1	SUPPLEMENTAL MATERIAL
2	for:
3	
4	Enhanced uranium immobilization and reduction by Geobacter sulfurreducens biofilms
5	Dena L. Cologgi, ^a * Allison M. Speers, ^a Blair Bullard, ^a Shelly D. Kelly, ^b and Gemma Reguera ^{a#}
6	
7	Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing,
8	Michigan ^a ; EXAFS Analysis, Bolingbrook, Illinois ^b
9	
10	Running Head: Uranium reduction by Geobacter biofilms
11	
12	*Address correspondence to Gemma Reguera, reguera@msu.edu
13	
14	* Present address: Dena Cologgi, department of Civil and Environmental Engineering,
15	University of Alberta, Edmonton, Alberta, Canada.
16	
17	

18 **TABLES**

- 19 **Table S1.** U immobilization and reduction by WT and mutant (pilA and pilA+) biofilms grown for
- 20 24, 48, and/or 72 h.^a

Biofilm (strain/age)	Total U immobilized (mM)	U(IV) ^b (mM)
WT/24h	0.183 (0.018)	0.033 (0.01)
WT/48h	0.238 (0.033)	0.161 (0.031)
WT/72h	0.267 (0.024)	0.248 (0.017)
pilA/48h	0.155 (0.009)	0.059 (0.003)
pilA+/48h	0.313 (0.026)	0.238 (0.020)

21

^a Shown are averages and standard deviations or errors (in brackets) of three (WT samples) or

23 two (pilA and pilA+) independent biofilm assays, respectively.

- ^b Fraction of the immobilized U reduced to U(IV) (estimated by XANES)
- 25
- 26 **Table S2.** Statistical analyses of biofilm structural parameters determined from confocal
- 27 micrographs of the biofilms with the COMSTAT software (1). ^a

Biofilm (strain/age)	Total biomass (µm³/µm²)	Surface Coverage (%)	Average Thickness (µm)	Roughness coefficient (0 to ∞)	Surface Area (x1000 µm ²)	Surface/ volume ratio (µm²/µm³)	Maximum Thickness (µm)
WT/24h	6.35	80.72	7.78	0.26	596	2.92	17.23
	(0.96)	(5.15)	(1.13)	(0.07)	(80)	(0.27)	(3.59)
WT/48h	10.63	91.84	13.25	0.18	1233	3.6	25.95
	(1.29)	(1.66)	(1.83)	(0.03)	(155)	(0.42)	(2.97)
WT/72h	10.56	92.24	13.93	0.24	1010	3.05	28.58
	(3.27)	(6.62)	(3.86)	(0.06)	(233)	(0.36)	(4.84)
pilA/48h	5.21	77.79	6.79	0.32	573	3.41	17.90
	(0.69)	(3.55)	(0.98)	(0.04)	(87)	(0.33)	(1.64)
pilA+/48h	43.42	99.53	60.06	0.06	6072	1.2	64.02
	(14.78)	(0.54)	(18.86)	(0.10)	(2456)	(0.7)	(17.48)

²8 ^a Shown are averages and standard deviations (in brackets) of 16-30 replicate fields for each

29 strain.

30

Path	CN	R (Å)	σ ² (·10 ⁻³ Å ²)		
Oax	Noax	1.80 ± 0.01	1*		
Oeq	Noeq	2.38 ± 0.02	**		
C1	Nc1	2.86 ± 0.01	2 ± 7		
C2	Nc2	3.49 ± 0.03	2 ± 7		
Oax1-Oax2	Noax	3.61 ± 0.02	2*		
Oax1-U-Oax2	Noax	3.61 ± 0.02	2*		
Oax1-U-Oax1	2Noax	3.61 ± 0.02	4*		
C3	Nc1	4.54 ± 0.07	2 ± 7		
C1-C3	2Nc1	4.54 ± 0.07	2 ± 7		
C1-C3-C1	Nc1	4.54 ± 0.07	2 ± 7		
Odist	Nc2	4.69 ± 0.08	2 ± 7		
C2-Odist	2Nc2	4.72 ± 0.08	2 ± 7		
C2-Odist-C2	Nc2	4.74 ± 0.08	2 ± 7		
*value held, **pilA: 25 ± 6, WT: 18 ± 4					

