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Supplementary Figure 1. Schematic representation of the PDD workflow.

… The Namurian Tsingyuan Formation from 
Ningxia, China, is divided into three members…  
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Supplementary Figure 2. Overview of PDD feature extraction. Text, tables, and images in an original document are parsed (e.g., by
table position extraction or natural language). Two or more entities and the specific properties in the document (i.e., features) that
relate them are expressed as a row in a database.
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Supplementary Figure 3. Overview of factor graph component of PDD. Existing knowledge bases, such as data in the PBDB,
are used to assess mention-level relations during distant supervision. Variables assessed for accuracy become evidence variables for
statistical inference and learning steps.

Supplementary Figure 4. Screen shot of web user interface used in blind experiment conducted by 7 human annotators. A unique
link and instructions to complete the form were emailed to each participant. The wording of the instructions was as follows:

1. “in ref” means you can find this *exact* fact in the document somewhere.

2. “not in ref” means you can’t find the exact fact in the document anywhere (can include typos).

3. “incorrect” means it is an incorrect fact (e.g., wrong assignment/relationship, etc.).

4. “?” means you don’t understand the fact in relation to document.

Simply clicking on the box selects it for you. You can change it etc. as you go along. Once you are done,
you can go to another ref by clicking on bottom. You can come back to the ref and inspect it to make sure it
looks good, change things.
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Supplementary Figure 5. Summary of results of annotation experiment of PDD and PBDB taxonomic extractions. Yellow, annotators
with heavy PBDB governance involvement; blue, past governance involvement; red, graduate students.
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PBDB 

Supplementary Figure 6. Summary of results of annotation experiment of occurrence data, or (taxon, geologic unit, temporal interval)
tuples in human-constructed PBDB. Results are for 3 volunteers, one from each of groups in Supplementary Figure 4.
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Supplementary Figure 7. PDD genus-level diversity (black curve) calculated using occurrences with period level or finer temporal
resolution, as opposed to epoch or finer temporal resolution used in Fig. 1. The red curve shows PBDB data and is identical to the
red curve in Fig. 1c.

5



(a) Overlapping Corpus

(b) Whole Corpus

Supplementary Figure 8. Geographic distribution of PDD-generated database. Top, location of occurrences in overlapping document
set (ODS). Bottom, location of occurrences in whole document set (WDS).
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Layer Features

Name Entities

Dictionary (English dictionary, GeoNames, PaleoDB, Species2000, Microstrat, MySQL stop words)
Part-of-speech tag from StanfordCoreNLP
Name-entity tag from StanfordCoreNLP
Name entity mentions in the same sentences (paragraphs, or documents)

Mention-level Relations

Word sequence between name entities
Dependency path between name entities
Name-entity tag from StanfordCoreNLP
Table caption-content association
Table cell-header association
Section headers (for Taxonomy)

Entity-level Relations
Temporal interval containment (e.g., Namurian ⊆ Carboniferous)
Location containment (e.g., Ningxia, China ⊆ China)
One formation does not likely span > 200 million years

Supplementary Table 1. List of features and rules used in the current verison of PDD. Finding the right simple features and rules
can be difficult. The PDD system is designed to operate in an iterative fashion, with error analysis occurring after each round of
feature and rule definition.

Relation Tuple in Knowledge Positive Examples Negative Examples
Taxonomy (Taxon, Taxon) (t1, t2) {(t1, t2)} {(t1, t′2) : t′2 6= t2}
Formation (Taxon, Formation) (t, f) {(t, f)} Positive examples of other relations

Formation-Temporal (Mention) (Formation,Interval) (t, i) {(t, i′) : intersect(i, i′)} {(t, i′) : ¬intersect(i, i′)}
Formation-Temporal (Entity) (Formation,Interval) (t, i) {(t, i′) : intersect(i, i′) ∧ ¬contain(i′, i)} {(t, i′) : ¬intersect(i, i′)}
Formation-Location (Mention) (Formation,Location) (t, l) {(t, l′) : intersect(l, l′)} {(t, l′) : ¬intersect(l, l′)}
Formation-Location (Entity) (Formation,Location) (t, l) {(t, l′) : intersect(l, l′) ∧ ¬contain(l′, l)} {(t, l′) : ¬intersect(l, l′)}

Supplementary Table 2. List of distant supervision rules used in PDD. Function contain(x, y) and intersect(x, y) return True if
the interval (or locations) x contains or intersects with y.
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Journal Name PBDB
PDD

