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SI Materials and Methods

Plasmids. pARIS-httpcDNA3.2-N[His-mCherry]Q23-C[HA-TC]
(PARIS-mCherry-httQ23), pARIS-httpcDNA3.2-N[His-mCherry]
Q100-C[HA-TC] (pARIS-mCherry-httQ100), pcDNA25QP-H4
exon 1, pcDNA97QP-H4 exon 1, pcDNA25Q-586aa and
pcDNA137Q-586aa were previously described (1-3). The fol-
lowing plasmids were obtained from Origene: MYC-DDK-
GABARAPL1 DNA (RC206762), MYC-DDK-BNIP3L (NIX)
DNA (RC203315), MYC-DDK-MAP1LC3B DNA (RC207356).
HA-ULK1, MYC-ATG13, MYC-FIP200 and MYC-p62 have
been previously described (4, 5). W3037A mutants were made
in the full-length HTT gene in pARIS by site directed in vitro
mutagenesis. Venus-HTT(2416-3144) and Venus-(1651-3144)
were generated fusing Venus in the vector pGW1 in frame with
the C-terminal 728 aa of HTT using the pARIS Spel site, and
with the C-terminal 1493aa of HTT using the pARIS Sall site.
We inserted a short synthetic oligonucleotide into the BgllII-
EcoRI site of pGW1 just downstream of the Venus coding se-
quence: 5'-GATCTGTCGACATTCTAGATATAGAATTCT-
GA-3' 3-ACAGCTGTAAGATCTATATCTTAAGACTTTAA-S'.
These oligonucleotides provided the Sall and the Xbal (that
has a complementary 5’ overhang with Spel) restriction sites in
frame with the Venus coding sequence for the insertion of HTT
gene fragments and also added a stop codon to terminate the fusion
proteins at the 3’ end of the HTT gene. We inserted both the Sall-
EcoRI and the Spel-EcoRI fragments of pARIS-HTT plasmids
into pGW1. Using this technique we generated 4 constructs: Venus-
HTT(2416-3144) WT, Venus-HTT(2416-3144) W3037A, Venus-
HTT(1651-3144) WT, and Venus-HTT(1651-3144) W3037A.

Antibodies. The following antibodies were used: anti-HTT-5492
(Millipore); anti-HA11 Clone 16B12 monoclonal (Covance);
anti-MYC 9E10 (Millipore); anti-actin A2066 (Sigma-Aldrich)
anti-p-actin (MP Biomedicals), anti—a-Tubulin (Sigma-Aldrich),
anti-p62/SQSTM1 (American Research Products), anti-Living
Colors (to detect EGFP and Venus) 632592 polyclonal or 632381
monoclonal (Clontech), anti-rabbit-FITC and anti-guinea pig-Cy3
(Jackson Immunologicals). Primary antibodies used for mouse
immunohistochemistry were: p62/SQSTM1 (American Research
Products) and ubiquitin (Novus). Anti-Ref(2)P was kindly provided
by Gabor Juhasz (E6tvos Lordnd University, Budapest, Hungary).

Cell Culture and Transfection. HEK293T cells were cultured at
37 °C at 5% CO, in DMEM supplemented with 10% (vol/vol)
FBS, and were transfected using Lipofectamine 2000 reagent
(Invitrogen). 293T cells were harvested for Western analysis
48 h after transfection.

