Supplemental Material

Novel Insights into the Mechanism of Inhibition of MmpL3, a Target of Multiple Pharmacophores in *Mycobacterium tuberculosis*

Wei Li¹, Ashutosh Upadhyay¹, Fabio L. Fontes¹, E. Jeffrey North^{2*} Yuehong Wang³, Debbie C. Crans⁴, Anna E. Grzegorzewicz¹, Victoria Jones¹, Scott G. Franzblau³, Richard E. Lee², Dean C. Crick^{1#}, and Mary Jackson^{1#}

From the ¹Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; ²Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1000, Memphis, TN 38105, USA; and ³the Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60621, USA; ⁴Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA

<u>Figure S1</u>: Effects of INH on the biosynthesis of trehalose mono- and di-mycolates, sulfolipids, diand poly-acyltrehaloses and phthiocerol dimycocerosates in *Mtb*.

Surface exposed and cell-associated [14 C]-acetate-labeled and [$1-^{14}$ C]propionate-labeled lipids from untreated and INH-treated *Mtb* H37Rv mc²6206 cells were analyzed by TLC as described in Fig. 4. The solvent systems used are: (A) [CHCl₃:CH₃OH:H₂O, 20:4:0.5] ([14 C]-acetate-labeled lipids); (B) [CHCl₃:CH₃OH:H₂O, 60:30:6] ([$1-^{14}$ C]propionate-labeled lipids); (C) [petroleum ether (60/80°C):ethyl acetate, 98:2; three developments] ([$1-^{14}$ C]propionate-labeled lipids); (D) first dimension: [petroleum ether (60/80°C):acetone, 92:8; three developments]; second dimension: [acetone:toluene, 95:5] ([$1-^{14}$ C]propionate-labeled lipids), The same volume of samples was loaded per lane. CL, cardiolipin; PE, phosphatidylethanolamine.

Figure S2: Effect of THPP-2 and 2418 on the transfer of mycolic acids to their cell envelope acceptors.

Mtb H37Rv mc²6206 cultures were either untreated or treated with THPP-2 (1.3 μ g/ml [0.5 x MIC] or 5.3 μ g/ml [2 x MIC]) or 2418 (1.56 μ g/ml [0.5 x MIC] or 6.2 μ g/ml [2 x MIC]) and labeled with [¹⁴C]-acetate as described under Materials and Methods.

Analyses of lipids (A) and cell wall-bound mycolic acid methyl esters (MAMEs) (B) from untreated and treated cells were as described in Fig. 3.

Figure S3: Predicted topology of MmpL3 and mapping of the mutations reported to confer resistance to SQ109, THPP compounds, adamantyl ureas, BM212 and indolcarboxamides.

The topology of MmpL3 from *Mtb* was predicted using the TOPPRED software (http://mobyle.pasteur.fr/cgi-bin/portal.py?#forms::toppred). The amino acids found to be mutated in the various spontaneous resistant mutants are according to references # 9-11, 13-14 and 17-19 and the data presented in Table 4.

Black stars indicate residues thought to participate in the transmembrane electrochemical proton gradient of MmpL3 (D251, R259, D640, Y641, D710; R715). Red hexagons indicate residues mutated in SQ109 (and analogs) resistant mutants; blue hexagons are residues mutated in BM212 (and analogs) resistant mutants of *Mtb* or *M. smegmatis*; brown hexagons are residues mutated in indolcarboxamide resistant mutants; magenta hexagons are residues mutated in THPP resistant mutants; the green residue (G253) is the mutated residue in adamantyl urea as well as some BM212 and indolcarboxamide resistant mutants.

Cytoplasm