**Supplementary Figure 1:** A metabolic map illustrating metabolic modules that are involved in methanol growth in *M. extorquens* PA1. Methanol dehydrogenase serves as the primary  $C_1$  oxidation module that oxidizes methanol to formaldehyde. Formaldehyde is further oxidized to formate by a  $H_4MPT$  mediated pathway which acts as the formaldehyde oxidation module. Formate is the branch point for metabolism - a part gets oxidized to  $CO_2$  by formate dehydrogenases and the rest gets reduced and assimilated via a  $H_4F$  mediated pathway and serine cycle. Genes highlighted in red, representative of a particular module, were deleted to test the role of the specific module in methylamine growth via the *N*-methylglutamate pathway.



**Supplementary Figure 2:** A metabolic map illustrating the various metabolic modules that are involved in chloromethane growth in *M. extorquens* CM4. The primary  $C_1$  oxidation module consists of CmuA and CmuB- that catalyze dehalogenation of chloromethane and subsequent methyl transfer to tetrahydrofolate (H<sub>4</sub>F) to form methyl tetrahydrofolate (CH<sub>3</sub>-H<sub>4</sub>F) - and MetF that catalyzes the reduction of CH<sub>3</sub>-H<sub>4</sub>F to methylene tetrahydrofolate (CH<sub>2</sub>=H<sub>4</sub>F). CH<sub>2</sub>=H<sub>4</sub>F is the branch point of metabolism –a part gets oxidized by methylene tetrahydrofolate reductase (*folD*) and formyl tetrahydrofolate hydrolase (*purU*) to formate, which subsequent gets oxidized to CO<sub>2</sub> by a panel of formate dehydrogenases, and the rest gets assimilated via the serine cycle. \**metF*, *folD*, *and purU* are absent in *M. extorquens* PA1



Supplementary Figure 3: A) Ratio of growth rates, of various knockout mutants versus the Δ*cel* 'wildtype' strain of PA1 and, in 3.5 mM succinate (white), 15mM methanol (light brown),nitrogen free media with 3.5 mM succinate and 7.66 mM methylamine (dark gray) and 15mM methylamine (blue) B) Ratio of yield (measured as the maximum OD<sub>600</sub> value during growth) of various knockout mutants versus Δ*cel* 'wildtype' strain of PA1, in 3.5 mM succinate (white), 15mM methanol (light brown), nitrogen free media with 3.5 mM succinate and 7.66 mM methylamine (dark gray) and 15mM methylamine (blue). Error bars represent the 95% C.I. of the average ratio of three biological replicates grown in each condition. A X indicates that the mutants did not grow in methanol. NOTE: The y-axis doesn't start at 0.0 but at 0.5 (for growth rate ratios) and 0.4 (for yield ratios). This was done to highlight subtle changes in growth/yield for these mutants





**Supplementary Figure 4:** Amino acid alignment of FAE, FAE2 and FAE3 from *M. extroquens* PA1 (using MUSCLE: <u>https://www.ebi.ac.uk/Tools/msa/muscle/</u> with standard settings and 150 iterations). The highlighted residues in FAE interact with methyl groups present in tetrahydromethanopterin (H<sub>4</sub>MPT), absent in H<sub>4</sub>F. These interactions are responsible for the specificity of FAE to H<sub>4</sub>MPT. Two of these residues are identical and one residue (Y173) has similar properties in FAE2. Only one residue is identical in FAE3.



**Supplementary Table 1:** Growth rates of the  $\triangle cel$  'wildtype' strain of PA1 and the  $\triangle mptG$  mutant (in the WT background) in 3.5 mM succinate with either 7.66 mM NH<sub>4</sub><sup>+</sup> as the nitrogen source or 7.66 mM methylamine as the nitrogen source. S.E.M. represents the standard error of the mean growth rate for three biological replicates in each condition.

| Strain        | Nitrogen Source   | Mean Growth Rate (h <sup>-1</sup> ) | S.E.M. (h <sup>-1</sup> ) |
|---------------|-------------------|-------------------------------------|---------------------------|
| WT            | $\mathrm{NH_4^+}$ | 0.213                               | 0.002                     |
| $\Delta mptG$ | $\mathrm{NH_4^+}$ | 0.184                               | 0.002                     |
| WT            | Methylamine       | 0.188                               | 0.001                     |
| $\Delta mptG$ | Methylamine       | 0.148                               | 0.002                     |

**Supplementary Table 2:** Growth rates and maximum  $OD_{600}$  of the  $\Delta cel$  'wildtype' strain of PA1 and single-, double-, triple-knockout mutant (in the WT background) lacking  $\Delta fae$ ,  $\Delta fae2$ , *and/or*  $\Delta fae3$  in 15mM methylamine

| Strain                | Mean Growth Rate (h <sup>-1</sup> ) ± 95%C.I. (h <sup>-1</sup> ) | Average Max. OD <sub>600</sub> ± 95% C.I. |  |
|-----------------------|------------------------------------------------------------------|-------------------------------------------|--|
| WT                    | 0.0422±0.0018                                                    | 0.712±0.071                               |  |
| ∆fae                  | 0.0407±0.0004                                                    | $1.044 \pm 0058$                          |  |
| ∆fae 2                | 0.0476±0.0015                                                    | 1.165±0.146                               |  |
| ∆fae 3                | 0.0427±0.0011                                                    | 0.413±0.0.49                              |  |
| ∆fae -∆fae2           | 0.0386±0.0008                                                    | 1.003±0.033                               |  |
| ∆fae -∆fae3           | 0.0406±0.0006                                                    | 0.558±0.021                               |  |
| ∆fae2-∆fae3           | 0.0409±0.0015                                                    | 0.357±0.011                               |  |
| ∆fae -∆fae2-<br>∆fae3 | 0.0375±0.0003                                                    | 0.555±0.040                               |  |

