Supporting Information

Midonet et al. 10.1073/pnas.1404047111

Fig. S1. C* and D* recombination sites that prevent XerC and XerD strand exchanges, respectively. WT recombination sites (black) and a mutated recombination site (blue) are indicated; mutations are indicated in bold and red. XerC ($\mathbf{\nabla}$) and XerD (\triangle) cleavage sites and XerC ($\mathbf{\Theta}$) and XerD (\bigcirc) 3'-phosphotyrosyl links are indicated. A space between opposed bases indicates no stabilization by Watson–Crick or Wobble base-pairing interactions.

Fig. S3. Western blot analysis of strains carrying tagged XerD. Native, protein extract from cells producing 6His-XerD under the native promoter at the *xerD* locus; Arabinose induction, protein extract from cells producing XerC and 6His-XerD from an operon under the arabinose-inducible promoter inserted at the *xerC* locus. Cells were grown for 3 h in LB supplemented with 0.002%, 0.02%, or 0.2% arabinose. Cells were broken in 400 μ L of boiling 10% SDS before Laemmli treatment. Proteins were separated on a 14% acrylamide/bisacrylamide (29:1) SDS/PAGE gel. Two gels with the same amount of samples were done in parallel for Coomassie coloration and for transfer (Western blot). Blocking of the membrane was in TBS-Tween 0.1% + 5% milk. Washing steps were in TBS-Tween 0.1%. The primary antibody was anti–Tetra-His of mouse, and the secondary antibody was goat X-mouse HRP (Biorad), and they were used at a ratio of 1:1,000 in blocking buffer. The signals were detected with the SuperSignal West Pico Chemioluminescent Substrate (Pierce) with a LAS3000 image reader (GE Healthcare). The molecular mass of 6His-XerD is 36.7 kDa. Bands were quantified using ImageJ (NIH). Arabinose (0.02% and 0.2%) led to 100-fold more XerD than native promoter.

Fig. 54. HJ intermediate resolution by XerC catalysis. Plasmid intramolecular recombination between *dif1* and *attP*^{TLC} was induced for 3 h using 0.2% arabinose. The total genomic DNA of the strains was extracted and separated in the first dimension on a 0.7% agarose gel and in the second dimension on a 1.4% agarose gel in the presence of 10 μ g/mL ethidium bromide. (*Top Left*) Plasmid carrying a WT *attP*^{TLC} site. (*Top Right*) Plasmid carrying a C*-modified *attP*^{TLC} site. (*Bottom Left*) Plasmid carrying a D*-modified *attP*^{TLC} site. The radiolabeled plasmid was used as a probe for the assay. Horizontal scale: 1-kb ladder. Vertical scale: 1-kb ladder partially revealed by the Southern blot. S1, S2, P1, and P2 are plasmid substrate and products digested by Hpal and AlwNI. As, nonspecific labeling (also observed in cells lacking the plasmid).

