TABLE S1 Primers used in this study

Gene disruption in C. acetobutylicum				
<i>rex</i> -inactivated mutant (CAC2713)	IBS: 5'- AAAACTCGAGATAATTATCCTTAGGAGTCCTTGCTGTGCGCCCAGATAGGGTG -3' EBS1d: 5'- CAGATTGTACAAATGTGGTGATAACAGATAAGTCCTTGCTTATAACTTACCTTTCTTT	The primer IBS, EBS1d and EBS2,EBS, which were designed using the InGex Intron Prediction Program (<u>www.Sigma-Aldrich.com</u> / <u>Targetronaccess</u>), were used to amplify the targetron target sequence.		
Confirmation of gene di	sruption in <i>C. acetobutylicum</i>			
<i>rex</i> -inactivated mutant (CAC2713)	5'- GTGGATAAGAAAAAAAAAAAAAAAAAAAAAAAA 5'- CTAATCTCGGCTTTTATTCAC -3'			
Gene complementation	in C. acetobutylicum			
<i>rex</i> -complemented strain (CAC2712)	5'-aa <u>ctgcag</u> GTGGATAAGAAAAAAAAAAAACATATC -3' 5'-acgc <u>gtcgac</u> CTAATCTCGGCTTTTATTCAC -3'	Introduced restriction sites (PstI for the 5'-end and SalI for the 3'-end) are underlined.		
Quantitative RT-PCR and	alysis of gene expression			

<i>ldh</i> (CAC0267)	5'- CGGTGGACTTGCATCTGAG -3' 5'- GCTGCTCCCGCTGTTATT -3'	
nadA (CAC1025)	5'- AAAAGCTAAGCACCCTAATG-3' 5'- TACAGAAGCCATCCCATA-3'	
nadB (CAC1024)	5'- ATTATTGGCACAGGGGTTG -3' 5'- GTGTCATCAACAAATAGAGGC -3'	
nadC(CAC1023)	5'- GCTTAGAGGGCACAGGGG -3' 5'- CGTCCAAGGTTTCCGTTTC -3'	
asrT(CAC1512)	5'- GCATTTATTACCTGTGGATTTG -3' 5'- TATACTCCTTTCTTGCCTTG -3'	
asrA(CAC1511)	5'- AAAGAAGCAGAAGGACCTAAG -3' 5'- CACTCGCATCATACATATCAGC -3'	
asrB (CAC1510)	5'- AGGTGTCGTGGAGTATTTCG -3' 5'- CAGATGCTTCCTTTACATTCTG -3'	
asrC (CAC1509)	5'- ATTATGGAGACGGTTCTGTTC -3' 5'- GGCATACACGATTTCCCAC -3'	

<i>crt</i> (CAC2712)	5'- TTTAGGAGGCGGATGCG -3' 5'- TGCCATGCCCATTCCAAC -3'	
<i>bcd</i> (CAC2711)	5'- GCAATGAAAACTCTTGATGG -3' 5'- GTATGGAAGTCCTGCTTG -3'	
<i>etfB</i> (CAC2710)	5'- CTTTGGCTATGGGTGCTG -3' 5'- CTATTTCTGGTCCAACCTGAG -3'	
<i>etfA</i> (CAC2709)	5'- TATTAGTTGCTGGTGGTAGAGG -3' 5'- ATCTGAATCTTGCATACCTGC -3'	
hbd (CAC2708)	5'- CGGAACAGTTGACCTTAATATG -3' 5'- TCTTTTAGTTGCTGATGCCAC -3'	
thlA (CAC2873)	5'- GCAGTAAGAACAGCGATTGG -3' 5'- TGCCTGTCTTGCTGGATTC -3'	
<i>ptb</i> (CAC3076)	5'- TATCAGAAGAAGCAGCAC-3' 5'- CAACTAAGATTCCTCC-3'	
buk (CAC3075)	5'- AAAGATAAACGGCAAAGGC -3' 5'- TTACATACATGCTCGTTGTACG -3'	
adhE2 (CAP0035)	5'- GTTTCGGTTATGGCTACG -3' 5'- TTCAATGTCGTTAGTCCC -3'	