CoverageOverlapping
Set

Journal of Paleontology 2,667 2,534 95%
Journal of Vertebrate Paleontology 1,909 1,292 68%
Palaeontology 879 748 85%
Paleontological Journal 849 0 0%
American Museum Novitates 513 433 84%
NULL 509 0 0%
Acta Palaeontologica Polonica 483 433 90%
Nature 452 340 75%
Cretaceous Research 424 421 99%
Gobios 423 296 70%
Ameghiniana 394 21 5%
Canadian Journal of Earth Sciences 336 281 84%
Palaeogeography, Palaeoclimatology, Palaeoecology 325 317 98%
Vertebrata PalAsiatica 322 203 63%
Science 309 184 60%
Bulletin of the American Museum of Natural History 293 214 73%
Geological Magazine 269 24 9%
Alcheringa 268 0 0%
American Journal of Science 257 53 21%
Palaeontologische Zeitschrift 241 0 0%
Journal of Mammalogy 234 147 63%
Acta Palaeontologica Sinica 232 3 1%
United States Geological Survey Professional Paper 231 156 68%
Zoological Journal of the Linnean Society 203 200 99%
Contributions from the Museum of Paleontology, University of Michigan 195 174 89%
Palaeontographica Abteilung A 194 0 0%
Facies 187 0 0%
Lethaia 183 178 97%
Quarterly Journal of the Geological Society of London 180 122 68%
Zootaxa 180 0 0%
Palaios 174 164 94%
Annals of Carnegie Museum 172 25 15%
Proceedings of the United States National Museum 149 0 0%
Neues Jahrbuch fr Geologie und Paleontologie, Abhandlungen 147 0 0%
Review of Palaeobotany and Palynology 147 146 99%
American Journal of Botany 147 87 59%
Proceedings of the Academy of Natural Sciences of Philadelphia 142 40 28%
Journal of Human Evolution 135 122 90%
Proceedings of the National Academy of Sciences 133 51 38%
Journal of Systematic Palaeontology 132 27 20%
Geodiversitas 131 0 0%
Acta Geologica Sinica 130 78 60%
Bulletins of American Paleontology 129 0 0%
Bulletin de la Societe Geologique de France 122 0 0%
Palontologische Zeitschrift 115 0 0%
Rivista Italiana di Paleontologia e Stratigrafia 115 0 0%
Psyche 111 1 1%
Annals of the South African Museum 104 0 0%
Tulane Studies in Geology and Paleontology 103 0 0%
Paleontological Research 102 92 90%
Other Sources 30,851 2,175 7%
Total 47,632 11,782 25%

Supplementary Table 3. Distribution of documents in the overlapping document set. ”NULL” corresponds to a NULL title document
type field in the PBDB.
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Taxon Name Rank Not Found on Google (Error Candidate)
Cirquella espinata species

Echinophyllia orpheensis species
Fenestella huascatayana species
Epigondolella primitia species

Palaeospheniscus gracilis. species
Pygurus carinatus species ×

Arionellus tripunctatus species
Phacostylus amphistylus species
Circotheca multisulcatus species
Aulotortus praegaschei species

Leptaena demissa species
Xinjiangchelys laticentralis species

Conotreta lanensis species ×
Martellia ichangensis species

Procavia antiqua species
Chermidae family

Monophyllus cubanus species
Gazella soemmeringi species
Pinna subspatulata species

Polacanthus faxi species ×
Homotherium latidens species

Platanus primaeva species
Rhopalocanium satelles species

Cryptobairdia forakerensis species
Naiadites elongata species

Staurocephalus murchisoni species
Serpula anguinus species

Glycymeris angusticostata species
Eomunidopsis eutecta species
Actinocrinites gibsoni species

Zhelestes tes species ×
Spinocyrtia ascendens species
Belemnopsis alexandri species

Agaricocrinus nodulosus species
Oreochromis shiranus species

Atrichornithidae family
Neltneria jaqueti species
Eurydice affinis species

Nummulites burdi species
Diacalymene marginata species
Scapteriscus didactylus species
Enhydriodon campanii species

Offneria nicoli species ×
Propetrosia pristina species

Podocarpus campbelli species
Graffhamicrinus aristatus species

Productina sampsoni species
Bufina bicornuta species

Coccolithus staurion species
Ernanodon vas species ×

Supplementary Table 4. Error Analysis of Taxon Entity Extractions in PDD
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Reference No. Genus Correct Extracted by PBDB

28945

Acrodenta X
Mastodonsaurus X

Mesodapedon X
Rhynchosaurus X X

Scaphonyx X
Spirorbis X

Stenaulorhynchus X
34109
28146

38697
Hazelia X X

Leptomitus X X
32675
33994 Gastropoda

Heterostropha X
Mathilda X
Mollusca X

Stenoglossa X
27115

41374

Archaeopterodactyloidea X
Beipiaopterus X
Boreopteridae X
Boreopterus X

Eopteranodon X
Eosipterus X
Feilongus X

Gegepterus X
Moganopterus X X

Ningchengopterus X
Ornithocheiroidea X
Zhenyuanopterus X

12054

13061

Bactrosaurus X
Dyoplosaurus X
Gorgosaurus X

Hypacrosaurus X
Mandschurosaurus X X

Nodosauridae X X
Tanius X

Human Recall 18%

Supplementary Table 5. Error Analysis: PDD Extractions
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Reference No. Genus Correct Extracted by PDD Error Reason
28945 Rhynchosaurus X X

