Strain or plasmid	Description	Reference
S. pyogenes		
MGAS2221	Wild-type, M1-serotype strain	(1)
SF370	Wild-type, M1-serotype strain	(2)
JRS4-PolHis	The JRS4 strain has the plasmid integrated into the	(3)
	chromosome by a single cross-over event at the <i>rpoC</i> gene	(-)
	which encodes the β subunit of RNA polymerase, creating a	
	His ₆ tag at its C-terminal end.	
MGAS8232	Wild-type, M18-serotype strain	(4)
87-282	Wild-type, M18-serotype strain	(5)
Manfredo	Wild-type, M5-serotype strain	(6)
Vaughn	Wild-type, M5-serotype strain	(5)
Alab49	Wild-type, M53-serotype strain	(7)
NZ131	Wild-type, M49-serotype strain	(8)
Bisno9	M53-serotype clinical isolate	This study
Bisno21	M3-serotype clinical isolate	This study
2221∆covR	covR deletion mutant of the MGAS2221strain	(9)
2221∆P2∆hasS	The P2 promoter and the entire <i>hasS</i> sequence are deleted in MGAS2221	This study
2221∆P2	The P2 promoter is deleted in MGAS2221	This study
2221P1 ⁻	The –10 box of the P1 promoter is inactivated by mutations in	This study
	MGAS2221	
2221∆P2P1 ⁻	In MGAS2221 P2 promoter is deleted and the –10 box of the	This study
	P1 promoter is inactivated by mutations	,, ,
2221∆42T	MGAS2221 has a 42-nt deletion which includes the hasS	This study
	terminator sequence and the T-rich region located immediately downstream	
2221∆63T	MGAS2221 has a 63-nt deletion which includes the <i>hasS</i> terminator sequence, the T-rich region and 25 nts located	This study
	immediately downstream	
2221∆covR∆P2∆hasS	The P2 promoter and the entire $hasS$ sequence are deleted in 2221 $\Delta covR$	This study
2221∆ <i>covR</i> ∆42T	2221 $\triangle covR$ has a 42-nt deletion which includes the hasS	This study
	terminator sequence and the T-rich region located immediately downstream	
2221∆covRP1 ⁻	In $2221 \triangle covR$ the -10 box of the P1 promoter is inactivated by mutations	This study
2221∆ <i>covR</i> ∆42TP1 ⁻	$2221 \Delta cov R$ has mutations in the -10 box of the P1 promoter	This study
	and a 42-nt deletion which includes the hasS terminator	
	sequence and the T-rich region located immediately	
	downstream	
2221∆ <i>covR</i> ∆P2P1 ⁻	In $2221 \triangle cov R$ the P2 promoter is deleted and the -10 box of	This study
	the P1 promoter is inactivated by mutations	
2221/pKSMhasS	The MGAS2221 strain carrying the pBBL740 <i>hasS</i> plasmid	This study
SF370∆63T ^a	The SF370 strain has a 63-nt deletion which includes the hasS	This study
	terminator sequence and the T-rich region located immediately downstream	
E. coli		l
DH5α	Cloning host	Invitrogen
Rosetta (DE3)	Protein expression host	Novagen

