enty applied tional studies with consist- enty applied in differentiating car- diac tumors from thrombi in standardZ2 patients the objectives of this study were to evaluate th algonostic value of de- layed-enhancement cardi- ovascular magnetic reso- nance (DE-CMR) imaging in differentiating cardia- teratos from thrombi in differentiating cardia- teratos from thrombi in standardIndividual reso from thrombi in patients with suspected ardio-embolic stroke pa- tional studies with consist- enty applied in differentiating cardia- teratos from thrombi in patients with suspected areference <td< td=""></td<>

						r – – – – –
	methods and clinical ap-			ment of cardiac masses	sequences as described in this review allows the mor-	
	plications. Radiology			and tumors and illustrate	phology, anatomy, tissue characteristics, and functional	
	2013;268:26-43			the different imaging	impact of a suspected tumor to be assessed in a single	
				characteristics of the most	examination.	
				common types of mass,		
				with case examples.		
Q48	Weinsaft JW, et al. Con-	Individual	121 patients	This study sought to	Twenty-four patients had thrombus by DE-CMR. Patients	2
	trast-enhanced anatomic	cross sec-		compare contrast-	with thrombus had larger infarcts (by DE-CMR), more	
	imaging as compared to	tional studies		enhanced anatomic imag-	aneurysms, and lower LV ejection fraction (by CMR and	
	contrast-enhanced tissue	with consist-		ing and contrast en-	echo) than those without thrombus. Contrast echo nearly	
	characterization for detec-	ently applied		hanced tissue characteri-	doubled sensitivity (61% vs. 33%, p < 0.05) and yielded	
	tion of left ventricular	reference		zation (delayed-	improved accuracy (92% vs. 82%, p < 0.01) versus non-	
	thrombus. JACC. Cardio-	standard		enhancement cardiac	contrast echo. Patients who derived incremental diagnos-	
	vascular imaging 2009;			magnetic resonance [DE-	tic utility from DE-CMR had lower LV ejection fraction	
	2:969-979			CMR]) for left ventricular	versus those in whom noncontrast echo alone accurately	
				(LV) thrombus detection	assessed thrombus (35 \pm 9% vs. 42 \pm 14%, p < 0.01),	
					with a similar trend for patients who derived incremental	
					benefit from contrast echo (p=0.08). Contrast echo and	
					cine-CMR closely agreed on the diagnosis of thrombus	
					(k= 0.79, p < 0.001). Thrombus prevalence was lower by	
					contrast echo than DE-CMR (p < 0.05). Thrombus de-	
					tected by DE-CMR but not by contrast echo was more	
					likely to be mural in shape or, when apical, small in vol-	
					ume (p < 0.05).	
Q49	Axel L. Assessment of per-	Review		Pericardial disease and its	MRI and CT can provide useful information for the evalu-	4
-	icardial disease by mag-			consequences can be well	ation of and treatment planning for pericardial disease,	
						1

			1			1
	netic resonance and com-			shown with magnetic res-	as well as revealing it as an incidental finding on studies	
	puted tomography. Jour-			onance imaging (MRI) and	performed for other indications. The normally thin peri-	
	nal of magnetic resonance			computed tomography	cardium is well seen on MRI and CT, and any pericardial	
	imaging: JMRI			(CT). Here I review the	thickening or increased fluid within the pericardial space	
	2004;19:816-826			normal and pathologic	is usually readily identified. While the morphologic find-	
				anatomy and physiology	ings are not always specific for etiology or sufficient by	
				of the pericardium, ap-	themselves to assess the clinical significance of pericardi-	
				proaches to MRI and CT	al thickening or effusions, ongoing advances in dynamic	
				imaging of the pericardi-	imaging may soon provide additional pathophysiologic	
				um, and some specific	information to aid in the detection and clinical manage-	
				considerations in common	ment of possible pericardial tamponade or constriction.	
				conditions affecting the		
				pericardium.		
Q49	Francone M, et al. As-	Studies with-	In 18 histo-	The purpose of this study	Real-time cine MRI can easily depict increased ventricular	3
	sessment of ventricular	out consist-	logically	was to evaluate the use of	coupling, which may be helpful to better differentiate	
	coupling with real-time	ently applied	proven cases	respiratory-related ven-	between CP and RCM patients, especially in patients with	
	cine MRI and its value to	reference	of CP, 6 pa-	tricular coupling to differ-	normal or minimally thickened pericardium. The increase	
	differentiate constrictive	standards	tients with	entiate patients with con-	in coupling in IP patients is likely caused by decreased	
	pericarditis from restrictive		inflammato-	strictive pericarditis (CP)	compliance of the inflamed pericardial layers.	
	cardiomyopathy. European		ry pericardi-	and restrictive cardiomyo-		
	radiology 2006;16:944-951		tis (IP), 15	pathy (RCM).		