Table S1. Plasmids

PNAS PNAS

Name	Derived from	Properties	Source
pBS90	pSW23T	Ori R6K, Cm ^R , carrying replicative form of TLC	This study
pBS126	pSW23T	Ori R6K, Cm^{R} , carrying suicide form of TLC (stop mutation in Cri = TLC*)	
pCM33	pSW23T	Ori R6K, Cm ^R , with partial suicide TLC, efficient for integration	
pCM39	pSW23T	Ori R6K, Cm^{R} , partial suicide TLC with $attP^{TLC}C^{*}$	This study
pCM40	pSW23T	Ori R6K, Cm^{R} , partial suicide TLC with <i>attP^{TLC}D</i> *	This study
pCM43	pSC101 repA ^{TS}	TS vector, Amp ^R , partial suicide TLC	This study
pCM41	pSC101 repA ^{TS}	TS vector, Amp^{R} , partial suicide TLC with $attP^{TLC}C^{*}$	This study
pCM42	pSC101 repA ^{TS}	TS vector, Amp^{R} , partial suicide TLC with $attP^{TLC}D^{*}$	This study
pCM13	pSC101 repA ^{TS}	TS vector, Amp ^R , with <i>dif1</i> site	This study
рСМ18	pSC101 repA ^{TS}	TS vector. Amp ^R , with <i>dif1</i> C* site	This study
pCM19	pSC101 repA ^{TS}	TS vector, Amp ^R , with <i>dif1</i> D* site	This study
pBS79	pSW23T	Ori R6K. Cm^{R} , with dif1 site	This study
pB\$114	nSW23T	Ori R6K Cm ^R with <i>dif1</i> C*	This study
pB5114 nB\$115	p5W23T	Ori R6K, Cm ^R with dif1 D*	This study
pB5115	p5W23T	Ori R6K, Cm ^R CTX ₄ deleted for morphogenic genes, efficient for integration	(2)
p0500 pCM56	p5W25T	Ori Rok, Cin , Crxy deleted for morphogenic genes, efficient for integration	(2) This study
perces	p30231	Ori Rok, Chi, carrying sach gene, with suicide TEC	This study
регоо рсм105	p3vv251	OF ROK, CHI, all $r (+)$ + suicide TLC (all r + sacb	This study
pCIVI105	µ3VV251	Of Rok, Cill, $dir (+) + suicide TECydrir C^+ sacb$	This study
	p5vv231	On Rok, Cm, attP (+) + suicide TLC ϕ attP D^ + sacB	This study
pCIVIT03		vector, Amp ^r , partial suicide TLC with $attP^{res}$ and $attT$ in direct orientation	This study
pCM116	pUC18	Vector, Amp", partial suicide TLC with $attP^{TC}$ and $diff in direct orientation$	This study
pCM117	pUC18	Vector, Amp ⁴ , partial suicide ILC with <i>attP⁴²D</i> * and <i>dif1</i> in direct orientation	This study
pMEV69	pDS132	Integration/excision vector with UP and DWN regions of <i>lacZ</i> , to make Δ_{vib}/acZ strains	Laboratory collection
pUXBF13 and		Complemented $hapR + Gm^R$	(3)
pTn7 hapR ⁺			
рСМ011а	pUC18	Vector for natural transformation to have <i>dif1</i> -prophages:: _{e-} /acZa-dif1-lacZb	This study
pBJ31		pDS132-derived integration/excision vector to replace the <i>V. cholerae xerC</i> gene by an arabinose-inducible version (<i>araC-xerC-lacl-aadA1</i>)oriR6K, spec ^R , cm ^R	(4)
pCM54	pUC18	Vector of natural transformation carrying SmR (spec ^R), <i>lact. araC. and</i> XerCD	This study
	poero	under ara promotor, flanking by UP and DWN regions of homologies around	
		vibxerC (1 kb). Replace vibxerC by arabinose-inducible vibxerCD, Spec", Amp"	
pGD191	pSC101	Vector of natural transformation to delete the gamma domain of FtsK, Zeo [^] , Amp [^]	This study
pBS98	pUC18	Vector of natural transformation carrying <i>sh ble</i> gene (zeo [*]) between UP and DWN region of homologies around <i>vibxerD</i> (1 kb); serves to remove <i>vibxerD</i>	This study
pBS104	pDS132	Integration/excision vector to replace vibxerD by vibxerDYF	This study
pBS99	pKAS32	Integration/excision vector with UP and DWN regions of <i>vibxerD</i> and <i>sh ble</i> gene between them, to delete <i>vibxerD</i>	This study
pB\$105	pD\$132	Integration/excision vector to replace we xerC by xerCyr	This study
pMFV245	pDS132	pDS132 carrying the arr2 (Rif ^R) cassette flanked by the upstream and downstream	(1)
	p00132	regions of _{vib} xerC, Cm ^R	(1)
рКА\$32		rpsL (Strep ²), OriR6K, bla (Amp ⁴), oril	(5)
pBJ37	pDS132	Integration/excision vector to replace viblacZ::EclacZa-dif1-lacZb	(1)
pMEV70	pDS132	Integration/excision vector to replace dif1-prophages::aaAd1	
pCM144	pUC18	Vector of natural transformation to replace <i>XerD::FRT-sh ble-FRT</i> (Zeo ^ĸ)	This study
pCM145	pUC18	Vector of natural transformation to have Δ_{vib} XerC::pAra _{vib} XerC-6His _{vib} XerD	This study
pCM146	pUC18	Vector of natural transformation to have $\Delta_{vib}XerD::6His_{vib}XerD$ under native promotor	This study

AmpR, ampicillin resistance; CmR, chrloramphenicol resistance; KnR, kanamycin resistance; RifR, rifampicin resistance; SmR, spectinomycin resistance; SrepS, streptomycin sensitivity; zeoR, zeocin resistance.

1. Das B, Bischerour J, Barre F-X (2011) VGJphi integration and excision mechanisms contribute to the genetic diversity of Vibrio cholerae epidemic strains. Proc Natl Acad Sci USA 108(6): 2516–2521.