34109
Austromola X Not enough context features
Odontoceti X Not enough context features

28146 Cerapoda X Not enough context features

38697
Hazelia X X

Leptomitus X X
Protospongia X Not enough context features

32675 Tommotia X Not enough context features

33994

Anticonulus X

Table recognition failure

Ataphrus X
Austriacopsis X

Discohelix X
Emarginula X
Eucyclidae X
Eucyclus X
Guidonia X
Neritopsis X

Plectotrochus X
Proacirsa X

Pseudorhytidopilus X

27115

Astreptodictya X

OCR error

Athrophragma X
Batostoma X

Bryozoa X
Bythopora X
Calopora X

Coeloclema X
Constellaria X

Contexta X
Diploclema X

Echinodermata X
Graptodictya X

Helopora X
Nicholsonella X
Ottoseetaxis X
Pachydictya X
Phylloporina X

Porifera X
Prasopora X

Spongiostroma X
Stictopora X

Stictoporella X
Trilobita X

41374 Moganopterus X X
12054 Neosaurus X Not enough context features

13061
Mandschurosaurus X X

Nodosauridae X X
PDD Recall 11%

Supplementary Table 6. Error Analysis: PBDB Extractions

Relation PBDB PDD p = 0.05

Taxonomy 92% 97% 0
Temporal 89% 96% +
Location 90% 92% 0
Formation 84% 94% +

Supplementary Table 7. Comparison of Accuracies of PDD and PBDB. The column p = 0.05 is the significant test of one-tail
Welch’s t-test, where “+” means significant given the corresponding p-value, and “0” otherwise. The value 0.05 is picked by following
the default setting of R.
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Journal Name
1845- 1960- 1970- 1980- 1990- 2000- 2010

Total
-1959 -1969 -1979 -1989 -1999 -2009 -2013

American Journal of Science 2489 727 41 245 138 3640
American Midland Naturalist 2893 1022 1149 989 852 842 189 7936
American Museum Novitates 1974 413 288 272 320 388 98 3753

Annales de Palontologie 29 206 73 308
Annals of Carnegie Museum 82 38 120

Bulletin of the American Museum of Natural History 1318 93 105 72 52 196 65 1901
Comptes Rendus Palevol 679 270 949

Cretaceous Research 287 457 732 393 1869
Geological Journal 136 418 338 1116 680 662 423 3773

Geological Society America Bulletin 276 796 788 1158 1089 486 4593
Geology 1177 2675 2990 3024 1261 11127

Global and Planetary Change 20 469 1070 376 1935
Gobios 13 442 1072 1294 753 167 3741

International Geology Review 87 1482 1780 1541 724 635 353 6602
Journal of Asian Earth Sciences 149 1162 1123 2434

Journal of Geology 5782 736 929 754 671 516 153 9541
Journal of Human Evolution 859 890 759 1067 597 4172

Journal of Mammalogy 3023 1633 1509 1452 1336 1506 438 10897
Journal of Paleontology 2552 1500 1438 1297 1172 2224 643 10826

Journal of South American Earth Sciences 79 423 666 414 1582
Journal of Systematic Palaeontology 113 110 223

Journal of Vertebrate Paleontology 365 636 2152 934 4087
Journal of the Geological Society 329 946 346 1621

Lethaia 104 830 978 992 738 371 4013
Mammalian Species 1 122 224 284 216 847

Marine Micropaleontology 85 262 469 646 156 1618
Micropaleontology 202 375 302 264 270 316 1729

New Zealand Journal of Geology and Geophysics 121 733 730 519 484 403 115 3105
PALAIOS 290 567 677 237 1771

Palaeogeography, Palaeoclimatology, Palaeoecology 191 600 1108 1812 3221 1191 8123
Palaeontology 48 461 477 446 493 1470 560 3955

Palaios 620 287 907
Paleobiology 184 422 337 866 260 2069

Paleontological Research 192 88 280
Palynology 45 140 132 232 119 668

Proc. of AASP 79 79
Proceedings of the Geologists’ Association 3514 430 415 416 404 394 273 5846

Quarterly Journal of the Geological Society of London 3063 177 19 3259
Review of Palaeobotany and Palynology 241 427 705 1031 887 406 3697

Revue de Micropaleontologie 104 262 72 438
Rocky 88 118 77 96 33 412

The Micropaleontologist 163 163
Transactions of the Kansas Academy of Science 2107 611 307 263 236 293 48 3865

USGS Open-File Report 403 466 2399 6480 5060 726 243 15777
United States Geological Survey Bulletin 2302 626 320 614 454 1 1 4318

United States Geological Survey Professional Paper 596 721 733 465 227 71 54 2867
Zoological Journal of the Linnean Society 1165 121 363 483 487 638 392 3649

Acta Palaeontologica Polonica 50 118 180 196 242 564 272 1622
Canadian Journal of Earth Sciences 530 1865 1981 1643 1077 377 7473

Oklahoma Geology Notes 15 58 60 56 39 3 231
Vertebrata Palasiatica 136 237 225 333 262 272 119 1584

Biodiversity Heritage Library 97129
Total 277309

Supplementary Table 8. Statistics of Whole Document Set (WDS).