			RCM pa-			
			tients and			
			17 normal			
			subjects			

Q49	Mastouri R, et al. Nonin-	Review		Constrictive pericarditis	An important pathophysiological hallmark of CP is exag-	4
~	vasive imaging techniques			(CP) is the result of scar-	gerated ventricular interdependence and impaired dias-	
	of constrictive pericarditis.			ring and loss of elasticity	tolic filling. Echocardiography is the initial imaging mo-	
	Expert review of cardio-			of the pericardial sac, re-	dality for diagnosis of CP. Unfortunately, no echocardio-	
	vascular therapy 2010;			sulting in external imped-	graphic sign or combination of signs is pathognomonic	
	8:1335-1347			ance of cardiac filling. It	for CP. CT scan and cardiac MRI are other imaging tech-	
				can occur after virtually	niques that can provide incremental diagnostic infor-	
				any pericardial disease	mation. CT scan can easily detect pericardial thickening	
				process. Patients typically	and calcification, while cardiac MRI provides a compre-	
				present with signs and	hensive evaluation of the pericardium, myocardium and	
				symptoms of right heart	cardiac physiology. Occasionally, a multimodality ap-	
				failure and/or low cardiac	proach needs to be considered for the conclusive diag-	
				output.	nosis of CP.	
Q50	Shiga T, et al. Diagnostic	Systematic	Sixteen	We systematically re-	Pooled sensitivity (98%-100%) and specificity (95%-98%)	1
	accuracy of transesopha-	Review and	studies in-	viewed the diagnostic	were comparable between imaging techniques. The	
	geal echocardiography,	Meta-analysis	volving a	accuracy of these imaging	pooled positive likelihood ratio appeared to be higher	
	helical computed tomog-		total of 1139	techniques in patients	for MRI (positive likelihood ratio, 25.3; 95% confidence	
	raphy, and magnetic reso-		patients	with suspected thoracic	interval, 11.1-57.1) than for TEE (14.1; 6.0-33.2) or helical	
	nance imaging for sus-		were select-	aortic dissection.	CT (13.9; 4.2-46.0). If a patient had shown a 50% pretest	
	pected thoracic aortic dis-		ed		probability of thoracic aortic dissection (high risk), he or	
	section: Systematic review				she had a 93% to 96% posttest probability of thoracic	
	and meta-analysis (struc-				aortic dissection following a positive result of each imag-	
	tured abstract).Archives of				ing test. If a patient had a 5% pretest probability of tho-	
	Internal Medicine 2006;				racic aortic dissection (low risk), he or she had a 0.1% to	
	166:1350-1356				0.3% posttest probability of thoracic aortic dissection	
					following a negative result of each imaging test.	

Q51	Kato R, et al. Pulmonary	Studies with-	Twenty-eight	This study sought to de-	Variant PV anatomy was observed in 38% of patients. AF	3
	vein anatomy in patients	out consist-	patients	fine the technique and	patients had larger PV diameters than control subjects,	
	undergoing catheter abla-	ently applied		results of magnetic reso-	but no difference was observed in the size of the PV	
	tion of atrial fibrillation:	reference		nance imaging (MRI) of	ostia among AF patients. The PV ostia were oblong in	
	Lessons learned by use of			pulmonary vein (PV) anat-	shape with an anteroposterior dimension less than the	
	magnetic resonance imag-			omy before and after	superoinferior dimension. The left PVs had a longer	
	ing. Circulation			catheter ablation of atrial	"neck" than the right PVs. A detectable PV narrowing was	
	2003;107:2004-2010			fibrillation (AF).	observed in 24% of veins. The severity of stenosis was	
					severe in 1 vein (1.4%), moderate in 1 vein (1.4%), and	
					mild in 15 veins (21.1%). All patients were asymptomatic,	
					and none required treatment.	
Q51	Lacomis JM, et al. Direct	Studies with	Twenty pa-	Accumulating evidence	Twenty patients referred for catheter ablation underwent	2
	comparison of computed	consistently	tients	points to the central im-	preoperative imaging using both CT and MR. Each tech-	
	tomography and magnetic	applied ref-		portance of the posterior	nique was used to create a multidimensional image of	
	resonance imaging for	erence		left atrium (PLA) for atrial	the PLA. RESULTS: Within patients, morphologic and di-	
	characterization of poste-	standards		fibrillation (AF). Catheter	mensional PLA indices, including number of individual	
	rior left atrial morphology.			ablation intended to cure	pulmonary venoatrial junctions, presence of ostial	
	Journal of interventional			AF is increasingly prac-	branches, circumference of each venoatrial junction, ven-	
	cardiac electrophysiology :			ticed; performance and	oatrial junction "non-circularity", and distance between	
	an international journal of			assessment of this proce-	ipsilateral superior and inferior venoatrial junctions, were	
	arrhythmias and pacing			dure is enhanced by accu-	well correlated.	