Immunoprecipitation. 293T cells were lysed in buffer containing:
20 mM Tris-HCI, pH 7.5, 10% (vol/vol) glycerol, 137 mM NaCl,
0.5 mM EDTA, 1% Nonidet P-40, supplemented with 20 mM N-
ethylmaleimide, 1 mM PMSF, phosphatase inhibitors 2 and 3
(Sigma-Aldrich), complete miniprotease inhibitor pellet (Roche),
10 ng/mL aprotenin, 10 ng/mL leupeptin, 5 mM nicotinamide,
and 5 mM butyrate. Briefly, transfected cells were harvested, lysed,
and sonicated on ice. Next, 500 pg of lysate was incubated with
lysis buffer [-10% (vol/vol) glycerol] + phosphatase inhibitors 2
and 3 and added to Dynabeads (Invitrogen) coupled to anti-HA,
anti-myc, or anti-Living Colors antibodies and incubated on
a rotator overnight at 4 °C. Immunoprecipitates were washed
three times and analyzed by Western blot.
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Western Blot. Equal amounts of protein were subjected to SDS/
PAGE on 4-12% Bis-Tris or 3-8% Tris-acetate minigels (Invitrogen)
and transferred onto 0.45-pm nitrocellulose membranes (Bio-Rad).
Membranes were incubated with Starting Block-TBS blocking
buffer (Thermo Scientific) for 1 h, then with primary antibodies
overnight. Blots were washed three times with TBS-0.1% Tween-20
for 8 min and incubated with secondary IgG-HRP antibodies for
45 min, washed three more times, and detected with SuperSignal
West Pico Chemiluminescent Substrate or SuperSignal West Dura
Extended Duration Substrate (Thermo Scientific) according to the
instructions of the supplier. Membranes were exposed to BioMax
XAR (Kodak) films and developed. The signal intensities were an-
alyzed and quantitated using Scionlmage. Experiments were per-
formed in triplicate or greater with representative images shown.

Statistical Analysis. All statistical analyses were performed using
GraphPad Prism 5.04 software. All data are expressed as mean +
SE of measure. P < 0.05 was considered to be statistically sig-
nificant in all cases. Statistical comparisons of results were per-
formed by performing one-way ANOVA analysis followed by
Bonferroni’s multiple comparison tests.

Primary Cortical Neuron Survival Assay.

Cell culture and transfection. Cortical neurons were dissected from
embryonic day 20-21 rat pups and cultured at 0.6 x 10° cells/mL
for 4 d in vitro, as described previously (6). For survival analyses,
cells were plated at a density of 0.1 x 10° cells per well of a 96-well
plate. Euthanasia for these experiments was entirely consistent
with the recommendations of the Guidelines on Euthanasia of the
American Veterinary Medical Association. Transfection of primary
neurons was accomplished using Lipofectamine 2000 (Invitrogen).
All transfections involved 0.02-0.7 pg DNA (total) and 0.5 pl Lipo-
fectamine 2000 per well. Cells were incubated with Lipofectamine/
DNA complexes for 60 min at 37 °C before rinsing. The remainder
of the transfection protocol was per the manufacturer’s suggestions,
resulting in an overall transfection efficiency of < 1%.

Longitudinal fluorescence microscopy. Experiments involving neuro-
nal survival analysis used an automated microscopy platform
described previously (7, 8). Briefly, images were obtained at 24-h
intervals with an inverted microscope (Nikon Ti-E) equipped
with the PerfectFocus system, a high-numerical aperture 20x
objective lens and a 16-bit Andor 888 back-thinned EMCCD
digital camera with a cooled charge-coupled device. Illumination
was provided by a Lambda XL lamp (Sutter) with a liquid light
guide. The MS-2500 XY stage (Applied Scientific) was controlled
by rotary encoders in all three planes of movement. All compo-
nents were encased in a custom-designed, climate-controlled en-
vironmental chamber (In Vivo Scientific). The illumination, filter
wheels, focusing, stage movements, and image acquisitions were
fully automated and coordinated with a mix of proprietary
(GreenButtonGo + scheduler + Liconic Incubator) and publicly
available (ImageJ, pManager) software.

Image analysis. Relevant data were extracted from the raw, digital
images in a sequential process using an original script developed
in Accelrys PipelinePilot. Briefly, the median background fluo-
rescence from a portion of all images was calculated and sub-
tracted from individual image. The images were then assembled
into montages representing each well at each time point. The
montages were sequenced and aligned automatically, and neuron
cell bodies segmented based on intensity and morphology. Among
the variables recorded for each neuron were the fluorescence
intensity and the time of death, marked by the loss of cellular
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fluorescence, rounding, or dissolution of the cell body. Statistical
analyses and the generation of cumulative hazard plots were
accomplished using custom-designed algorithms and the survival
package within R, and bar graphs were created using Prism (6-8).
Survival analysis. For longitudinal survival analysis, the survival time
of a neuron was defined as the time point at which a cell was last
seen alive. Survival functions were fitted to Kaplan—-Meier curves
and used to derive cumulative hazard (or risk-of-death) curves
that describe the instantaneous risk-of-death for individual
neurons in the cohort being tracked. We used Cox proportional
hazards regression analysis (Cox analysis) to generate hazard
ratios that quantified the relative risk-of-death between cohorts
of neurons expressing different constructs. Hazard ratios and
their respective P values were generated using the coxph function
in the survival package for R statistical software. The date of the
experiment was included as a stratification variable and expres-
sion of each construct at the first time point was included as
a covariate. All Cox models were analyzed for violations of
proportional hazards using the cox.zph function in R.