ODS WDS Ratio (WDS/ODS)
# Variables 13,138,987 292,314,985 22×

# Evidence Variables 980,023 2,066,272 2×
# Factors 15,694,556 308,943,168 20×

# Distinct Features (Weight) 945,117 12,393,865 13×
Documents 11,782 280,280 23×

Supplementary Table 9. Factor graph statistics in the overlapping and whole document sets. Evidence variables are those variables
for which distant supervision has contributed an expectation. The scaling of evidence variables from the ODS to the WDS reflects
the fact that most of the training data used by PDD derives from the PBDB data in the ODS.
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ODS WDS Ratio (WDS/ODS)

Mention-level Candidates

Taxon 6,049,257 133,236,518 22×
Formation 523,143 23,250,673 44×

Interval 1,009,208 16,222,767 16×
Location 1,096,079 76,688,898 76×
Opinions 1,868,195 27,741,202 15×

Taxon-Formation 545,628 4,332,132 8×
Formation-Temporal 208,821 3,049,749 14×
Formation-Location 239,014 5,577,546 23×

Entity-level Result

Authorities 163,595 1,710,652 10×
Opinions 192,365 6,605,921 34×

Collections 23,368 125,118 5×
Occurrences 93,445 539,382 6×
Documents 11,782 280,280 23×

Supplementary Table 12. Extraction statistics for the overlapping and whole document sets. Authorities refers to distinct taxa
(identified by name and, optionally, ranks and authors).

Relation # Annotations Precision Recall
Taxonomy 933 97% 39%
Temporal 478 96% 69%
Location 655 92% 36%

Formation 2,271 94% 21%

Supplementary Table 13. Statistics of Annotations Collected and Quality Score for Each Relation
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1 Extensions

1.1 Body Size Extraction

In order to extract body size estimates from biological illustrations, we need to extract the relation:

(Taxon, F igureName, F igureLabel,Magnification, ImageArea)

where ImageArea is a region on the PDF with known DPI so that the actual size of the image on a
printed document is known. The following table is an example of the target extracted relation.

Vediproductus wedberensis Fig. 381 2a X1 

Compressoproductus compressus Fig. 382 1a X0.8 

Devonoproductus walcotti Fig. 383 1b X2.0 

There were two steps in the process: (1) Image processing, and (2) text extraction. In PDD, these two
components are done jointly in the same factor graph.

Image Processing. The goal of the image processing component is to associate each image area with a
figure label. To achieve this, PDD needs to (1) detect image areas and figure labels from PDF documents,
and (2) associate image areas with figure labels. Supplementary Figure 9 illustrates these two steps.

Detection of Image Areas and Figure Labels. The following steps were taken: (1) Edge detection;
(2) Watershed Segmentation; (3) Image Dilation; and (4) Connected-component Detection (Supplementary
Figure 9). Standard online-tutorials were followed, with one variant for Image Dilation. In this step, one
needs to specify a parameter for dilation. Instead of specifying one value for the parameter, we tried a range
of parameters and generate different versions of segmentations. PDD then trained a logistic regression
classifier to choose between these segments trained on a human-labeled corpus.

Association of Image Areas with Figure Labels. After recognizing a set of image regions and
their corresponding OCR results, PDD attempted to predict the association of figure labels and image
areas, as shown in Supplementary Figure 9. Similar to relation extraction, PDD introduces a Boolean
random variable for each label and image area pair. It then builds a logistic regression model using features
such as the distance between label and image areas, and whether a label is nearest to an image area and
vice versa.

Text Extraction. PDD also extracts information from text, as shown in Supplementary Figure 10. This
extraction phase is similar to what was used when extracting fossil occurrence-related relations. In the
name entity recognition component, PDD extracts different types of mentions, including Figure name (e.g.,
“Fig. 3”), Figure labels (e.g., “3a-c”), Taxon (e.g., “B. rara”), and magnitude (e.g., “X1”). Supplementary
Figure 10 shows an example of these mentions (raw text with OCR errors). PDD then extracts relations
between these mentions using the same set of features as other diversity-related relations.
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Supplementary Figure 9. Image Processing Component for Body Size Extraction. Note that this examples contains the illustration
of a partial body.

Fig. 38 7,la-c. *B. rara, Serpukhovian, Kazakhstan, Dzhezgazgan 
district; a,b, holotype, viewed ventrally, laterally, MGU 31/342, XI 
(Litvinovich, 1967); c, incomplete ventral valve internal mold, XI 
(Litvinovich & Vorontsova, 1991). 

Fig. 38 7,la-c. *B. rara, Serpukhovian, Kazakhstan, Dzhezgazgan 
district; a,b, holotype, viewed ventrally, laterally, MGU 31/342, XI 
(Litvinovich, 1967); c, incomplete ventral valve internal mold, XI 
(Litvinovich & Vorontsova, 1991). 

Figure Name Mention Figure Label Mention Taxon Mention 

Magnitude Mention 

Fig. 387 1a B. rara X1 
Fig. 387 1b B. rara X1 
Fig. 387 1c B. rara X1 
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Supplementary Figure 10. Relation Extraction Component for Body Size Extraction.