	2006;16:7-13			rate imaging of PLA anat-		
				omy. Prior reports have		
				suggested that both com-		
				puted tomographic (CT)		
				and magnetic resonance		

				(MR) imaging techniques provide accurate PLA im- ages. These techniques have never been com- pared directly.		
Q51	Mansour M, et al. Three- dimensional anatomy of the left atrium by mag- netic resonance angi- ography: Implications for catheter ablation for atrial fibrillation. Journal of car- diovascular electrophysi- ology 2006;17:719-723	Case series	Fifty con- secutive patients	A detailed anatomical characterization of these regions has not been pre- viously reported.	The width of the ridge separating the LPV from the LAA was found to be 3.7 +/- 1.1 mm at its narrowest point. The segment of this ridge with a width of 5 mm or less was 16.6 +/- 6.4 mm long. The width of the ridges separating the RMPV from the RSPV and the RIPV was found to be 3.0 +/-1.5 mm and 3.1 +/-1.8 mm, respectively. There were no significant differences between LPV ridges for patients with versus without a RMPV.	4
Q52	Thomson LE, et al. Direct en face imaging of secun- dum atrial septal defects by velocity-encoded car- diovascular magnetic res- onance in patients evalu- ated for possible transcatheter closure. Cir- culation. Cardiovascular imaging 2008;1:31-40	Case series	Forty-four patients	Imaging the secundum ASD en face could poten- tially enable direct flow measurement and provide valuable information about ASD size, shape, location, and proximity to other structures.	En face veCMR with an optimized imaging plane can determine ASD flow, size, and morphology. CMR provid- ed information incremental to comprehensive standard evaluation that altered clinical management in 20% of patients.	4

					1
Weber C, et al. Atrial sep-	Individual	Sixty pa-	The purpose of this study	Correlation between defect size in MRI vs. TEE was	2
tal defects type ii: Nonin-	cross sec-	tients	was to evaluate morpho-	R=0.67 (P<0.01) and MRI vs. IVBM was R=0.77 (P<0.01).	
vasive evaluation of pa-	tional studies		logical and functional MRI	Right ventricular volumes decreased after intervention.	
tients before implantation	with consist-		of atrial septal defects	MRI is an accurate noninvasive test for diagnosis, plan-	
of an amplatzer septal oc-	ently applied		(ASD) before and after	ning and follow-up after interventional ASD occlusion	
cluder and on follow-up	reference		interventional occlusion	using an AOC.	
by magnetic resonance	standard		by the Amplatzer Septal		
imaging compared with			Occluder (AOC) in com-		
tee and invasive meas-			parison to trans-		
urement. European radi-			oesophageal echocardiog-		
ology 2008;18:2406-2413			raphy (TEE), invasive bal-		
			loon measurement (IVBM)		
			and cardiac catheteriza-		
			tion (QCC).		
La Manna A, et al. Cardio-	Individual	Patients who	The aim of this study was	CMR generally tended to report larger values than TTE	2
vascular magnetic reso-	cross sec-	underwent	to compare cardiovascular	for all measurements. The Bland-Altman test indicated	
nance for the assessment	tional studies	both TTE	magnetic resonance	that the 95% limits of agreement between TTE and CMR	
of patients undergoing	with consist-	and CMR (n	(CMR) and trans-thoracic	ranged from -5.6 mm to + 1.0 mm for annulus size, from	
transcatheter aortic valve	ently applied	= 49)	echocardiography (TTE)	-0.45 mm to + 0.25 mm for LVOT, from -0.45 mm2 to +	
implantation: A pilot	reference		for the assessment of aor-	0.25 mm2 for AVA and from -29.2% to 13.2% for LVEF.	
study." Journal of cardio-	standard		tic valve measurements		
vascular magnetic reso-			and left ventricular func-		
nance : official journal of			tion in high-risk elderly		
the Society for Cardiovas-			patients submitted to TA-		
cular Magnetic Resonance			VI.		