Nestin-cre Conditional Htt Knockout Mouse. For conditional
knockout of Htt expression in neuronal progenitors, we used
a nestin-cre transgenic line (9). Htf"™'~;nestin-cre-tg mice were
obtained from crosses between Hitr"'™; nestin-cre-tg males and
Hit"Mox females. Cre-mediated recombination begins ~ em-
bryonic day 9.5, and HTT expression is eliminated in neuronal
progenitors and their differentiated progeny (neurons and glia).
Brains from Ht/"*'~;nestin-cre-tg and Htt"*:nestin-cre-tg
controls or CAG140 heterozygous HD knockin mice (10) were
rapidly frozen in isopentane chilled on dry ice, and then 14-pm
fresh frozen sections through the striatum were obtained using
a cryostat (Bright Instrument). Sections were washed briefly in
PBS, fixed for 10 min in 4% (vol/vol) paraformaldehyde for 10
min, followed by a rinse in PBS and then a second fixation step in
100% methanol for 15 min on ice. Sections were then washed
again in PBS before blocking with 5% (vol/vol) donkey serum,
0.1% Triton X-100 in PBS for 1 h at room temperature, and then
incubated overnight at 4 °C with primary antibody diluted in 5%
(volivol) donkey serum, 0.1% Triton X-100 in PBS. Primary an-
tibodies used were: p62/SQSTM1 (1:100 guinea pig polyclonal
from American Research Products) and ubiquitin (1:100 rabbit
polyclonal from Novus). Following the primary antibody in-
cubation, sections were washed in PBS three times and incubated
with secondary antibodies (anti—rabbit-FITC and anti-guinea pig-
Cy3; Jackson Immunologicals), together with the fluorescent
DNA stain To-Pro-3 iodide (1:10,000; Invitrogen) for 1 h at room
temperature. Lipofuscin autofluorescence was suppressed by
washing with PBS, and then incubating sections sequentially in
75% (vol/vol) ethanol for 5 min, lipofuscin eliminator reagent
(Millipore) for 5 min, and 5 min in 75% (vol/vol) ethanol.
Sections were then mounted with Vectashield (Vector Laboratory,
and examined using either an Olympus BX51 microscope equipped
with a MagnaFire CCD camera or a Nikon Cl-confocal micro-
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scope). p62/SQSTM1 was detected by Western analysis in the
striatal pellet fraction and quantitated as previously described (11).

Lipofuscin analysis was performed using 14-pm fresh-frozen
brain sections. Sections were fixed for 15 min on ice in 100%
methanol, washed in PBS, and then incubated with To-Pro-3 iodide
(1:10,000 dilution in PBS) for 1 h at room temperature. Sections
were then washed in PBS and mounted using Vectashield. Lipo-
fuscin autofluorescence was imaged in the green and red channels
(lipofuscin has a broad emission spectrum from 500 nm to 650 nm).

Drosophila HTT LOF Experiments.

Drosophila stocks. Stocks were maintained on a standard cornmeal/
sugar/agar medium at 25 °C and 50% humidity on a 12-h light/12-h
dark cycle. To obtain a large amount of synchronized larvae, first
the well-fed adults were transferred into new vials and allowed to
lay their eggs for 1 h. After this prelaying period, the flies were
transferred again into new vials for egg laying for 3 h. This second
collection contained fertilized eggs, which gave larvae with rela-
tively synchronized stages with regard to development.

Starvation treatments. Early third-instar larvae synchronized at 88 h
after egg laying were floated in 20% (wt/vol) sucrose for 3 h at
room temperature (12).