Joint Inference. Both the image processing component and the text extraction component results in a
factor graph populating two relations with schema

(FigureLabel, ImageArea)

and
(Taxon, F igureName, F igureLabel,Magnitude).

PDD joins these two intermediate relations to form a large factor graph to populate the target relation.
Joint inference on the whole factor graph is then executed.
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1.2 Body Size Extraction Validation

Corpus. Other researchers [1] recently compiled body size measurements by manually measuring illustra-
tions and reading captions in the Treatise on Invertebrate Paleontology. Of the 55 volumes now accessible,
humans have made measurements from part H, I, K, L, N, O, P, Q, R, S, T, U. We created from these
documents the following three sets:

1. Testing Corpus (With Ground Truth). Part H.

2. Testing Corpus (Without Ground Truth). Part A, B, C, D, E, F, G, W, V.

3. Training Corpus. Part I, K, L, N, O, P, Q, R, S, T, U.

We used the Training Corpus to generate training data for distant supervision. We compared our results
with those of human annotators using the Testing Corpus (With Ground Truth). The Testing Corpus
(Without Ground Truth) shows that PDD helps to extend the body size database with new extractions that
are not provided by human annotators.

Results on Testing Corpus (With Ground Truth). PDD is able to to achieve high precision and
slightly higher recall than human when extracting body size measurements and their relations.

Precision. We measured the precision of PDD by randomly sampling 100 extracted instances of the
target relation and manually annotate those extractions. We find that the accuracy is more than 92%.

Recall. We next counted the number of distinct (genus, figure name, figure label) tuples that are
extracted by humans and PDD on the same set of documents. We find that human extracted 4,837 distinct
tuples, and PDD extracted 5,783 distinct tuples, or 20% more. The primary reason for the increase is the
complete extraction of meaurements for all parts of a figure (e.g., “1a-f”). Humans typically extract only
one part.

Although selective data extraction is often a decision made for the sake of expediency and because not all
images provide optimal orientations for the dimensions being targeted by a given investigation, extracting
complete measurements and associated textual descriptions establishes the foundation for more complete
morphometric analyses.

Results on Testing Corpus (Without Ground Truth). PDD is able to extract facts on documents
that have not yet been processed by humans. PDD processed Parts A, B, C, D, E, F, G, V, W of the
Treatise on Invertebrate Paleontology, which have not yet been processed for body size by [1]. PDD extracts
7K distinct (genus, figure name, figure label) tuples from these documents.

1.3 Multi-linguistic Extraction

Corpus. We followed a similar protocol as we used to collect the overlapping corpus for English documents.
We identified the top-20 journals ranked by the number of journal articles in PBDB, and attempted to
download articles from their web site. Access was limited to Vertebrata Palasiatica (Chinese), Stuttgarter
Beitrage zur Naturkunde (German), and Eclogae Geologicae Helvetiae (German). A total of 1,583 Chinese
journal articles and 4,393 German journal articles were obtained in this way. We used the same protocol to
map these journal articles to articles in PBDB. Of these, there were 47 articles in Chinese and 56 German
articles that overlapped with the PBDB.
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English Chinese German Dictionary Source 

Rock Formation 
Formation 组  Formation 

Manual 
Clay 石 Ton  

Temporal Interval 
Late Cretaceous  晚白垩世 Oberkreide  

Manual 
Cretaceous  白垩世 Kreide  

Location United States  美国  Vereinigte Staaten  geonames.org 

Taxon Aeschnidium densum  Aeschnidium densum  Aeschnidium densum  All in Latin 

Protocol. We compared the extractions of PDD in the overlapping set with the PBDB extractions on
the same set of documents. Our way of assessing quality is recall for the tuple

(Taxon, T imeInterval)

This tuple is language-independent because (1) taxon has unified Latin-representation in all English, Chi-
nese, and German articles; and (2) time Intervals and their hierarchical relationships are known by PDD
for all languages. To extract this tuple, PDD requires the information in all other tuples, including
(Taxon, Formation), (Formation, T imeInterval), and (Formation, Location). We selected taxa common
to both PDD and PBDB, and label PDD’s extraction as correct if the taxon temporal ranges overlap.

Recall. From the overlapping corpus, PBDB extracts (Taxon, T imeInterval) tuples for 85 distinct
genera in Chinese and 242 distinct genera in German. We find that PDD correctly extracts (Taxon, T imeInterval)
for 24 genera (28%) in Chinese and 82 (33%) genera in German. The difference between Chinese and German
is caused primarily by OCR quality, even though we used commercial OCR tools for both. Chinese has lower
OCR quality because of the large vocabulary in East-Asian languages.

Precision. Out of all 24 distinct genera in Chinese and 82 distinct genera in German articles, we find
that all of them overlap with PBDB extractions in terms of their temporal interval, indicating high precision.

2 Specific Technical Validation

Here we describe DeepDive, the underlying system that powers PDD [2–7].

2.1 Probabilistic Framework

2.1.1 Related Work

Knowledge Base Construction (KBC) has been an area of intense study over the last decade [8–19]. Within
this space, there are a number of approaches.