Table S1. Bacterial strains and plasmids

Plasmids		
pKSM720	E. coli - Streptococcus vector containing a promoterless	(10)
	luciferase (<i>luc</i>) gene with its ribosomal-binding site	
pBBL740	S. pyogenes integrational plasmid	(11)
pKSM720P2	pKSM720 containing transcriptional fusion of P2 with <i>luc</i>	This study
pKSM720P2T	pKSM720 containing transcriptional fusion of <i>luc</i> with a 0.184 kb DNA fragment harboring P2, <i>hasS</i> and the terminator	This study
pKSM <i>ha</i> sS	pKSM720 containing a 305 bp DNA fragment carrying the P2 promoter and <i>hasS</i>	This study
pBBL740hasS	pBBL740 containing a 1.4 kbp DNA fragment carrying hasS locus and its flanking either side regions	This study
pBBL740∆P2	pBBL740 <i>hasS</i> derived plasmid containing a deletion of the P2 promoter	This study
pBBL740P1	pBBL740 <i>hasS</i> derived plasmid containing mutations in the –10 box of the P1 promoter	This study
pBBL740∆P2P1	pBBL740 <i>hasS</i> derived plasmid containing a deletion of the P2 promoter and mutations in the –10 box of the P1 promoter	This study
pBBL740∆P2∆ <i>ha</i> sS	pBBL740 <i>hasS</i> derived plasmid containing a deletion of the P2 promoter and the entire <i>hasS</i> sequence including the terminator	This study
pBBL740∆42TP1	pBBL740 <i>hasS</i> derived plasmid containing mutations in the –10 box of the P1 promoter and a 42-nt deletion which includes the <i>hasS</i> terminator sequence and the T-rich region located immediately downstream	This study
pBBL740∆42T	pBBL740 <i>hasS</i> derived plasmid containing a 42-nt deletion which includes the <i>hasS</i> terminator sequence and the T-rich region located immediately downstream	This study
pBBL740∆63T	pBBL740 <i>hasS</i> derived plasmid containing a 63-nt deletion which includes the <i>hasS</i> terminator sequence, the T-rich region and 25 nts located immediately downstream	This study
pET21d	<i>E. coli</i> protein expression vector harboring T7 promoter	Novagen
pETCovR	pET21d derived plasmid containing <i>covR</i> with TEV cleavage site followed by His ₆ tag at its C-terminus	This study
pETCovRD53E	pETCovR derived plasmid containing a D53E mutation in CovR	This study
pEU7534	pET15b derived vector containing rpoD	(12)

^a - The whole genome of the mutant was sequenced (Virginia Bioinformatics Institute at Virginia Tech). We found that the strain has a deletion in the *spyB* gene in addition to a deletion of the terminator. The *spyB* deletion was rescued through insertion of the WT copy of *spyB* in the mutant chromosome. The "rescued" strain had the phenotype similar to the SF370 Δ 63T mutant indicating that the phenotype of the mutant is due to a deletion of the terminator.

Primer	Sequence ^a
hasR-BamHI-f	GATC <u>GGATCC</u> GTTCTGGGCTACCATATTCTGAC
hasR-Xhol-r	CAGT <u>CTCGAG</u> CTGTTGCAGCATAAACTGTCTCATC
P2-BgIII-f	CGTG <u>AGATCT</u> CTACAATATATCCTTTACCAG
P2-Xhol-r	CAGT <u>CTCGAG</u> TATCTCAAAATAATTGAATTG
term-Xhol-r	ACGT <u>CTCGAG</u> CCCCCAAAAAAGAAAAATCAGG
RPA-f	GCGGTTATTTGAGATAATTTATATTAA
RPA-r	TTCCCCCAAAAAAGAAAAATCAGG
hasART-f	CGCGGAGTAATATTAATAACCTATC
hasS-f	CCGT <u>GAGTCT</u> CCTTTACCAGTTATCATATTTCTTG
hasS-r	CCGT <u>GAGTCT</u> GGCACAATTACACCTCTTTC
hasART-r	CAGCAGCAACTTTATAGTCATG
plr-f	CGTCTTGCATTCCGCCGTATTC
plr-r	GATCTGTAAGGTCATTGATACG
hasSRT-f	CCGCGCCGCAATTCAATTATTTTGAGATAAT
hasSRT-r	GCGCGCGGAAAAGAAAAATCAGGATAATTTATT
1	GCGGCTTTTTTGACTTAATTGTCGGG
2	CCATTTTTATTCAGGTTAGGTG
covR-Ncol-f	CGCA <u>CCATGG</u> CCACAAAGAAAATTTTAATTATTGAAGATG
covR-Xbal-r	GCGC <u>TCTAGA</u> TTATTTCTCACGAATAACGTATCCC
RNA-has-r1	GCGCGTTCCCCCAAAAAAGAAAAATCAGG
mga-f	TGCGTGATCGTGACTGTTTTTG
mga-r	GTTCTCCCACTGTTGACTTGTAAAC
F1	CAAGGAAATTAAAAAAGAAAG
F2	TTATTAAAAATATTTCTATGACTAGTTGAC
F3	GATAAAACTATTTGAAAAGTTTGC
F4	CTACAATATATCCTTTACCAGTTATCATATTTCTTG
R	CCATAAATTCCTACAGTTGATGTTCC
rtqRT-f	GCGCGCGTTATTAAAAATATTTCTATGAC
rtqRT-r	GACAGGGACCTCGATATTC
P1-f	GCGCCAATTCAATTATTTTGAG
P1-r	CACGTCTCGAGCATAAATTCCTACAGTTGATGTTC

