- 1 Supplementary Table 1. Molar ratios of lipids utilized in preparation of liposomes
- 2 mimicking cellular compartments (21)

Liposomes	Mammalian plasma membrane	Late Endosome	Endoplasmic raticulum	Golgibody
Cholesterol	50	50	15	20
Phosphatidyl Choline	20	25	52	50
Phosphatidyl Ethanolamine	11	10	30	17
Sphingomyelin	13	5	0	10
Phosphatidyl Serine	6	1	3	3
Phosphatidyl Glycerol	0	0	0	0
BMP (bis(monoacylglycero)phosphate)	0	9	0	0

1 Supplementary Table 2. Hydrogen bond interactions obtained from the interaction and

2 penetration of HAV VP4 with POPC membrane during the course of three different MD

3 simulations.

(1) N-terminus of VP4 facing towards the membrane			
Donor	Acceptor	H-bonding occupancy (%)	
Met1	POPC162	77.57	
	POPC165	69.84	
Arg5	POPC52	48.89	
	POPC54	57.93	
	POPC58	42.48	
	POPC165	50.48	
Asn2	POPC52	68.50	
	POPC165	57.12	
Ser4	POPC52	64.33	
(2) C-te	rminus of VP4 facing towards the me	mbrane	
Ile8	POPC232	22.83	
Ser4	POPC175	28.12	
Arg5	POPC94	42.96	
(3) VP4	oriented and placed parallel to the m	embrane	
Met1	POPC58	66.25	
	POPC161	43.63	
Asn2	POPC58	73.68	
Arg5	POPC52	59.71	
	POPC54	67.51	
	POPC165	55.32	

Supplementary Figure 1: Predicted 3D structure snapshots, from (A) to (E), of HAV VP4
from Bhageerath-H. The total energy obtained for (A-E) are (-342.958 kcal/mol, -328.128
kcal/mol, -327.623 kcal/mol, -308.649 kcal/mol, -307.647 kcal/mol) respectively. The lowest
energy structure shown in panel-A was used for the MD simulations.

- 2 Supplementary Figure 2: Circular Dichroism spectroscopy of 50 µM HAV VP4 in presence
- 3 of liposomes mimicking late endosomal vesicles, at pH 7.0 or pH 5.5.

Supplementary Figure 3: Dynamic light scattering studies, showing the mean
hydrodynamic radius or R_h(mean) of liposomes mimicking late endosomal compartments,
after 20 minutes of incubation with 50 μM of HAV VP4 or FHV γ1, at pH 7.0 and 5.5.

1

Supplementary Figure 4: Root mean square deviation (RMSD) of the Cα backbones of VP4
referring to the starting structure as a function of simulation time. (A) A stable backbone
RMSD of VP4 obtained from the simulation when the N-terminus of the peptide oriented and
placed towards the membrane surface (B) Unstable backbone RMSD observed when the Cterminus of the peptide placed towards the membrane and (C) a stable RMSD of the Cα
backbone of VP4 when it is placed parallel to the membrane.

1

Supplementary Figure 5: Snapshot of VP4 showing a circular ring like structure (N- and Ctermini approaching close to each other) with respect to the membrane surface obtained from
the simulation. The C-terminal α-helical domain appears to be conserved, which may help in
providing stability to the peptide while the N-terminus region is showing to interact and
penetrate with the membrane.