Rule-based Systems. The earliest KBC systems used pattern matching to extract relationships from
text. The most well known example is the “Hearst Pattern” proposed by Hearst [20] in 1992. In her seminal
work, Hearst observed that a large amount of hyponyms can be discovered by simple patterns, e.g., “X,
such as Y”. Hearst’s technique forms the basis of many further techniques that attempt to extract high
quality patterns from text. In industry, rule-based (pattern-matching-based) KBC systems, such as IBM’s
SystemT [8,21], have been built to develop high quality patterns. These systems provide the user a (usually
declarative) interface to specify a set of rules and patterns to derive relationships. These systems have
achieved state-of-the-art quality after carefully engineering effort as shown by Li et al. [21].
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Statistical Approaches. One limitation of rule-based systems is that the developer needs to ensure that
all rules provided to the system are high precision rules. For the last decade, probabilistic (or machine
learning) approaches have been proposed to allow the system select between a range of a priori features
automatically. In these approaches, the extracted tuple is associated with a marginal probability that it is
true (i.e., that it appears in the KB). DeepDive, Google’s knowledge graph, and IBM’s Watson are built
on this approach. Within this space there are three styles of systems:

• Classification-based Frameworks Here, traditional classifiers assign each tuple a probability score,
e.g., näıve Bayes classifier, and logistic regression classifier. For example, KnowItAll [12] and TextRun-
ner [13, 14] uses näıve Bayes classifier, and CMUs NELL [16, 17] uses logistic regression. Large-scale
systems typically use these types of approaches in sophisticated combinations, e.g., NELL or Watson.

• Maximum a Posteriori (MAP) Here, the probabilistic approach is used but the MAP or Most likely
world (which do differ slightly) is selected. Notable examples include the YAGO system [15],which uses
a PageRank-based approach to assign a confidence score. Other examples include the SOFIE [10] and
Prospera [11], which use an approach based on constraint satisfication.

• Graphical Model Approaches The classification-based methods ignore the interaction among pre-
dictions, and there is a hypothesis that modeling these correlations yields higher quality systems more
quickly. A generic graphical model has been used to model the probabilistic distribution among all
possible extractions. For example, Poon et al. [19] used Markov logic networks (MLN) [22] for informa-
tion extraction. Microsoft’s StatisticalSnowBall/EntityCube [18] also uses an MLN-based approach. A
key challenge with these systems is scalability. For example, Poon et al. was limited to 1.5K citations.
Our relational database driven algorithms for MLN-based systems are dramatically more scalable [3].

2.1.2 Calibrated Probabilities

DeepDive takes a Bayesian probabilistic approach to KBC by treating OCR, NLP, image processing, and
feature recognition as one joint probabilistic inference problem in which all predictions are modeled as a
factor graph (Fig. S3). This probabilistic framework ensures all facts that are produced by DeepDive are
associated with a marginal probability.1 These marginal probabilities are meaningful in DeepDive (i.e.,
they should correspond to the actual probabilities of a fact beig correct), which provides a mehcanism for
evaluation and an aid to improving the system.

Calibration. In DeepDive, calibration plots are used as a way to summarize the overall quality of the
KBC results. Ideally, the probability associated with a given fact in DeepDive should equal the empirical
probability that this fact is correct (i.e., an extraction with a probability 0.95 should be correct with a 95%
of the time when inspected in the original source). Because DeepDive uses a joint probability model, any
set of predictions can be assigned a marginal probability. Queries can then be against the model to help
determine where a model needs improvement.

Supplementary Figure 11 and Supplementary Figure 12 show calibration plots for the ODS and the
WDS presented in the main text. We will use Supplementary Figure 11(1) as an example, which is the
target relation Taxonomy in the ODS. A calibration plot contains three components: (a) Accuracy, which
measures the test-set accuracy of a prediction with a certain probability; (b) # Predictions (Testing Set),
which measures the number of extractions in the test set with a certain probability; and (c) # Predictions
(Whole Set), which measures the number of extractions in the whole set with certain probability. The
difference between test set and whole set is that the former has training labels for each random variable.
Results are summarized as histograms, and empirically we find that a bin of size of 0.1 is usually sufficient
to understand the behavior of the system.

1Cox’s theorem asserts (roughly) that if one uses numbers as degrees of belief, then one must either use probabilistic
reasoning or risk contradictions in a reasoning system, i.e., probabilistic reasoning is the only sound system for reasoning in
this manner [23].
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Supplementary Figure 11. Calibration Plots for All Relations on Overlapping Corpus

Using Calibration Plots

(a) Accuracy. If the accuracy curve is similar to the ideal (0,0)-(1,1) line, it means that a probability
produced by the system matches the test-set accuracy. For example, Supplementary Figure 11(1) shows a
reasonably good curve for calibration. Differnces in these two lines can be caused by (1) inefficient training
data or a small testing corpus, and/or (2) bad mixing behavior of the sampler or other software bugs. For
example, Supplementary Figure 12(2,3,4) shows a much better calibration behavior than Supplementary
Figure 11(2,3,4), primarily because the former is based on the whole corpus, which has more training data
and a larger testing set.
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Supplementary Figure 12. Calibration Plots for All Relations on Whole Corpus