adhE1 (CAP0162)	5'- GATGCAGCCGTTAAGAGTG -3' 5'- AGTGAGGGACCACCAGTTG -3'	
ctfA (CAP0163)	5'- TCTGGCTTAGGTGGTGTAC -3' 5'- CATCGGCTGTAAGAGGTAG -3'	
<i>ctfB</i> (CAP0164)	5'- TCAACTTGTAAACTTAGGTGTAGG -3' 5'- CACGGATTAGTGAAAACGAAAC -3'	
adc (CAP0165)	5'- ACTTCGCCTGCATTTC -3' 5'- GCTCTGGCACAACTTTAC -3'	
bdhA (CAC3299)	5'- ACTTTCAGGAGTAGAGCCAAATC -3' 5'- TCCCATGTATCGCCATC -3'	
bdhB (CAC3298)	5'- CAGGATAGAATGGCAGAAGC -3' 5'- AAGACTTGAAGCCCACATTAG -3'	
fprA1 (CAC1027)	5'- CTGCCCCTAACCTTCATTG -3' 5'- TCTTCTCCACCCTCATCC -3'	
nror (CAC2448)	5'- TCCTCACGCTGACGAAAT -3' 5'- GCTCTATACCTAAGATACCTCCAC -3'	
<i>fpA2</i> (CAC2449)	5'- TTATTGCCTCAAATGCTGG -3' 5'- ATGGCGAACTTTAGGACC -3'	

<i>dfx</i> (CAC2450)	5'- TAGATGTTTCTGTAGGTTCCG -3' 5'- CTGCTTTCCATAGGCTGTG -3'	
gd (CAC2777)	5'- CAAAGTCCTACTTGGCTTCTC -3' 5'- GCCTACTATGTTTCCGTC -3'	
rd (CAC2778)	5'- GATCCAGCCGAAGGTGATC -3' 5'- CTTCAGATGGCTCAAATTGATC -3'	
rbr3B (CAC3597)	5'- AATGCCCCGTATGTGGTG-3' 5'- GCAACTTCAGGGTATCCTTCTC -3'	
<i>rbr3A</i> (CAC3598)	5'- AATGCCCTGTATGTGGTGC-3' 5'- TGCTTGTCTTGCCATTGC -3'	
$C\Delta C^{2}679$	5'- TGTTGTATGGAGAAGGCTGGGA-3'	Internal control
	5'- CACTTCCCTTTAAGGCATCGCGTA-3'	
Protein overexpression	5'- CACTTCCCTTTAAGGCATCGCGTA-3' and purification	
Protein overexpression pET (CAC2713)	5'- CACTTCCCTTTAAGGCATCGCGTA-3' and purification 5'-cgcggatccGTGGATAAGAAAAAAAAAAAAAAAAAAAAAAAAAAAA	Introduced restriction sites (BamHI for the 5'-end and SalI for the 3'-end) are underlined.
Protein overexpression pET (CAC2713) pET(CAC2713) (Q47K)	5'-CACTTCCCTTTAAGGCATCGCGTA-3' and purification 5'-cgcggatccGTGGATAAGAAAAAAACATATC -3' 5'-acgcgtcgacCTAATCTCGGCTTTTATTCAC -3' 5'-GCAGATACGCAAAGACCTAAATTG -3' 5'-GCAGATACGCAAAGACCTAAATTG -3'	Introduced restriction sites (BamHI for the 5'-end and SalI for the 3'-end) are underlined.

CAC0267 (<i>ldh</i>)	5'- AACTTCAATAGATGGGCTC -3' 5'- TTATCCCCTCCAATTACTA -3'	
CAC1025 (nadA)	5'- AGACAATCACATACACCCC -3' 5'- GTAAACAAGATACAGTAAAT -3'	
CAC1512 (asrT)	5'- ATCTAGACAGCTGAAGC -3' 5'- CATCTTCGAACACTTTA -3'	
CAC2712 (crt)	5'- GCTGTTTATTGCAAGAAGTGAATAAAAGC -3' 5'- TTTTTATTGTTAATATTATAACAAAGACG -3'	
CAC2873 (thlA)	5'- ATGCATAAGTTTAATTTTTTG -3' 5'- TCTAACTAACCTCCTAAATT -3'	
CAC3076 (<i>ptb</i>)	5'-GGAGGCATAATATCAGCGGCTG-3' 5'-CATTAAAACTCTTAATCACTG-3'	
CAP0035 (adhE2)	5'- TAGTATTTGGCAATAAAAATAG -3' 5'-TTACATTATTTACTTCTAATG -3'	
Cbei_1009 (<i>pflB</i>)	5'- CGCGAACTTATAGAAA -3' 5'- TTAGTTTTCCTCCTTT -3'	
Cbei_2181 (<i>adhA</i>)	5'- TTTCTGAGGAATTACG -3' 5'- CCTAAAATTTGCTCAT -3'	