^a - Restriction sites are underlined.

primer	sequence	Introduced
		mutations
∆hasS-f	CACAAAATTAGATAAAACTATTTGGGGGAAATTTTTTAATTTAAA	The P2 promoter and
	TAC	the entire <i>ha</i> sS
∆hasS-r	GTATTTAAATTAAAAAATTTCCCCCAAATAGTTTTATCTAATTTT	sequence are deleted
	GTG	
∆P2-f	CACAAAATTAGATAAAACTATTTGTAACAATTCAATTATTTTGAG	The P2 promoter is
∆P2-r	CTCAAAATAATTGAATTGTTACAAATAGTTTTATCTAATTTTGTG	deleted
mP1-f	GACATTACCCCTTATTTATATTCTAGAATCGAGGTCCCTGTCTT	The –10 box of the P1
	TCAAGG	promoter is mutated
mP1-r	CCTTGAAAGACAGGGACCTCGATTCTAGAATATAAATAAGGGG	
	TAATGTC	
∆42T-f	CAATTCAATTATTTTGAGGGGGAAATTTTTTAATTTAAATAC	a 42-nt deletion which
∆42T-r	GTATTTAAATTAAAAAATTTCCCCCTCAAAATAATTGAATTG	includes the hasS
		terminator and the T-
		rich region
∆63T-f	CAATTCAATTATTTGAGATAATTTTTATTAAAAAATATTTCTATGA	a 63-nt deletion which
	C	includes the hasS
∆63T-r	GTCATAGAAATATTTTTAATAAAAATTATCTCAAAATAATTGAAT	terminator, the T-rich
	TG	region and 25 nts
		located immediately
		downstream
CovR-D53E-f	GATTTAATCCTGCTTGAATTAATGTTACCAGAGATG	a D53E mutation in
CovR-D53E-r	CATCTCTGGTAACATTAATTCAAGCAGGATTAAATC	CovR