(b) # Predictions (Testing Set). Ideally, the # Predictions histogram should have a “U” shape.
That is, most of the data are concentrate at high probability (where we are confident it is correct) and
low probability (where we are confident it is incorrect). Large numbers of predictions with a probability
approximately 0.5 means that the system has little information about how to classify these extractions. This
implies that more features could be defined to resolve uncertainty. For example, Supplementary Figure 11(2)
shows a U-shape curve with some masses around 0.5-0.6. The shape of the histogram relies on the ratio
between the number of positive examples and negative examples. When the number of positive examples
dominates negative examples and there is a bias term, it is possible that there are very small amount
extractions with a probability near 0. Supplementary Figure 11(1,3,4) illustrate this phenomenon.
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(c) # Predictions (Whole Set). This histogram is similar to (b), but illustrates the behavior of
scaling the system to a set of documents for which we do not have any training examples. Usually we hope
that (c) has a similar shape to (b).

Usage. The above techniques have proven critical to debugging and improving the quality of PDD. In
response to low confidence, a user can provide labeled examples, which allows the system to learn weights
that yield higher confidence. Additionally, a user may write logical inference rules that provide ways of
improving quality, which is a key component of all statistical relational approaches.

2.2 Declarative Interface for Joint Inference and Rich Features

2.2.1 Related Work

Here we survey recent efforts that focus on how to improve the quality of a KBC system.

Rich Features. Different researchers have recently noted the importance of combining and using a rich set
of features and signals to improve the quality of a KBC system. Two famous efforts, the Netflix challenge [24],
and IBM’s Watson [25], which won the Jeopardy gameshow, have identified the importance of features and
signals:

Ferrucci et al. [25]: For the Jeopardy Challenge, we use more than 100 different techniques
for analyzing natural language, identifying sources, finding and generating hypotheses, finding
and scoring evidence, and merging and ranking hypotheses. What is far more important than any
particular technique we use is how we combine them in DeepQA such that overlapping approaches
can bring their strengths to bear and contribute to improvements in accuracy, confidence, or speed.

Buskirk [24]: The top two teams beat the challenge by combining teams and their algorithms into
more complex algorithms incorporating everybody’s work. The more people joined, the more the
resulting team’s score would increase.

In both efforts, the rich set of features and signals contributed to the high-quality of the corresponding system.
Other researches have found similar phenomena. For example, Mintz et al. [26] finds that although both
surface features and deep NLP features have similar quality for relation extraction tasks, combining them
achieves a significant improvement over using either one in isolation. Similar “feature-based” approaches are
also used in other domains (e.g., Finkel et al. [27] uses a diverse set of features to build a NLP parser with
state-of-the-art quality). In our own work [28], we have also found that integrating a diverse set of deep
NLP features can improve a table extraction system significantly.

Joint Inference. Another recent trend in building KBC system is to take advantage of joint infer-
ence [5,19,28–33]. Different from traditional models [34], such as logistic regression or SVM, joint inference
approaches emphasize learning multiple targets simultaneously. For example, Poon et al. [19, 31] find that
learning segmentation and extraction in the same Markov logic network significantly improves the quality
of information extraction. Similar observations have been made by Min et al. [29] and McCallum [30]. Our
recent work also show the empirical improvement of joint inference on the diverse set of tasks, including
relation extraction [5] and table extraction [28].

Deep Learning and Joint Inference. A recent emerging effort in the machine learning community
is to build a fully-joint model for NLP tasks [32,33]. The goal is to build a single joint model from the lowest
level (e.g., POS tagging) to the highest level (e.g., semantic role labeling). The PDD system is built in a
similar spirit that attempts to build a joint model for low-level tasks (e.g., OCR), to high-level tasks (e.g.,
cross-document inference of relation extraction).
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Supplementary Figure 14. Lesion Study of Joint Inference

2.2.2 The DeepDive Approach and the Impact of Rich Features and Joint Rules

DeepDive uses joint inference rules and rich features. In this section, we test that these features and rules
are important to PDD’s quality by conducting a lesion study.

Protocol. All experiments were run on the overlapping corpus as described in the main text. We produced
variants of PDD by removing features/rules and all components that rely on the output of the removed
feature/rule. We summarize the quality of PDD by computing Spearman’s rho for first differences in genus-
level biodiversity (as in Fig. 1).

Features. The PDD feature extraction phase extracts a set of features, including deep linguistic features,
e.g., dependency parsing results, and vision-based features (e.g., a simple table extractor based on Hough
Transform). To study their impact, we conduct lesion study by sequentiallydisabling these features.

Deep NLP Features. Supplementary Figure 13(a) shows the impact of removing NLP features (e.g.,
dependency path). If we use the whole PBDB is used, dropping these Deep NLP features does not have a
significant effect on Spearman’s rho. However, if the knowledge base used for training is reduced to 1% of it
s size, then dropping NLP features results in a decrease of Spearman’s rho from 0.72 from 0.82.

