Supplemental Figures and Table

Supplementary Figure 1. ATX-II induced diastolic Ca²⁺ leak in rabbit ventricular myocytes. A:. Scheme of protocol used to estimate diastolic SR Ca²⁺ leak. B. Pooled data on SR Ca²⁺ leak in control cells, after AXT-II application alone and after application of ATX-II + CoQ10, ATX-II + KN-93 and ATX-II + KN-92. N=5-13, * P<0.05 vs control; †P<0.05 vs ATX-II.

Supplementary Figure 2. Antioxidant CoQ10 reduced Na⁺_i overload induces by ATX-II. **A.** Confocal images of a rabbit ventricular myocyte paced at 1 Hz and loaded with Na⁺ dye Asante NaTRIUM Green AM. Application of ATX-II (5 nM) for 2 min increased cytosolic Na⁺ compared to control (Ctrl), which was reduced by CoQ10 (10 μ M). **B.** Quantification of results for ATX-II-induced changes cytosolic Na⁺, in the absence and presence of CoQ10 (10 μ M). Data are normalized to F₀ - the baseline fluorescence signal at the beginning of an experiment. N=3, * p<0.05 vs control; † P<0.05 vs ATX-II.

Supplementary Figure 3. Effect of exogenous pre-activated CaMKII (2 units activity/L) on spontaneous Ca²⁺ waves in membrane-permeabilized rabbit ventricular myocytes. Cytosolic Na⁺ concentration was 5 mM.

Supplementary Figure 4. Effect of H_2O_2 (100 μ M) on spontaneous Ca²⁺ waves in membranepermeabilized rabbit ventricular myocytes. Cytosolic Na⁺ concentration was 5 mM.

Supplementary Figure 5. Elevated $[Na^+]_i$ increases mitochondrial ROS in membranepermeabilized cardiomyocytes. A. Mitochondrial ROS level was assessed using MitoSOX Red in permeabilized rabbit ventricular myocytes subjected to 5 mM and 20 mM Na⁺. B. High $[Na^+]_i$ resulted in an increase in mitochondrial ROS generation. N=5, * p<0.05 (20 mM Na⁺ vs. 5mM Na⁺).

Supplementary Figure 6. Effects of ranolazine (10 μ M), TTX (1 μ M), CoQ10 (10 μ M), KN-93 (3 μ M), and KN-92 (3 μ M) on levels of intracellular Na⁺ (A) and ROS (B) in myocytes isolated from sham mice and paced at a rate of 1 Hz (N = 3-20, p<0.05 compared to baseline).

	Ca ²⁺ signal	Rise time of	τ decay	Number of
	amplitude,	Ca ²⁺ transients	Ca ²⁺ transients	experiments,
	F _{max} /F ₀	(ms)	(ms)	Ν
Sham	2.6 ± 0.3	28 ± 5	183 ± 11	7
TAC	2.5 ± 0.5	39 ± 4 *	201 ± 17	6
TAC +	2.4 ± 0.4	27 ± 7	188 ± 11	3
3 µmol/L KN93				

Supplementary Table 1. Parameters of pacing-induced Ca^{2+} transients in TAC ventricular myocytes. F_0 – baseline fluorescence, F_{max} – level of fluorescence at the peak of Ca^{2+} transient.* p<0.05 vs sham.