**Supplementary Table 3:** List of primers used to construct knockout mutants in the *N*-methylglutamate pathway as well as FAE-homologs in this study

| Primer                   | Primer Sequence                                                  | Primer Description                                                                                   |
|--------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| ∆fae2_us_f               | ATGGATGCATATGCTGCAGCTCGAGCGGCCGCT<br>CTGCATCAGGTCGTGCAGG         | Gibson forward linker with Not1 and 24 bp of<br>pCM433 backbone at 5' end. Product size = 311<br>bp  |
| ∆fae2_us_r               | CTTTTCGACACTCAAACGCATCGAAGCGCGAGG<br>ATGATGCGGTCGCTCATGG         | 30 bp of ds region linker at 5'end. Product size = $311$ bp                                          |
| ∆fae2_ds_f               | CGCGCTTCGATGCGTTTGAG                                             | Product size = 412 bp                                                                                |
| ∆fae2_ds_r               | GGTTAACACGCGTACGTAGGGCCCGCGGCCGCC<br>GACACCTCGTCGTTGCTCAAG       | Gibson reverse linker with Not1 and 24 bp of<br>pCM433 backbone at 5' end. Product size = 412<br>bp  |
| ∆fae3_us_f               | GCGGAACCAGATCTCGGACATG                                           | Product size = 252 bp                                                                                |
| ∆fae3_us_r               | GGTTAACACGCGTACGTAGGGCCCGCGGCCGCT<br>TCCCTCGCCTGATCCACTG         | Gibson reverse linker with Not1 and 24 bp of<br>pCM 433 backbone at 5' end. Product size = 252<br>bp |
| ∆fae3_ds_f               | ATGGATGCATATGCTGCAGCTCGAGCGGCCGCC<br>GATGGTCACCCTTCAGGTG         | 30 bp of us region linker at 5'end. Product size = 420 bp                                            |
| ∆fae3_ds_r               | ATGACCGACATGTCCGAGATCTGGTTCCGCGCC<br>TCACGCGAGAAGACTAC           | Gibson forward linker with Not1 and 24 bp of<br>pCM433 backbone at 5' end. Product size = 420<br>bp  |
| Δmgs1,2,3_us_f           | ATGGATGCATATGCTGCAGCTCGAGCGGCCGCG<br>GCAATGGAGGCGAATCTCG         | Gibson forward linker with Not1 and 24 bp of pCM433 backbone at 5'end. Product size =433 bp          |
| Δmgs1,2,3_us_r           | TCGCGGCCCTCGTGCCAATCGTCATAGGCGCGT<br>TCGATCACTGTCGCGAG           | 30 bp of ds region linker at 5'end. Product size = 433 bp                                            |
| $\Delta mgs1,2,3\_ds\_f$ | CGCCTATGACGATTGGCACG                                             | Product size = 441 bp                                                                                |
| Δmgs1,2,3_ds_r           | GGTTAACACGCGTACGTAGGGCCCGCGGCCGCC<br>AGATCGGTGTAGGACACGAGG       | Gibson reverse linker with Not1 and 24 bp of<br>pCM 433 backbone at 5' end. Product size = 441<br>bp |
| ∆gmas_us_f               | ATGGATGCATATGCTGCAGCTCGAGCGGCCGCT<br>CGCAGTGATGACGCTGGAG         | Gibson forward linker with Not1 and 24 bp of pCM433 backbone at 5'end. Product size =492 bp          |
| ∆gmas_us_r               | CGCTTGACGCCCTCCACCGTGTGCCCGTCGGTGT<br>ACATGTTTCCAGGGGAGCTGGATCAG | 30 bp of ds region linker at 5'end. Product size = 492 bp                                            |
| ∆gmas_ds_f               | ACATGTACACCGACGGGCAC                                             | Product size = 435 bp                                                                                |
| ∆gmas_ds_r               | GGTTAACACGCGTACGTAGGGCCCGCGGCCGCT<br>GGCCACGATTAGGGCCGAAG        | Gibson reverse linker with Not1 and 24 bp of<br>pCM 433 backbone at 5' end. Product size = 435<br>bp |
| Δmgd1,2,3,4_us_f         | GACGATCACCACGTCGTAGG                                             | Product size = 493 bp                                                                                |
| Δmgd1,2,3,4_us_r         | GGTTAACACGCGTACGTAGGGCCCGCGGCCGCT<br>AGAGTTCGCAGCCCGACAG         | Gibson reverse linker with Not1 and 24 bp of<br>pCM 433 backbone at 5'end. Product size = 493<br>bp  |
| Δmgd1,2,3,4_ds_f         | ATGGATGCATATGCTGCAGCTCGAGCGGCCGCC<br>TCGACTCGTACGCGCATTG         | 30 bp of us region linker at 5'end. Product size = 607 bp                                            |
| Δmgd1,2,3,4_ds_r         | CCGCAGGAGGCCTACGACGTGGTGATCGTCTGA<br>CGAGCATCGCCCATCTC           | Gibson forward linker with Not1 and 24 bp of<br>pCM433 backbone at 5' end. Product size = 607<br>bp  |