Cbei_1722 (<i>adhA2</i>)	5'- AAGTTAGAACCTTGTA -3' 5'- TACCTCCTAAAATTCA -3'	
Cbei_1464 (<i>butA</i>)	5'- CCTAAATAACGCAAAA -3' 5'- CACCATTAACTGTAACTTTA -3'	
Cbei_0327 (<i>hydB</i>)	5'- AAAAGAAGTGGAAATG -3' 5'- CTCCCATGAATAATTT -3'	
Cbei_4319 (<i>fld</i>)	5'-GCACAAATTATACAATC-3' 5'-GTTCGCAAGTGCTTCTAT-3'	
Cbei_1014 (<i>ldh</i>)	5'- ATCTTCTGCGTAAAAC -3' 5'- TTGCTCATAACAACTT -3'	Negative control
NT0278 (<i>ctfA</i>)	5'- CTAAATATTTAAAAAAT -3' 5'- TAACTACACCCCCATG -3'	
CTC01488 (frdA)	5'- GTAGTTCTTAATTAGAG -3' 5'- CATTTTCCCCCTATCTT -3'	
CBO0246 (maeB)	5'- GTTAAGCATAAAAATAT -3' 5'- CACCATTAACTGTAACTTTA -3'	
CPF_0728 (noxE)	5'- AAATTCTTTGTTTAAAG-3'	

	5'- TATATTTCCACCTTTC -3'	
CLJU_c39440 (<i>bcd2</i>)	5'-GATAACGATAACATTG-3' 5'-GTATTTCTTCAAAAGGTC-3'	
CLJU_c37670 (<i>codH</i>)	5'- CACACGCAATTGCATA -3' 5'- GTAATAAATACAATTAT -3'	
Ccarb_5267 (<i>narB</i>)	5'- CCATGATATACTTACAAT -3' 5'- GGCGCAATAATTACATG -3'	
Ccarb_4501 (<i>narK</i>)	5'- GTATAGTGATATACTT -3' 5'- GCAAACCCTACAAAAAAC -3'	
Ccarb_2944 (<i>codH</i>)	5'- CAAATTGGATTTTGAA -3' 5'- GTATATAAAAATTACA -3'	
Ccarb_5251 (grdIH)	5'- CAAATTTCTATAGCATGAAATC -3' 5'- GTTGAAATTGTCTAAATAGTAC -3'	
Ccarb_1246 (<i>crt</i>)	5'- AAACAATCTGCATTTGACCA -3' 5'- ACCCCATCTTATCCCTCCT -3'	Negative control
CAC2712 (<i>crt</i>)T ₅ -G ₅	5'- TTTGCTGATTGCAAGAAGTGAATAAAAGC -3' 5'- TTTTTATTGTTAATATTATCACAAAGACG -3'	

CAC2712 (<i>crt</i>)A ₁₄ -C ₁₄	5'- TTTGCTGATTGCAAGAAGTGAATAAAAGC -3' 5'- TTTTTATTGTGAATATTATAACAAAGACG -3'	
CAC2712 (<i>crt</i>) T ₅ -G ₅ A ₁₄ -C ₁₄	5'-TTTGCTGATTGCAAGAAGTGAATAAAAGC -3' 5'- TTTTTATTGTGAATATTATCACAAAGACG -3'	