Table S3. Primers for site-directed mutagenesis

GAS strain	serotype	hasABC		hasS te	rminator		P2	IS1239	Repeats		
		locus	42 bp	34 bp	25 bp	no	promoter		in hasS		
		10000	stem-	stem-	stem-	stem-	mutation		in nace		
			loop			loop	matation				
Strains analyzed in (loop	loop	loop	1000					
	Strains analyzed in this study										
MGAS2221 ^a	M1	+b	_ ^c	-	+	-	-	—	—		
SF370 ^a	M1	+	-	-	+	-	-	—	-		
Bisno21	M3	+	-	-	-	+	+	—	_		
Manfredo ^a	M5	+	-	-	-	+	+	+	-		
Vaughn	M5	+	_	_	_	+	+	+	—		
MGAS8232 ^a	M18	+	_	_	_	+	_	_	_		
87-282	M18	+	_	_	_	+	_	_	_		
NZ131 ^a	M49	+	_	+	_	_	_	_	_		
Alab49 ^a	M53	+	+	_	_	_	+	_	_		
Bisno9	M53	+	+	_	_	_	+	_	_		
NCBI's complete ger		•									
M1 GAS	M1	+	_		+	_	_	_	_		
MGAS5005	M1	+	_	_		_	_	_	_		
MGA35005 M1 476	M1		_	_	+	_	_	_	_		
		+	_	_	+	_	-	_	_		
A20	M1	+	-	—	+	-	-	—	—		
MGAS10270	M2	+	_	-	-	+	-	_	-		
SSI-1	M3	+	-	—	-	+	+	—	—		
MGAS315	M3	+	-	-	-	+	+	—	_		
MGAS10750	M4	-	-	—	-	-	-	_	-		
MGAS10394	M6	+	+	_	-	_	+	+	+		
MGAS9429	M12	+	_	+	_	_	_	_	_		
MGAS2096	M12	+	_	+	_	_	_	_	_		
HKU	M12	+	_	+	_	_	_	_	_		
QMN11M0907901											
HSC5	M14	+	_	_	_	+	+	_	_		
MGAS6180	M28	+	_	+	_		_	_	_		
MGAS1881	M59	+		+							
MGAS15252	M59	+	_	+	_	_	_	_	_		
NCBI's whole genon		-		т	—	—	_	_	_		
GA41345			g								
	M1	+	_	-	+	-	—	_	_		
DSM 20565	M1	+	-	-	+	-	-	—	—		
GA40634	M4	_	-	-	-	-	-	—	—		
GA19700	M6	+	+	—	-	-	+	+	+		
GA19681	M6	+	+	_	-	-	+	+	+		
BJCYGAS15	M12	+	-	-	-	+	-	_	-		
HLJGAS12011	M12	+	-	—	-	+	-	_	-		
SP1-LAU	M12	+	_	+	_	_	_	_	_		
GA41394	M18	+	_	_	_	+	_	_	_		
ATCC 10782	M24	+	_	+	_	_	_	_	_		
GA40377	M28	+	_	+	_	_	_	_	_		
06BA18369	M41.2	+	_	+	_	_	+	_	_		
M49 591	M49	+	_	+	_	_		_	_		
GA40884	M59	+	_	+	_	_	_	_			
GA03747	M66	+	_	+	_	_	_	_	_		
GA03455	n.a. ^e	+	_	T T	_	_		_	_		
			+	_	_	_	+	_	_		
GA03805	n.a.	+	+	-	-	-	+	-	_		
GA41039	n.a.	+	+	-	-	-	+	-	-		
UTMEM-1	n.a.	+	-	+	-	-	-	-	-		
			1			1	1	1			
UTSW-2	n.a.	+	-	+	_	_	—	-	-		
	n.a. n.a.	++	_	+	_	_	_	_	_		

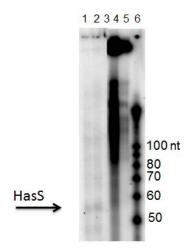
Table S4. Genetic diversity in the hasS region.

GA40056	n.a.	+	_	+	_	_	_	_	_
GA19702	n.a.	+	-	+	_	_	_	_	_
GA41046	n.a.	+	-	_	_	+	_	_	_

^a – complete genomes; ^b – present; ^c – absent; ^d - GAS genomes with the partial sequence of the *hasS* locus were not selected for analysis; ^e - serotype information is not available.