2. Bao Y, Lies DP, Fu H, Roberts GP (1991) An improved Tn7-based system for the single-copy insertion of cloned genes into chromosomes of gram-negative bacteria. Gene 109(1):167–168.

3. Demarre G, et al. (2014) Differential management of the replication terminus regions of the two Vibrio cholerae chromosomes during cell division. *PLoS Genet* 10(9):e1004557. 4. Das B, Bischerour J, Val M-E, Barre F-X (2010) Molecular keys of the tropism of integration of the cholera toxin phage. *Proc Natl Acad Sci USA* 107(9):4377–4382.

5. Skorupski K, Taylor RK (1996) Positive selection vectors for allelic exchange. *Gene* 169(1):47–52.

Table S2. Xer recombination promotes a conservative recombination event that leads to the joint excision of TLC and CTX and CTX

Blue colonies			White colonies				
Xer status	Frequency	Cm ^s , Kn ^s	Frequency	Cm ^s , Kn ^s	Kn ^s	Cm ^s	Cm ^R , Kn ^R
Xer ⁺	2.8×10^{-4} (in 2.7×10^7 cells)	100% (246/246)	2.0×10^{-5} (in 2.9 × 10 ⁶ cells)	66% (71/108)	7.4% (8/108)	15% (16/108)	11.6% (13/108)
Xer [_]	${<}10^{-6}$ (in 1.6 ${\times}$ 10 ⁶ cells)	_	2.2×10^{-5} (in of 1.6 × 10 ⁶ cells)				

Cm^s, chloramphenicol sensitive; Kn^s, ksnamycin sensitive.

Table S3. Vibrio cholerae strains

PNAS PNAS

Name	Genotype	Source
BS47	CVC301 (N16961 StrR Pcp18 araE); ∆lacZ ∆dif1-prophages:: _{Ec} lacZa-difA-lacZb	This study
BS1	CVC301 (N16961 StrR Pcp18 araE); Δ lacZ Δ dif1-prophages:: $_{ec}$ lacZa-dif1-lacZb; Δ dif2::aad1	(1)
BS3	CVC301 (N16961 StrR Pcp18 araE); ΔlacZ, Δdif1-prophages::aad1; Δdif2:: _{Ec} lacZa-dif2-lacZb	(1)
BS10	CVC301 (N16961 StrR Pcp18 araE); ΔlacZ Δdif1-prophages:: _{εc} lacZa-dif1-lacZb; Δdif2::aad1; ΔxerC::rif	(1)
BS49	CVC301 (N16961 StrR Pcp18 araE); ∆lacZ ∆dif1-prophages:: _{Ec} lacZa-dif1-lacZb; ∆dif2::aad1; ∆xerD::zeo	This study
EPV366	N16961∆lacZ; ChapR ∆dif1-prophages::aad1; LacZ:: _{Ec} lacZa-dif1-lacZb ∆xerC::p _{ara} XerCD-Spec ^R	This study
CMV26	N16961; ChapR; ∆dif1-prophages:: _{Ec} lacZa-dif1-lacZb-FRT-sh ble-FRT (Zeo ^R); ∆xerC::p _{ara} XerCD-Spec ^R	This study
BS50	CVC301 (N16961 StrR Pcp18 araE); ∆dif1-prophages:: _{Ec} lacZa-dif1-lacZb;; ∆dif2::aad1; XerD::XerDyF catalytic mutant	This study
BS51	CVC301 (N16961 StrR Pcp18 araE); ∆lacZ, dif1-prophages:: _{Ec} lacZa-dif1-lacZb;; ∆dif2::aad1; XerC::XerCyF catalytic mutant	This study
CMV01	N16961; ∆lacZ; ChapR; dif1-prophages:: _{Ec} lacZa-dif1-lacZb-FRT-sh ble-FRT (Zeo ^R)	This study
CMV13	N16961; ∆lacZ; ChapR; dif1-prophages:: _{Ec} lacZa-dif1-lacZb, XerC::p _{ara} XerC-Spec ^R	This study
CMV14	N16961; ΔlacZ; ChapR; dif1-prophages:: _{Ecl} acZa-dif1-lacZb, XerC::p _{ara} XerC-Spec ^R ; ftskΔγ::sh ble (Zeo ^R)	This study
CMV30	N16961; ∆lacZ; ChapR; dif1-prophages:: _{Ec} lacZa-dif1-lacZb, XerC::p _{ara} XerCD-Spec ^R ; ∆XerD::sh ble (Zeo ^R)	This study
CMV20	N16961; ∆lacZ; ChapR; dif1-prophages:: _{Ec} lacZa-dif1-lacZb, XerC::p _{ara} XerC-Spec ^R ; with suicide TLC-sacB integrated at dif1	This study
CMV21	N16961; $\Delta lacZ$; ChapR; dif1-prophages:: _{Ec} lacZa-dif1-lacZb, XerC::p _{ara} XerC-Spec ^R ; ftsk $\Delta\gamma$::sh ble (Zeo ^R); with suicide TLC-sacB integrated at dif1	This study
CMV36	N16961; ∆lacZ; ChapR; dif1-prophages:: _{Ec} lacZa-dif1-lacZb, XerC::p _{ara} XerCD-Spec ^R ; ∆XerD::sh ble (Zeo ^R); with suicide TLC-sacB integrated at dif1	This study
EPV158	N16961; Δ lacZ; ChapR; dif1 and prophages:: _{Ec} lacZa-dif1-lacZb-FRT-sh ble-FRT (Zeo ^R); with integrated pEP68 at dif1 (integration by attP ^{CTX})	This study
CMV34	N16961; ∆lacZ; ChapR; dif1-prophages:: _{Ec} lacZa-dif1-lacZb-FRT-sh ble-FRT (Zeo ^R); with integrated pCM105 at dif1 (integration by attP ^{CTX})	This study
CMV35	N16961; ∆lacZ; ChapR; dif1 and prophages:: _{Ec} lacZa-dif1-lacZb-FRT-sh ble-FRT (Zeo ^R); with integrated pCM106 at dif1 (integration by attP ^{CTX})	This study
EPV361	N16961; \[]acZ; ChapR; \[]xerC::paraXerC-6HisXerD-Spec ^R ; \[]xerD::FRT-sh ble-FRT (Zeo ^R)	This study
EPV363	N16961; ΔlacZ; ChapR; ΔxerD::6HisXerD	This study