First Gene ID	Operon	Candidate Rex-binding sites	Position ^a	Score ^b	TSS position ^c
C. acetobutylicum ATCC 824					
CAC2712	crt-bcd-etfB-etfA-hbd	TTGTTATAATATTAACAA	-45	5.6	-126
CAC3076	ptb-buk	ACGTTAATCATTTAACAT	-52	4.8	-55
CAC0267	ldh	TAGTTAATAAATTAACAA	-98	5.6	-97
CAP0035	adhE2	TTGTTAAATGTTTGACAA	-262	4.9	-159,-215
CAC2873	thlA	TTGTGTTTTTTTTAACAA	-161	4.6	-105
CAC1025	nadABC	TTGATAAATATCTAACAA	-110	5.3	-40
CAC1512	asrTABC	TTGTTATATTTTTAACAA	-42	5.5	-86
C. beijerinckii NCIMB 8052					
Cbei_4319	fld-pfor	AAGTTAATTATTTAACAA	-37	5.5	-61
Cbei_1464	butA	ATGTGAATTAATTAACAA	-41	5.3	-120
Cbei_0321	crt-bcd-etfBA	TTGTTATATTATTAACAA	-87	5.5	-168
Cbei_0325	hbd	AAGTTAATAATGTAACAT	-146	4.8	-48
Cbei_0325	hbd	AAGATAATTAATTAACAA	-126	5.3	-48
Cbei_0411	thlA	TTGTTTAAATTTTAACAA	-118	5.4	-57
Cbei_0411	thlA	ATGTTAATAATTTAACAA	-58	5.7	-57
Cbei_0327	hydB	TTGTTATAATTTTAACAA	-84	5.6	-33
Cbei_0327	hydB	ATGTTAATAATTTATCAT	-287	5.3	-33
Cbei_1722	adhA2	TTGATAAAATAATAACAT	-99	5.3	-272
Cbei_2181	adhA	TTGATAAAATAATCACAA	-129	5.1	-243
Cbei_0203	ptb-buk	TTGATATAAATTTAACAA	-74	5.6	-159
Cbei_3630	thIA2	TTGTTAAAAAAATAACAA	-48	5.8	-42
Cbei_1009	pflBA	TTGATTAAAAATTAACAA	-52	5.4	-85,-546
C. botulinum A str, ATCC 3502					

TABLE S2 Reconstructed Rex regulons in clostridia.

CBO3202	crt-hbd-thl-bcd-etfBA	TAGATAAATTTTTATCAT	-136	5	-316
CBO3202	crt-hbd-thl-bcd-etfBA	TTGTTAAAATAATAGCTA	-93	4.8	-316
CBO1643	adhA	TAGTTATTATTTTATCAT	-261	4.8	-86,-460
CBO1519	ldh	ATGTTAATTAATTAACTA	-161	5.3	-259
CBO2217	butA	ATGTTAATTAATTAACAT	-51	5.5	-55,-363
CBO1579	alsT-noxE-yeeE	TTGAGAGAAAATTAACAA	-144	5	-98
CBO0345	adhE2	ATGATAAATATTTAACAA	-178	5.7	-293
CBO0345	adhE2	TTGTTAAATAAATAACAA	-121	5.8	-293
CBO0246	maeB	TTGTTAATAATATAACAA	-145	5.7	-50,-350
C. butyricum 5521					
CBY_3041	crt-bcd-etfBA-hbd	TTGTTATAATATTAACAA	-98	5.6	-286
CBY_2919	ptb-buk	TTGATATAATTTTAACAA	-55	5.4	-196
CBY_1290	thlA	ATGTTAATAATTTAACGA	-81	5.4	-30
CBY_1290	thlA	TTGTCTAAAATTTAACAA	-140	5.3	-30
CBY_3751	adhA	ATGATAAAAATATTACAA	-122	5	-32
CBY_3747	adhA2	TTGACAAAAAAATAACAA	-92	5.4	-122
CBY_3643	fld-pfor	AAGTTAATTATTTAACAA	-37	5.5	-63
CBY_3753	adhE2	GTGTTAAAAAAATAACAA	-104	5.5	-20,-320
CBY_3753	adhE2	TTGACAAAAAATAAACAA	-146	5	-20,-320
CBY_2357	maeB	TTGTTAAAAAAGTAACAA	-145	5.4	-227
CBY_2472	butA	ATGTGAATTAATTAACAA	-41	5.3	-144
CBY_3325	narAB	TTATTAATTTTTTAACAA	-170	4.89	-166
CBY_3325	narAB	TTGTTAAAAAAAGAACAA	-149	5.02	-166
C. kluyveri DSM 555					
CKL_0454	crt-bcd-etfBA-hbd	TTGTGATATTATTAACAA	-64	5.1	-97
C. novyi NT					