Figure S1

Α


TTTTTTGACTTAATTGTCGGGATTCTAGTGTTAGTAAAATATAGTTTTCTACAATATATCCTTTACCAGTTATCATATTTCTTGATATTTTTTAAAAAATCAAAATATATCTAT

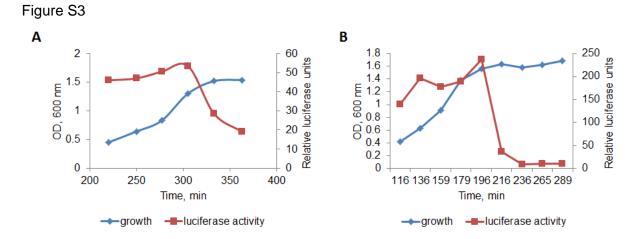

В	1 2 3 4 5 6 bp 150 — hasA
	100 90 80
	70 — 60 —
	50
	40

Fig. S1. The *hasA* upstream region encodes the P1 promoter. **A**. Nucleotide sequence of the *hasA* upstream region in GAS M1-serotype. -35, -10 and extended -10 promoter regions are underlined. Bent arrows denote the transcriptional start sites of *hasS* identified by 5' RACE analysis and *hasA* according to the published results of primer extension analysis (13). Horizontal arrows indicate the location of the primers, P1-f and P1-r (Table S2), used for *in vitro* transcription of the P1 promoter region. The transcriptional product is shown in blue font. **B.** Time-course of *in vitro* RNA synthesis from a PCR product carrying the P1 promoter. Shown is a 10% denaturing urea polyacrylamide gel containing *in vitro* transcribed RNA products using GAS RNA polymerase and σ^{A} . DNA template for transcriptional reactions loaded in the lanes 1, 2 and 3 was PCR amplified from MGAS2221 genomic DNA using the primers pair of P1-f and P1-r. DNA template for transcriptional reactions loaded in the lanes 4, 5 and 6 was PCR amplified from 2221P1⁻ strain genomic DNA using the same primer pair. Lane 1 and 4, 30 min; lane 2 and 5, 60 min; lane 3 and 6, 90 min. The RNA ladder is labeled in bases.

Figure S2

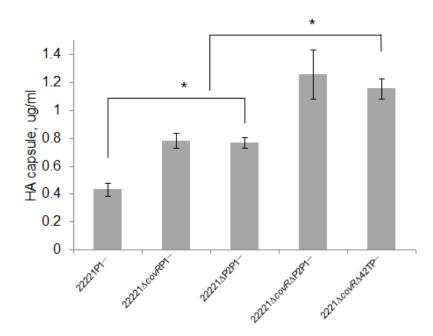


Fig. S2. RPA identifying transcript in the intergenic region upstream of *hasA* and downstream of M5005_Spy_1850. Lane 1, RPA with RNA isolated from 2221∆*covR*; Lane 2, RPA with RNA isolated from 2221/pKSM*hasS*; Lane 3, RPA with RNA isolated from MGAS2221; Lane 4, no-RNAse control; Lane 5, the probe, Lane 6, RNA ladder

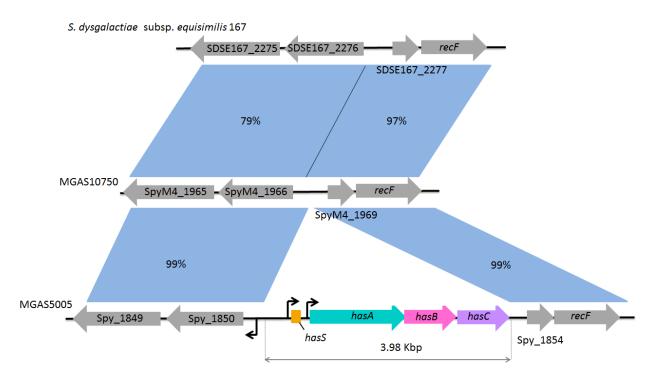

Fig. S3. Transcriptional analysis of the P2 promoter. Time courses of luciferase activity was carried out on *S. pyogenes* strains harboring the P2::*luc* fusion. Panel **A** shows the results obtained with the WT strain and panel **B** shows the results ontained with the 2221 $\Delta covR$ mutant. The results of one representative experiment out of three independent experiments are shown.

Fig. S4. The RNA product from *hasS* region negatively regulates capsule expression. The strains harvested at the mid-exponential growth phase. The experiments were performed in triplicate, and mean values ± standard deviations are shown. * denotes statistically significant differences calculated using the Student's test.

Figure S5

Fig. S5. Comparative genome alignment of the *hasABC* operon and the flanking DNA regions from *S. dysgalactiae* subsp. *equisimilis* 167 and *S. pyogenes* strains — MGAS5005 (M1-serotype) and MGAS10750 (M4-serotype). Bent arrows indicate the promoters in the *hasA* upstream region. Blue bars separating each genome represent similarity matches.

Figure S6.

M1	AACAATTCAATTATTTTGAGATAATTTAT-			 		ATTAAATAAATTATCCTGATTTTTCTTTT
	AACAATTCAATTATTTGGGATAATTTAT-					
WO		ACAATICAATIAT	THUGGGATAATTTA			TATTAAATAAATTATCCTGATTTTCTTT
	Ť.	r			\rightarrow	←───

Fig. S6. Sequence alignment of *hasS* from serotypes M1, M53 and M6. The terminator hairpin is marked by inverted arrows. Brackets denote DNA repeats in *hasS* from serotype M6.