1. Das B, Bischerour J, Val M-E, Barre F-X (2010) Molecular keys of the tropism of integration of the cholera toxin phage. Proc Natl Acad Sci USA 107(9):4377-4382.

Table S4. Oligonucleotides

PNAS PNAS

Oligo	Used for	Sequence
1266	Check CTX ₀ -Kn integration	CACGACGATTCACTCAACCTTCC
1398	Check CTX ₀ -Kn integration	TTCGACGTTCAGACGTAGTG
1940	dif1 C* mutation	CGATAGTGCGCATTACCTATGTTATGTTAAATTAAT
1941	dif1 C* mutation	CGATTAATTTAACATAACATAGGTAATGCGCACTAT
1942	dif1 D* mutation	CGATAGTGCGCATTATGTACCTTATGTTAAATTAAT
1943	dif1 D* mutation	CGATTAATTTAACATAAGGTACATAATGCGCACTAT
1944	attP ^{TLC} C* mutation	GGTAATGCGCACTAGGATC
1945	attP ^{TLC} C* mutation	TATGTAGAGAAAGTGAAGAC
1946	attP ^{TLC} D* mutation	GGTACATAATGCGCACTAGG
1947	<i>attP^{TLC}</i> D* mutation	TAGAGAAAGTGAAGACTACG
1878	TLC amplification on N16961	CCGTCTAGAGCTAGGAACATTTTGTCTCTAGG
1879	TLC amplification on N16961	CCGGATCCTAGTGCGCATTATGTATGTAGAG
1899	Check attP ^{CTX} integrants	GTCTCGTTGCTGCATAAACC
2479	Check attP ^{CTX} integrants	CCCGAGCTCTCAAAAGCTCAGCCTCCTAC
477	Check TLCq–CTXq excision	CGCAGGCTTCTGCTTCAATC
1565	Check <i>TLC</i> ϕ – <i>CTX</i> ϕ excision	cggcgtttcatctgtggtgc
1297	dif1 gel shift	ATCAGTGCGCATTATGTATGTTATGTTAAATGGA
1298	dif1 gel shift	CTGTCCATTTAACATAACATACATAATGCGCACTGAT
1958	$attP^{TLC}$ gel shift	ACGTCTAGTGCGCATTATGTATGTAGAGAAAGTGGACGT
1959	attP ^{TLC} gel shift	ACGTCCACTTTCTCTACATACATAATGCGCACTAGACG