NT01CX_0604	hbd-thlA	ATGATATATATTTAACAA	-233	5.4	-278
NT01CX_0604	hbd-thlA	AAGTTAAAAAATTAACAA	-46	5.6	-278
NT01CX_0474	crt-bcd-etfBA-hbd	TTGTTACTATATTAACAA	-69	5.2	-117
NT01CX_2324	bcd-etfBA	GTGTTTTTTTTTTAACAA	-114	4.7	-52
NT01CX_0464	hydB	ATGTTACATATTTAACAA	-97	5.3	-106
NT01CX_0468	adhA	TTGTTAATAAAATAACAA	-61	5.7	-53
NT01CX_0309	alsT-noxE-yeeE	TTGAGAGAAATTTAACAA	-30	5.1	-196
NT01CX_0278	ctfAB	ATGACAAAAATTTAACAA	-90	5.4	-53,-400
C. perfringens ATCC 131	24				
CPF_2585	crt-bcd-etfBA-hbd	TTGTTACAAAATTAACAA	-124	5.5	-161
CPF_2657	ptb-buk	GTGTTTAAAATTTAACAA	-190	5.2	-117
CPF_2657	ptb-buk	TTGTTATAAATTTAACAA	-43	5.7	-117
CPF_2460	thlA	TTGATAAATTTTTACCTA	-35	4.7	-55
CPF_2460	thlA	TTGTTTAAAATTTAACAA	-115	5.6	-55
CPF_0098	ldh	TTGTTATATAATTAACTT	-64	5.1	-42,-342
CPF_2855	adhE2	TTGATAAAAAAATCACAA	-286	5.2	-225
CPF_2855	adhE2	TAGTTAAAAAAATAACGA	-266	5.3	-225
CPF_0728	noxE	TAGATAAAAATTTAACAA	-60	5.6	-221
CPF_2052	narAB-noxA	ATGATAAATTTTTAACAA	-47	5.5	-214
C. tetani E88					
CTC01847	frdA2	TAGTTAATATTTTAACAA	-40	5.5	-33
CTC01178	noxE-yeeE	TTGAAAGAAATTTAACAA	-141	5.1	-59,-438
CTC02427	crt-bcd-etfBA-hbd	TTGTTATAAATTCAACAA	-245	5	-88
CTC02427	crt-bcd-etfBA-hbd	TTGTTATAATATTAACAA	-104	5.6	-88
CTC00312	thlA	TTGTTAATTTTTTAACTA	-64	5.3	-77
CTC00710	bcd-etfBA	AAGTTAGTTATTTAACAA	-64	5.1	-20

CTC02422	adhA	AAGTTAAGTTATTAACAA	-157	4.8	-67
CTC02422	adhA	ATGTTAAAAATATATCAA	-50	5.4	-67
CTC02417	hydB	CTGTTAATAAATTAACAA	-84	5.3	-38
CTC02546	ptb-buk	TAGTTAAAAAGATATCAA	-48	4.8	-73
CTC01366	adhE2	TTGTTATATAATTAACAT	-139	5.5	-225
CTC01488	frdA	TTGACAAAATATTAACAA	-147	5.4	-172
C. cellulovorans 743B					
Clocel_1811	pflBA	ATGTTAATTATTTAACAT	-68	5.27	-228
Clocel_2402	adhE2	TTGTTAAATTAATAACAA	-175	5.48	-40,-515
Clocel_2976	crt-bcd-etfBA-hbd	TTGTTAATTTAATAACAA	-105	5.37	-70
Clocel_2976	crt-bcd-etfBA-hbd	TTGTTAATTTAATAACAA	-40	5.37	-70
C. carboxidivorans P7					
Ccarb_1085	adhA	TTGTGAAAAATATAACCA	-184	4.74	-96
Ccarb_2944	codH-cooC-fhs-fchA-folD-metF-lpdA-cooC-acsDCEB	ATGTTTAATTTTTAACGT	-193	4.57	-95,-498,-841 ,-1289
Ccarb_4269	ptb-buk	ATGATTAAAAATTTACAA	-1	4.81	-57,-462
Ccarb_4321	adhE2	TTGTTAAAAAAATAACGA	-290	5.23	-160,-488
Ccarb_4321	adhE2	TTGACAAATAATAAACTA	-195	4.57	-160,-488
Ccarb_4500	asrTABC	TTGTGATATATTTATCAT	-192	4.82	-169
Ccarb_5154	crt	AAGTTAAATTATTAACGA	-140	4.9	-23,-235
Ccarb_5154	crt	ATGTTAATAATTTAACTA	-117	5.28	-23,-235
Ccarb_5251	grdIH	TTGATAATTTAATAACAA	-145	5.26	-149
Ccarb_4501	narK	AAGTTAAATAATTAACAA	-52	5.44	-34
Ccarb_4501	narK	TTGAAATAAATATAATAA	-30	4.5	-34
Ccarb_5267	narAB-noxA	AAGTTAAATAATTAACAA	-93	5.44	-54
C. ljungdahlii DSM 13528					
CLJU_c18470	adhA	TAGATAATATTTTAACAA	-59	5.31	-58