Table S3. EXAFS modeling results for R and σ^{2**}

Table S4. EXAFS modeling results for coordination numbers

data set	Noax	Noeq	C1	C2
WT	1.0 ± 0.1	6.3 ± 1.4	1.4 ± 0.7	1.4 ± 0.8
pilA	1.5 ± 0.1	6.9 ± 2.2	1.2 ± 0.7	1.2 ± 0.7

36 FIGURES

37

Fig. S1: Elemental analyses of biofilm-associate precipitates. EDS spectra of regions of 48h old biofilms (boxed regions in SEM micrographs shown in insets) showing the elemental
composition of the mineral associated to biofilms exposed to 1 mM uranyl acetate for 24 h (A
and B) in reference to unexposed controls (C). The U peaks are highlighted with red arrows.

42 Scale bar in insets, 5 µm.

Fig. S2: CLSM micrographs showing top view projections of 24-, 48- and 72-h WT biofilms (A,
B, and C, respectively), and 48-h pilA (D) and pilA+ (E) biofilms stained the BacLight[™] viability

47 kit (green, live cells; red, dead cells). Scale bar, 20 μ m.

50

51 Fig. S3: U immobilization and reduction per biofilm biomass unit. Total U immobilized 52 (gray) and fraction reduced to U(IV) (white) per biomass volume unit by WT biofilms grown for 53 24, 48 and 72 h (A) and by 48-h old biofilms of the pilin-deficient pilA mutant and the 54 hyperpiliated pilA+ strains alone (B). The biofilms were exposed to 1 mM of uranyl acetate for 55 24 h. Shown are averages and standard deviation/error of triplicate (WT) or duplicate (pilA and 56 pilA+) biofilm samples, respectively, normalized by the biomass volume estimated with the 57 COMSTAT software analysis (Table S2). Significant differences (p < 0.05 and p < 0.005) in t-58 test pairwise comparisons with the 24-h (A) or 48-h (B) WT biofilms are indicated with one or 59 two stars, respectively.

60

61 Fig. S4: Correlation between the age of the WT (circles), pilA (squares), and pilA+ (triangles) 62 biofilms and biofilm structural parameters such as biomass (A), thickness (B), surface area (C), 63 surface coverage (D), surface to volume ratio (E), and roughness coefficient (F). The secondary 64 Y axis in some of the plots is the same as the primary axis but at a larger scale to accommodate 65 to the higher values of the piIA+ biofilm values. The structural parameters showing similar 66 trends have been aligned vertically (left and right). For comparisons, the time course plots of U 67 immobilization (total U) and reduction U(IV) by the biofilms are also provided (boxed in red, 68 plotted from data shown in Tables S1).

69

70 **Fig. S5:** Linear correlation between the total protein content of biofilms and biofilm age in plastic

71 wells of 6-well plate (main) and coverslip assembly (inset) assays.

72

73

74 Fig. S6: Correlation between U reduction (fraction of the immobilized U reduced to U(IV)) by 48-

h old pilA, WT, and pilA+ biofilms and the biomass volume (left axis) or piliation (right axis,

piliation levels as reported by (2)). The correlation with piliation is linear whereas but exponential

77 with biomass.

78 **REFERENCES**

- 1. Heydorn, A., A. T. Nielsen, M. Hentzer, C. Sternberg, M. Givskov, B. K. Ersboll, and
- 80 **S. Molin.** 2000. Quantification of biofilm structures by the novel computer program

81 COMSTAT. Microbiology **146 (Pt 10)**:2395-2407.

- 82 2. Cologgi, D. L., S. Lampa-Pastirk, A. M. Speers, S. D. Kelly, and G. Reguera. 2011.
- 83 Extracellular reduction of uranium via *Geobacter* conductive pili as a protective cellular
- 84 mechanism. Proc. Natl. Acad. Sci. USA **108**:15248-15252.