LysoTracker Red staining. Treated (starved) and nontreated larvae
were dissected in 100 pL PBS and stained in 100 uM LTR (In-
vitrogen, L7528) diluted in PBS for 3 min. After washing the
tissues were mounted in 50% (vol/vol) glycerol/PBS completed with
1 pg/uL DAPI (Sigma, D9542).

p62 immunostaining. A polyclonal affinity-purified p62/Ref(2)P anti-
body (raised in rabbit) was used in this experiment (kindly provided by
Gabor Juhasz, E6tvos Lorand University, Budapest, Hungary). Fat
bodies from synchronous 88 h after egg laying starved third-instar
larvae were dissected and fixed with 3.6% (vol/vol) formaldehyde in
PBS for 60 min at room temperature. Samples were washed 2x
5 min in PBS then were incubated for 20 min in PBS + 0.1% Triton
X-100. Following 3x 5-min wash with PBS, nonspecific binding sites
were blocked by incubation with 3% (wt/vol) milk powder dissolved
in PBS for 1 h. Incubations with primary and secondary antibodies
were performed overnight at 4 °C and for 1 h at room temperature,
respectively, in the blocking buffer diluted 1:1 with PBS. Primary
antibodies were used at a dilution of 1:2,000. Anti-rabbit-Alexa488
(Invitrogen) secondary antibody was used at a dilution of 1:1,400.
Microscopy. Images were obtained on a fluorescent microscope
(Carl Zeiss, Axioimager 2.1) equipped with a grid confocal unit
(Carl Zeiss, Apotome) using Plan-NeoFluar 40x 0.75 NA air
objective (Carl Zeiss), Axiocam Mrm camera (Carl Zeiss) and
Axiovision software (Carl Zeiss).

Climbing assay. Just after onset of pupariation, the distance be-
tween the surface of food and the middle point of five puparium
located furthest from the food were measured. The average was
considered as the representative highest distance for that given
culture. Ten vials of control and HTT LOF lines were measured
and the average values were presented in mm on the diagram.
Both synchronous and nonsynchronous Drosophila cultures were
kept under similar conditions.
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Fig. S1.
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Fig. S2. Alignment of the N-terminal domain of HTTs with yeast Atg23s. The alignment was done using EMBL-EBI MUItiple Sequence Comparison by Log-
Expectation (MUSCLE, www.ebi.ac.uk/Tools/msa/muscle) (1, 2) and Jalview Java Alignment Editor (3, 4).

1. Edgar RC (2004) MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113.
2. Edgar RC (2004) MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792-1797.
3. Clamp M, Cuff J, Searle SM, Barton GJ (2004) The Jalview Java alignment editor. Bioinformatics 20(3):426-427.

4. Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Jalview Version 2—A multiple sequence alignment editor and analysis workbench. Bioinformatics 25(9
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Fig. $3. Alignment of the central domain of HTTs
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Expectation (MUSCLE, www.ebi.ac.uk/Tools/msa/muscle) (1, 2) and Jalview Java Alignment Editor (3, 4).

1.
2.
3.
4.

mLoLl

Edgar RC (2004) MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113.

Edgar RC (2004) MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792-1797.

Clamp M, Cuff J, Searle SM, Barton GJ (2004) The Jalview Java alignment editor. Bioinformatics 20(3):426-427.

Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Jalview Version 2—A multiple sequence alignment editor and analysis workbench.
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Fig. S4. Alignment of the C-terminal domain of HTTs with yeast Atg11s. The alignment was done using EMBL-EBI MUltiple Sequence Comparison by Log-
Expectation (MUSCLE, www.ebi.ac.uk/Tools/msa/muscle) (1, 2) and Jalview Java Alignment Editor (3, 4).