CLJU_c23220	butA	TAGTGAATATATTAACAG	-69	4.51	-26
CLJU_c23770	asrABC-narKAB-noxA	ATGTTAAATATATAACAA	-69	5.46	-70
CLJU_c23770	asrABC-narKAB-noxA	TTGATAATTTTTTAAAAA	29	4.77	-70
CLJU_c27840	grdIH	CTGTTATAAAAATAACAA	-175	5.13	-160
CLJU_c27840	grdIH	GTGTTAAAATTAAAACAA	-92	4.7	-160
CLJU_c37670	codH-cooC-fhs-fchA-folD-metF-lpdA-cooC-acsDCEB	ATGTTTATTTTTTAACAT	-185	4.89	-112
CLJU_c39440	bcd2-fldA-bcd-etfBA	TTGTTATAAAATACACAA	-29	4.75	-262

^a Positions of the 5' end of Rex sites are given relative to the translational start.

^b Scores of candidate sites are the sum of positional nucleotide weights.

^cThe transcriptional start sites (TSS) of all the candidate Rex target operons are obtained based on prediction of the potential -10 and -35 promoter elements using the SoftBerry-BPROM (http://linux1.softberry.com/berry.phtml?topic=bprom&group=programs&subgroup=gfindb), except for CAC2712 (*crt*; Boynton et al., 1996), CAC3076 (*ptb*; Walter et al., 1993), CAP0035 (*adhE2*; Ref. 41), and CAC2873 (*thlA*; Stim-Herndon et al., 1995) genes whose TSS have been determined previously. Positions of the TSS are given relative to the translational start.