2011;13:82					
	vasive evaluation of pa- tients before implantation of an amplatzer septal oc- cluder and on follow-up by magnetic resonance imaging compared with tee and invasive meas- urement. European radi- ology 2008;18:2406-2413 La Manna A, et al. Cardio- vascular magnetic reso- nance for the assessment of patients undergoing transcatheter aortic valve implantation: A pilot study." Journal of cardio- vascular magnetic reso- nance : official journal of the Society for Cardiovas- cular Magnetic Resonance	tal defects type ii: Nonin- vasive evaluation of pa- tients before implantation of an amplatzer septal oc- cluder and on follow-up by magnetic resonance imaging compared with tee and invasive meas- urement. European radi- ology 2008;18:2406-2413cross sec- standardLa Manna A, et al. Cardio vascular magnetic reso- nance for the assessment timplantation: A pilot study." Journal of cardio- study." Journal of cardio- vascular magnetic reso- nance : official journal of the Society for Cardiovas- cular Magnetic ResonanceIndividual referencestandard terenceindividual cross sec- standardindividual cross sec- standardreference standardindividual cross sec- standardreference standardindividual cross sec- standardreference standardindividual cross sec- standardreference standardindividual cross sec- standardreference standardimplantation: A pilot standardreference standardimplantation: A pilot standardreference 	tal defects type ii: Nonin- vasive evaluation of pa- tients before implantation of an amplatzer septal oc- cluder and on follow-up by magnetic resonance imaging compared with tee and invasive meas- urement. European radi- ology 2008;18:2406-2413cross sec- tional studies with consist- ently applied reference standardtientsLa Manna A, et al. Cardio- vascular magnetic reso- nance for the assessment of patients undergoing transcatheter aortic valve implantation: A pilotIndividual cross sec- tional studies with consist- ently applied referencePatients who underwenturement. Suropean radi- ology 2008;18:2406-2413Individual cross sec- tional studiesPatients who underwentLa Manna A, et al. Cardio- vascular magnetic reso- nance for the assessment of patients undergoing transcatheter aortic valve implantation: A pilotIndividual reference standardPatients who underwentently applied referenceently applied reference= 49)implantation: A pilot study." Journal of cardio- vascular magnetic reso- nance : official journal of the Society for Cardiovas- cular Magnetic ResonanceIndividual reference	tal defects type ii: Nonincross sec-tientswas to evaluate morpho-vasive evaluation of pa-tional studiesIgical and functional MRItients before implantationwith consist-of atrial septal defectsof an amplatzer septal oc-ently appliedIgical and functional MRIcluder and on follow-upreferenceIgital septal defectsby magnetic resonancestandardIgital septal defectsimaging compared withIgital septalOccluder (AOC) in com-tee and invasive meas-Igital septalOccluder (AOC) in com-urement. European radi-Igital septalOccluder (AOC) in com-ology 2008;18:2406-2413Igital septalIgital septal defectsology 2008;18:2406-2413Igital septalIgital septal defectsurement. European radi-Igital septalIgital septal defectsology 2008;18:2406-2413Igital septalIgital septal defectsurement European radi-Igital septalIgital septal defectsology 2008;18:2406-2413Igital septal defectsIgital septal defectsurement European radi-Igital septal defectsIgital septal defectsology 2008;18:2406-2413IndividualPatients whourement European radi-Igital septal defectsIgital septal defectsology 2008;18:2406-2413IndividualPatients whourement European radi-Igital septal defectsIgital septal defectsof patients and efficienceIgital septal defectsIgital septal defectsof patients undergoingwith c	tal defects type ii: Noning vasive evaluation of pa- tional studiestientswas to evaluate morpho- logical and functional MRI of atrial septal defects (ASD) before and after interventional coclusion by magnetic resonanceR=0.67 (P<0.01) and MRI vs. IVBM was R=0.77 (P<0.01).of an amplatzer septal oc- cluder and on follow-up by magnetic resonanceevity appliedof atrial septal defects (ASD) before and after interventional occlusion by the Amplatzer Septal oesophageal echocardiog- raphy (TEE), invasive bal- loon measurement (IVBM) and cardiac catheteriza- to (QC).MRI is an accurate noninvasive test for diagnosis, plan- inig and follow-up after interventional ASD occlusion using an AOC.La Manna A, et al. Cardio- vascular magnetic reson rapts that set of the assessment of patients undergoingNdivulauPatients who and cardiac catheteriza- to (QC).CMR generally tended to report larger values than TEE for all measurements. The Bland-Altman test indicated that the 95% limits of agreement between TE and CMR and affer to all that the 95% limits of agreement between TE and CMR and affer to all that the 95% limits of agreement between TE and CMR to and affer to all the assessment of aor study.' Journal of ardio- tion in high-risk elderlyCMR generally tended to report larger values than TEE for the assessment of aor and eff two tricular func- to in high-risk elderlytady dig time server tudy.' Journal of ardio- tudy.' Journal of ardio- study.' Journal of ardio- tudy.' Journal of ardio- study.' Journal of ardio- tudy.' Journal of ardio- study.' Journal of ardio- tudy.' Journal of ardio-