1. Edgar RC (2004) MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113.

2. Edgar RC (2004) MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792-1797.

3. Clamp M, Cuff J, Searle SM, Barton GJ (2004) The Jalview Java alignment editor. Bioinformatics 20(3):426-427.

4. Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Jalview Version 2—A multiple sequence alignment editor and analysis workbench. Bioinformatics 25(9):1189-1191.
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Fig. S5. The C-terminal domain of HTT is toxic in primary cortical neurons. Venus-HTT(1651-3144) and Venus-HTT(2416-3144) expression reduces survival of
rat primary cortical neurons. Kaplan-Meier plots are shown for survival analysis performed on primary rat cortical neurons. The table shows the results of a Cox
proportional hazards analysis performed to compare survival across groups expressing different Venus constructs. Initial expression level of each construct was
included as a covariate to account for differences in expression level between Venus constructs. Cl, Confidence interval; HR, hazard ratio; n, number of neurons.
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Fig. S6. HTT contains a conserved WXXL domain at W3037 (A) Published WXXL domains shown to interact with the Atg8 family of proteins. (B) WXXL domain
conserved between HTT and Atg11 families, aligned with W3037 of human HTT. (C) xLIRs defined in human HTT using iLIR web resource(1). (D) Venus-HTT(1651-
3144) fusion protein coimmunoprecipitates with mammalian Atg8s. HEK293T cells were cotransfected with Venus-HTT(1651-3144) and MYC-LC3B or MYC-
GABARAPLI1. Cell lysates were subjected to immunoprecipitation (using anti-MYC). The resulting precipitates were examined by immunoblot analysis with the
indicated antibodies. W3037A mutation does not reduce binding of the longer HTT C-terminal fragment, Venus-HTT(1651-3144) to MYC-GABARAPL1 or MYC-LC3B.

1. Kalvari |, et al. (2014) iLIR: A web resource for prediction of Atg8-family interacting proteins. Autophagy 10(5):913-925.
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LIR
MOTIF START END . ... . PSSMscore
XLIR 119 124 PEFQKL 11 (1.5e-01)
XLIR 959 964 SVYLKL 8 (3.9e-01)
XLIR 1234 1239 PSYLKL 11 (1.5e-01)
XLIR 1479 1484 FEYIEV 13 (7.9e-02)
XLIR 1586 1591 EMFILV 10 (2.0e-01)
XLIR 1916 1921 LTWLIV 16 (3.0e-02)
XLIR 2719 2724 LMYVTL 12 (1.1e-01)

XLIR 3018 3023 KVFQTL 7 (5.3e-01)

HTT W3037 xXLIR 3033 3038 RDWVML 25 (1.7e-03)

Fig. S7. xLIRs in human Huntingtin.
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Wl 729 734 SFFSKL 4(1.4e+00)  |Wrl 1999 2004 TPFRVL 4(1.4e+00)
Wil 840 845 SSYSEL 11(1.5e-01)  |WxxL 2054 2059 RLYSLL 6(7.4e-01)
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Wil 985 990 RGYNLL 9(2.8e-01) WaxL 2226 2231 AQYLW 9(2.8e-01)
Wikl 1076 1081 SAWFPL 12 (1.1e-01)  |WxlL 2260 2265 LSWHLI 13 (7.9¢-02)
WL 1124 1129 EVWPAL 10 (2.0e-01)  |WxxL 2290 2295 GLWSWV 11 (1.5e-01)
Wikl 1140 1145 QLFSHL 3(19e+00)  |Wxl 2406 2411 NSYTRV  8(3.9e-01)
Wl 1228 1233 GSFYHL 7(5.3e-01) WaxL 2430 2435  TAFPEI 3(1.9e+00)
Wl 1326 1331 SQFDGL 8(39e01) Wil 2466 2471 ETWATL 16 (30e-02)
WixxL 1388 1393 SGWFDV 14 (5.7e-02) |WxxL 2575 2580 QAWDPY 13 (7.9e-02)
Wikl 1423 1428 RLFEPL 8(3.9e-01) WaxxL 2835 2840 TAFYL 3 (1.9e+00)
Wl 1460 1465 VNYCLL 4(1.4e+00)  |Wiorl 2960 2985 VLFDRI 4(1.4e+00)
Wil 1477 1482 KQFEYI 8(39e-01)  |WxxL 3089 3094 NLFCLV 0(5.0e+00)
Wl 1496 1501 NIFFFL 3(1.9e+00) Wi 3110 3115 RAFQSV 7 (5.3e-01)
Wikl 1579 1584  lQYHQV 2(26e+00)  |WxxL 3124 3128 SPYHRL  5(1.0e+00)
Wl 1601 1606 DKWKRL 15 (4.2e-02)

Fig. $8. WXXLs in human Huntingtin.
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Fig. $9. xLIRs and WXXL domains in Saccharomyces cerevisiae Atg11. PSSM, position-specific scoring matrix.
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Fig. $10. Theoretical model of HTT as a scaffold protein required for selective autophagy. Functioning as a mammalian Atg11, HTT interacts with receptor
proteins (e.g., p62, BNIP3, BNIP3L/NIX) and with ATGS8s (e.g., LC3B, GABARAPL1) to enable various forms of selective autophagy.
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