References

- 1. Sumby P, Porcella SF, Madrigal AG, Barbian KD, Virtaneva K, Ricklefs SM, Sturdevant DE, Graham MR, Vuopio-Varkila J, Hoe NP, Musser JM. 2005. Evolutionary origin and emergence of a highly successful clone of serotype M1 group a Streptococcus involved multiple horizontal gene transfer events. J Infect Dis **192**:771-782.
- Ferretti JJ, McShan WM, Ajdic D, Savic DJ, Savic G, Lyon K, Primeaux C, Sezate S, Suvorov AN, Kenton S, Lai HS, Lin SP, Qian Y, Jia HG, Najar FZ, Ren Q, Zhu H, Song L, White J, Yuan X, Clifton SW, Roe BA, McLaughlin R. 2001. Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proceedings of the National Academy of Sciences of the United States of America 98:4658-4663.
- 3. **Opdyke JA, Scott JR, Moran CP, Jr.** 2001. A secondary RNA polymerase sigma factor from Streptococcus pyogenes. Molecular microbiology **42**:495-502.
- 4. Smoot JC, Barbian KD, Van Gompel JJ, Smoot LM, Chaussee MS, Sylva GL, Sturdevant DE, Ricklefs SM, Porcella SF, Parkins LD, Beres SB, Campbell DS, Smith TM, Zhang Q, Kapur V, Daly JA, Veasy LG, Musser JM. 2002. Genome sequence and comparative microarray analysis of serotype M18 group A Streptococcus strains associated with acute rheumatic fever outbreaks. Proceedings of the National Academy of Sciences of the United States of America 99:4668-4673.
- Ashbaugh CD, Alberti S, Wessels MR. 1998. Molecular analysis of the capsule gene region of group A Streptococcus: the hasAB genes are sufficient for capsule expression. Journal of bacteriology 180:4955-4959.
- Holden MT, Scott A, Cherevach I, Chillingworth T, Churcher C, Cronin A, Dowd L, Feltwell T, Hamlin N, Holroyd S, Jagels K, Moule S, Mungall K, Quail MA, Price C, Rabbinowitsch E, Sharp S, Skelton J, Whitehead S, Barrell BG, Kehoe M, Parkhill J. 2007. Complete genome of acute rheumatic feverassociated serotype M5 Streptococcus pyogenes strain manfredo. Journal of bacteriology 189:1473-1477.
- 7. **Lizano S, Luo F, Tengra FK, Bessen DE.** 2008. Impact of orthologous gene replacement on the circuitry governing pilus gene transcription in streptococci. PLoS One **3**:e3450.
- McShan WM, Ferretti JJ, Karasawa T, Suvorov AN, Lin S, Qin B, Jia H, Kenton S, Najar F, Wu H, Scott J, Roe BA, Savic DJ. 2008. Genome sequence of a nephritogenic and highly transformable M49 strain of Streptococcus pyogenes. Journal of bacteriology 190:7773-7785.
- 9. **Trevino J, Perez N, Ramirez-Pena E, Liu Z, Shelburne SA, 3rd, Musser JM, Sumby P.** 2009. CovS simultaneously activates and inhibits the CovR-mediated repression of distinct subsets of group A Streptococcus virulence factor-encoding genes. Infection and immunity **77:**3141-3149.
- 10. **Kinkel TL, McIver KS.** 2008. CcpA-mediated repression of streptolysin S expression and virulence in the group A streptococcus. Infection and immunity **76:**3451-3463.
- 11. **Zhu H, Liu M, Sumby P, Lei B.** 2009. The secreted esterase of group a streptococcus is important for invasive skin infection and dissemination in mice. Infection and immunity **77:**5225-5232.
- 12. **Gusa AA, Scott JR.** 2005. The CovR response regulator of group A streptococcus (GAS) acts directly to repress its own promoter. Molecular microbiology **56:**1195-1207.
- 13. **Crater DL, van de Rijn I.** 1995. Hyaluronic acid synthesis operon (has) expression in group A streptococci. The Journal of biological chemistry **270**:18452-18458.