	K47					
TagDRAFT 4998	MKVPEAAISRLITYLRILEELEAQGVHRTSSEQLGELAQVTAFQVRKDLSYFGSYGTRGVGYTVPVLKRELRHILGL	77				
TTC1293	MKVPEAAISRLITYLRILEELEAQGVHRTSSEQLGELAQVTAFQVRKDLSYFGSYGTRCVGYTVPVLKRELRHILGL	77				
SC03320	ATRSR <mark>GIPEATVARLPLYLR</mark> ALTAL S ERSV <mark>P</mark> TVSSEELAAAAGVN <mark>S</mark> AKL <mark>RKDFSYLG</mark> SYGTRGVGYDVEYLVYQISRELGL	90				
Arth_3297	GTAAKQIPPAAVA <mark>RLTIYLR</mark> ALTTMLTEGVE <mark>R</mark> VSSESLAEASGVSSSTL <mark>RK</mark> DLSHVGSYGTRGVGYEVQYLSRNISAALGL	96				
DvMF_1390	A <mark>P</mark> KSEHIPRATI <mark>QR</mark> LAVYVQVLENLLRE <mark>GTD</mark> VISSEPLAKACNVNASQIRKDLAYFGEFGVRGVGVYVKSLIESITSVLGV	83				
Dde_2702	SVKSEHIPRATIQRLAVYVQVLESLQRDGTEVISSEPLAKACNVNASQIRKDLAYFGEFGVRGVGYVVKNLIESITSALGV	82				
THA_1697	M <mark>E</mark> KKIPRPVIKRLGLYYRCLNRLYEEGIEYVASKDIAERLGIKSSQVRKDLSYFGEFGKRGVGYNTYELMERLEDIIGV	79				
Tme1_1209	MENQKKIPKPVIKRUGLYYRCLNRUSDEGIDFVASKDIAERLGIKSSQVRKDLSYFGEFGKRGVGYNTYELMTKLEKIIGV	81				
TM0169	MAEKIPKPVSKRLVSYYMCLERLLDEGVEVVSSEELARRLDLKASQIRKDLSYFGEFGKRGVGYNVEHLYDAIGEILGV	79				
Cagg_0157	M <mark>E</mark> RSDQ <mark>PP</mark> DVVI <mark>RR</mark> LPLYA <mark>KS</mark> LRYLLEEGIHSV <mark>SSQELGE</mark> RINV <mark>T</mark> AAQI <mark>RK</mark> DL <mark>SY</mark> FGEFGKQGIGYDVEKLLHHIERILGL	81				
Chy400_3940	MERSDLPPDVVIRRLPLYARSLRYLLEEGVHSVSSQELGERINVTAAQIRKDLSYFGEFGKQGIGYDVEKLLQHIERILGL	81				
Kole_1558	MP-EEKIPRPTIKRLAIYYRCLEKQLLQEKNSI <mark>SSK</mark> EIGELLGIKA <mark>SQ</mark> VRKDL <mark>SY</mark> FGEFGKRGVGYDTKKLLEGIGEILGI	80				
SMU. 1053	TFDKT-IPKATIKRLSLYYRIFKRFHSENIEKASSKQIAEAIGIDSATVRRDFSYFGELGRRGFGYDVKKLMNFFADILND	81				
SAG1100	-MDKS-IPKATAKRLSLYYRIFKRFNTDGIEKASSKQIADALGIDSATVRRDFSYFGELGRRGFGYDVKKLMNFFAEILND	79				
SACOL2035	S-DQVKIPRATLKRLPLYYRFVSSLKSKGIDRVNSKAISDALQIDSATIRRDFSYFGELGKKGYGYNIDSLLDFFKSELSE	81				
BSU05970	NKDQSKIPQATAKRLPLYYRFLKNLHAS <mark>G</mark> KQ <mark>RVSS</mark> AELSDAVKVD <mark>S</mark> ATIRRDFSYFGALGKKGYGY <mark>N</mark> VDYLLSFFRKTLDQ	82				
EF2638	K–DQV–IPKATARRLPLYYRYLRMLHDTGKNKVSSTELSEAVQVDSATIRRDFSYFGELGKRGYGYDVENLMNFFAKTLNE	80				
CAC2713	MDKKKNISMAVIRRLPKYHRYLEELLKSDVDRISSKELSEKIGFTASQIRQDLNCFGDFGQQGYGYNVKDLSREVDNILGL	81				
Cbei_0320	MEKHKNISMAVIKRLPKYHRYLEELMKNEVDRISSKELGEKIGFTASQIRQDLNCFGDFGQQGYGYNVKELYTQISAILGL	81				
CB03306	MDKKKNISMAVIRRLPKYHRYLYELLKNDVDRISSKELSEKIGFTASQIRQDLNCFGDFGQQGYGYNVSELHHQISNILGL	81				
CBY_3040	MEKSKNISMAVIKRLPKYYRYLGELKRNEVDRISSKELGEKIGFTASQIRQDLNCFGDFGQQGYGYNVTELYNQIKSILGL	81				
CKL0453	MDKKKDISMSVIKRLPKYHRYLGNLMRNDVDRISSKELSEKIGFTASQIRQDLNCFGDFGQQGYGYNVSELYSQMCNILGL	81				
NT01CX_0475	MEKKRNISMAVIRRLPKYYRYLAELMDNDVDRISSKELSEKIGFTASQIRQDLNNFGDFGQQGYGYNVKDLYNEIRSILGL	81				
CPF_2586	MEKKK <mark>G</mark> ISMAVIKRLPKYHRYLQELMENDVDRISSKELSEKIGFTASQIRQDLNCFGDFGQQGYGYNVKELYNNIGSILGL	81				
CTC02428	MDKKRNISMAVIKRLPKYHRYLEELLRNEVDRISSKELSKKIGFTASQIRQDFNCFGDFGQQGYGYNVKELHAQISNILGL	81				
Cloce1_2977	MEKKKQISMAVIRRLPKYHRYLRELIKNDVDRISSRELSEKIGFTASQIRQDLNNFGDFGQQGYGYNVKELYNQISYILGV	81				
CcarbDRAFT_2635	MDKKKNISMAVIKRLPKYYRYLGQLMKNDVDRISSKELSEKIGFTASQIRQDLNCFGDFGQQGYGYNVTELHGQIGNILGL	81				
CLJU_c37250	MDKKKNISMAVIKRLPKYHRYLMDLMKNDVDRISSKELSEKIGFTASQIRQDLNCFGDFGQQ <mark>GYGYNVG</mark> ELYGQICNILGL	81				
* 051						

