Supplementary material Text S1

Modeling the timing of anti-latency drug administration

during HIV treatment

Additional details and explanations of modeling methods.

1. Model properties

We used a model of viral dynamics with productively and latently infected cells:

dT /dt=A-d,T - pvVT

dl /dt= fBVT -6l +alL
dL/dt=(1-f)BVT - (a+w)L
dv/dt=pl-cV

Eq.S1

where the uninfected target (CD4+ T) cells (T) are replaced at a rate A and die at
the rate dr. They are infected by free virus (V) according to the mass action law
with infectivity S. A large fraction fbecomes productively infected (I) and short-
lived, producing virus at the rate p and dying at death rate 8. A small fraction (1-
f) becomes latently infected (L) and does not produce virus. The latently infected
cells are activated at a rate o, upon which they become productive and short-
lived, and die at a rate w. The model assumes that the activation rate of latently
infected cells increases with viral load in an S-shaped manner

a=O.8{O.5+arctan[3(logV—logS-lOS)/ﬂ} Eq.S2
while the death rate of latently infected cells is constant (w = 2x10-4).

In this model, the initial infection will spread if the basic reproductive
ratio is

ABp >1
d,oc

R =f , Eq.S3

i.e. the initial spread does not depend on the dynamics of the latent reservoir.
The increase in the fraction of the latently infected cells 1 - f in the range
between 0 and 0.1 only proportionally increases the size of the latent reservoir
without any other influence on the dynamics of the system.

It is hard to obtain a closed mathematical form for the steady states of the
variables because of the highly nonlinear form of the dependence of con V.
Therefore we obtained the steady states for the viral load and latent reservoir
numerically as the values after 500 simulated days. In the simulation, we



assumed that the death rate of productively infected cells 6 and the clearance
rate of the virus, at 6 = 0.8 day'! and ¢ = 20 day-! respectively, do not vary much
across individuals, and that the variation of the chronic viral load is mostly the
result of the differences in infectivities 5 or rates of virus production by infected
cells p. We assumed f= 0.995 in all simulations.

The steady-state size of the latent reservoir depends on Ry differently if
this change is effected by the change in infectivity or by the change in virus
production rate (Figure S1).
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Figure S1. Effect of changing infectivity or virus production rate on the size of the
latent reservoir at viral set point.

The size of the latent reservoir would increase with the increase of the set
point viral load if the basic reproductive ratio Ro increases solely because of the
increased infectivity (open circles and dashed lines in Figure S1) or if it increases
only because of the change in virus production rate (open squares and full lines).
However, the latent reservoir would decrease with the increase of the set point
viral load if infectivity decreases at constant Ro.

[t is believed that viral production rates are the most variable, both across
infected cells in an individual and as averages across individuals. This
assumption has also been made in estimating the size of the latent reservoir in
the ref. (1), where the variations in Ro and in chronic viral load are assumed to be
the result of only variations in viral production rates p across patients. With this
assumption, our model (Eq.S1) also shows an increase of the viral reservoir with
increasing chronic viral load, as found in ref. (1) (Figure S2, full lines at constant
infectivity f).

2. Overall individual turnover rates

In reference (2), we determined the overall turnover rates of latently infected
cells for individual SIV-infected rhesus macaques by comparing the patterns of
immune escape in plasma and in resting infected cells. From the delay of escape
in the resting cells we could infer an overall turnover rate for each monkey. We
found that these “average” individual turnover rates positively correlated with
individual set point viral loads.



In this paper we use a model in which the instantaneous activation rate of
latently infected cells depends on instantaneous viral load in a similar way as the
dependence of the overall activation rate on the chronic viral load from the
previous study (2).

In order to see if the model Eq.S1-S2 would result in a similar relationship
between the overall activation rate and the chronic viral load as found in (2), we
simulated immune escape in 15 individuals using this model applied to the
dynamics of escape, and then determined the overall activation rates and chronic
viral loads for each individual.

The equations for the viral escape model were:

dT /dt=A-d, T - B,WT - B.ET

dl, /dt=fB,WI -06,1, +oaL,

dl,/dt=fBWT -6.1,+aL,

dL, /dt=1-f)B,WT -(a+w)L, Eq.54
dL, /dt=(1-f)BWT -(a+w)L,

dW /dt = py,I, —cW

dE/dt=p.l, -cE

where W and E are the wild-type and escape mutant viral loads, and the
subscripts W and E refer to wild-type and escape mutant respectively. The
activation rate a depended on viral load as described in Eq.S3 in all individuals.
We assumed f= 0.0995, v = 2x10-* day'! and c = 20 day! for all. In addition, we
assumed that initially without immune response dwo = d¢ = 0.8 day-1, but that
after 10 days the immune response emerges, increasing éw to dwo + A, causing
the escape mutant to overtake. The individuals varied in disease-free target cells
frequencies (i.e. A and dr), in infectivities and virus production rates of wild type
and escape mutant, and in the time during infection when the escape mutation
occurs.

Following the experimental setup in (2), we “sampled” the wild type and
escape mutant viral loads first weekly and later fortnightly and monthly (18 time
points during 200 days of infection), and the fraction bw of WT in the latently
infected cells less frequently, at 9 time points. We then used the equations from

(2):

dAN/dt=W +E -alA

Eq.S5
db, |dt=W/A-b,(W+E)/A
to fit the overall activation rate & for this individual. In Eq.S5, A is a dummy
variable proportional to the total number of latently infected cells. The results
are shown as red full circles in Figure S2 against the experimental results (black
full circles) from (2).
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These simulation results show that the dependence of activation rate of latently
infected cells similar to Eq.S3 could cause the dependence of the overall
activation rate on the chronic viral load observed in (2).
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