Vision-based Table Recognition. PDD contains a table recognition component to detect tables
using vision-based features (e.g., Hough Transform). When disabling this component and using the 1%
PBDB for distant supervision, PDD achieves a Spearman’s rho of 0.69. This drop is the effect of decreased
recall of data in tables.

Joint Inference Rules. PDD contains a set of factors for joint inference among random variables, as
shown in Fig S3. We study their impact on two types of joint inference rules: (1) joint inference within one
relation; and (2) joint inference across different relations (Supplementary Figure 14).
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Joint Inference for Same Relations. Disabling all joint inference rules results in a Spearman’s rho
of 0.64, even when using the whole PBDB knowledge base. This is a marked decline from the Spearman’s
rho of 0.82 obtained when these rules are enabled. This large decline in quality is caused by the fact that
jointly infering the values of random variable results in much higher-quality predictions. For example, assume
that we have three candidate facts that Tsingyuan Formation has the age (1) Carboniferous ,(2) Namurian,
and (3) Kungurian. In the current PDD system, the higher confidence for Carboniferous will also boost
its confidence for Namurian (because of containment), and decrease its confidence for Kungurian (because
Kungurian is so much younger than Carboniferous). This type of joint inference between random variables
help PDD to produce result with higher recall (by boosting confidence to cross the imposed 0.95 threshold)
and precision (by eliminating wrong predictions).

Joint Inference across Relations. The current PDD system has three joint inference rules across
different relations (e.g., one geologic formation entity mention cannot be concurrently a location mention).
We disable these rules and show in Supplementary Figure 14 that it does not have a large impact to the
overall quality. This implies that the current PDD system is quite modular across different relations. This
means that different types of relations can be decoupled and applied to other related applications (e.g., for
biology or geology).

2.3 Scalability and High Performance Statistical Inference and Learning

2.3.1 Related Work

There is an emerging trend in both industry and academia to support statistical inference and learning, and
we survey these efforts in this section.

Hardware Efficiency. One line of research tries to speed-up statistical inference and learning by better
taking advantage of modern hardware and clusters. For example, many industrial database vendors have
integrated statistical analytics components into their product. For example, Oracle’s ORE [35], Pivotal’s
MADlib [36], and IBM’s SystemML [37]. These systems provide functionalities like logistic regression and
collapsed Gibbs sampling for topic modeling on their data management systems. There are also efforts to
design new data processing framework instead of relying on the traditional database systems. Indeed, most
data processing frameworks developed in the last few years are designed to support statistical analytics
including Mahout [38] for Hadoop, MLI for Spark [39], GraphLab [40], GraphChi [41], and Delite [42, 43].
These systems have been shown to increase the performance of corresponding statistical analytics tasks
significantly.

Statistical Efficiency. One key difference between statistical inference and learning with traditional SQL-
like analytics is that different ways of executing the same tasks usually lead to different speed when converging
to the same quality. Therefore, another line of related work, mainly contributed by the mathematical op-
timization and machine learning community, is to design more efficient algorithms for statistical inference
tasks. One of the recent trends is to design lock-free algorithms that can be executed on the emerging
multi-socket multi-core machines with high parallelism [3, 44–47]. For example, Tsitsiklis et al. [44] proves
asymptotic convergence for a parallel coordinate descent algorithm, and Bradley et al. [47] proves the conver-
gence rate and theoretical speedups for parallel stochastic coordinate descent. Our own work [3, 46] proves
the convergence of lock-free execution for stochastic gradient descent and stochastic coordinate descent.

2.3.2 The DeepDive Approach and The Performance of PDD

The DeepDive Approach. The statistical inference and learning engine in DeepDive [4] is built upon
the challenge of designing a high-performance statistical inference and learning engine on a single machine [4,
6, 7, 46]. Compared to traditional work, the main novelty of DeepDive is that it considers both hardware
efficiency and statistical efficiency for executing an inference and learning task.
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Hardware Efficiency. DeepDive takes into consideration the architecture of modern non-uniform
memory access (NUMA) machines. A NUMA machine usually contains multiple nodes (sockets), where
each sockets contains multiple CPU cores. To achieve high hardware efficiency, it is useful to decrease the
communication across different NUMA nodes.

Statistical Efficiency Pushing hardware efficiency to the extreme might cause statistical efficiency to
suffer because the lack of communication between nodes could decrease the rate of convergence of a statistical
inference and learning algorithm. DeepDive takes advantage of theoretical results of model averaging [45]
and lock-free execution [7, 46].

Performance of Statistical Inference and Learning. DeepDive enables PDD’s ability to run sta-
tistical inference and learning efficiently. For example, on the whole corpus, the factor graph contains more
than 0.2 billion random variables and 0.3 billion factors. On this factor graph, DeepDive is able to run
Gibbs sampling on a machine with 4 sockets (10 core per sockets), and we find that we can generate 1,000
samples for all 0.2 billion random variables in 28 minutes.
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