FIG S1 Sequence alignment of N-terminal DNA-binding domain of Rex proteins from clostridia and other Gram-positive bacteria including Thermus aquaticus *Y51MC23* (TaqDRAFT 4998), Thermus thermophilus HB27 (TTC1293), Streptomyces coelicolor A3(2) (SCO3320), Arthrobacter sp. FB24 (Arth_3297), Desulfovibrio vulgaris str. 'Miyazaki F' (DvMF_1390), Desulfovibrio desulfuricans G20 (Dde_2702), Thermosipho africanus TCF52B (THA_1697), Thermosipho melanesiensis BI429 (Tmel_1209), Thermotoga maritima MSB8 (TM0169), Chloroflexus aggregans DSM 9485 (Cagg 0157), Chloroflexus aurantiacus Y-400-fl (Chy400_3940), Kosmotoga olearia TBF 19.5.1 (Kole_1558), Streptococcus mutans UA159 (SMU.1053), Streptococcus agalactiae 2603 V/R (SAG1100), Staphylococcus aureus subsp. aureus COL (SACOL2035), Bacillus subtilis 168 (BSU05970), Enterococcus faecalis strain V583 (EF2638), Clostridium acetobutylicum ATCC 824 (CAC2713), Clostridium beijerinckii NCIMB 8052 (Cbei_0320), Clostridium botulinum A str, ATCC 3502 (CBO3306), Clostridium butyricum 5521 (CBY_3040), Clostridium kluyveri DSM 555 (CKL0453), Clostridium novyi NT (NT01CX_0475), Clostridium perfringens ATCC 13124 (CPF_2586), Clostridium tetani E88 (CTC02428), *Clostridium* cellulovorans 743B (Clocel 2977), Clostridium carboxidivorans P7 (Ccarb_2635), and Clostridium ljungdahlii DSM 13528 (CLJU c37250).

FIG S2 Three-dimensional homology model of *C. acetobutylicum* Rex protein. The model was generated based on the known tertiary structure of the *T. aquaticus* Rex regulator (T-Rex) in complex with its DNA operator (Protein Data Bank [PDB] accession number 3IKT) using the software Discovery Studio 2.1. The Gln51 residue of *C. acetobutylicum* Rex and Lys47 of T-Rex are highlighted in yellow and shown with ball-and-stick representation. The hydrogen bond between Lys47 and guanine is shown by green dashes.

FIG S3 Validation of the genotype of *C. acetobutylicum rex*-inactivated mutant. The mutant with intron insertion in *rex* gene was confirmed by PCR (A). Complementation of the *rex*-inactivated mutant by using a plasmid construct constitutively expressing *rex* resulted in a reduced expression level of *adhE2* gene compared to the gene expression in the *rex*-inactivated mutant (B) and a fermentation profile similar to that of the wild-type strain (C).

FIG S4 Effect of *rex* inactivation on transcript levels of the predicted Rex targets (A) and fermentation product formation of *C. beijerinckii* (B). The *C. beijerinckii* wild-type and *rex*-inactivated mutant strains were grown in the XHP2 minimal medium (Xiao et al., 2012). The data points represent the average of three independent experiments.