Supplementary Information for:

Synthesis and Vibrational Spectroscopy of ⁵⁷Fe-Labeled Models of [NiFe] Hydrogenase: First Direct Observation of a Nickel-Iron Interaction

David Schilter,^a Vladimir Pelmenschikov,^b Hongxin Wang,^{c,d} Florian Meier,^b Leland B. Gee,^c Yoshitaki Yoda,^e Martin Kaupp,^b Thomas B. Rauchfuss,^a and Stephen P. Cramer^{c,d}

^aDepartment of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA b Institut für Chemie, Technische Universität Berlin, 10623 Berlin, Germany ^cDepartment of Chemistry, University of California, Davis, CA 95616, USA ^dPhysical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA e JASRI, SPring-8, Sayo-gun, Hyogo 679-5198, Japan

Contents

List of Figures

List of Tables

Syntheses

General considerations

All reactions not involving CO were conducted in an MBraun glovebox equipped with a solvent purification system; the concentrations of O_2 and H_2O in the N₂ atmosphere were typically no higher than 2 and 0.2 ppm, respectively. Unless otherwise stated, all chemicals were purchased from commercial sources and used as received. The solvents CD_2Cl_2 and ⁱPrOH were distilled from CaH₂ and FcBF₄ crystallized from CH_2Cl_2 /hexanes. The complexes $Fe_2I_4({}^{i}PrOH)_{4}$, ${}^{57}Fe_2I_4({}^{i}PrOH)_{4}$, 0 (pdt)Ni(dppe),³ $I_2Fe(pdf)Ni(dppe)^4$ and $(OC)_3Fe(pdf)Ni(dppe)^5$ were prepared according to the literature methods. Chromatography was performed using SiO_2 (40 - 63 µm, 230 - 400 mesh) as the stationary phase. Solution IR spectra were recorded on a Perkin-Elmer Spectrum 100 FTIR spectrometer. LI-FDI- and ESI-MS data were collected using a Waters GCT Premier and Waters Micromass Quattro II spectrometer, respectively. In each case analytes were injected as dilute CH_2Cl_2 solutions. Analytical data were acquired using an Exeter Analytical CE-440 elemental analyzer. NMR data were acquired at room temperature, with samples under an atmosphere of N₂. ¹H, ¹³C{¹H} and ³¹P{¹H} NMR spectra were recorded on a Varian VXR500 spectrometer at 500, 126 and 202 MHz, respectively. Chemical shifts (in ppm) are referenced to $CHDCl₂/CH₂Cl₂$ (5.32 ppm for ¹H) and external 85% H₃PO₄ (0 ppm for ³¹P). EPR spectra (~1 mM in CH₂Cl₂/PhMe, 1:1) were recorded on a Varian E-line 12ʹʹ Century Series X-band CW spectrometer at 110 K.

Conversion of I_2 *Fe(pdt)Ni(dppe) to* $(OC)_3$ *Fe(pdt)Ni(dppe)* (1)

A solution of $I_2Fe(pdf)Ni(dppe)$ (26.2 mg, 30 µmol) in CH_2Cl_2 (1 mL) was treated with a suspension of AgBF₄ (5.8 mg, 30 µmol) in CH₂Cl₂ (2 mL) and the mixture stirred under CO (1 atm) in the absence of light. After 24 h, the suspension was filtered through Celite and the filtrate cooled to -28° C, whereupon CoCp₂ (11.3 mg, 60 µmol) in CH₂Cl₂ (1 mL) was added. The solution was concentrated to \sim 1 mL and chromatographed (\sim 5 cm SiO₂, $CH₂Cl₂$ eluent). The first band, deep green in color, was collected and treated with CH₃CN (5 mL). The solution was concentrated to ~ 0.5 mL, whereupon a solid formed. The material was isolated by filtration, washed with CH₃CN (2×5 mL), Et₂O (2×5 mL) and pentane $(2 \times 5 \text{ mL})$, and dried briefly to afford the title compound as dark green crystals (13.9 mg, 20 μmol, 66%). Characterization data were identical to those previously reported.

Fig. S1 Positive ion ESI mass spectrum of [**1ʹ**I]BF4.

(OC)³ ⁵⁷Fe(pdt)Ni(dppe) (1ʹ)

A suspension of ${}^{57}Fe_2I_4({}^{1}PrOH)_{4}$ (34.5 mg, 40 µmol) in CH₂Cl₂ (1 mL) was treated with (pdt)Ni(dppe) (22.5 mg, 40 µmol) in CH_2Cl_2 (1 mL), and the mixture rapidly stirred for 2 h. A suspension of AgBF₄ (23.4 mg, 120 µmol) in CH₂Cl₂ (5 mL) was added and the mixture stirred under CO (1 atm) in the absence of light. After 24 h, the suspension was filtered through Celite and the filtrate cooled to -28° C, whereupon CoCp₂ (22.7 mg, 120) μ mol) in CH₂Cl₂ (1 mL) was added. The solution was concentrated to ~1 mL and chromatographed rapidly (\sim 5 cm SiO₂, CH₂Cl₂ eluent). The first band, deep green in color, was collected and treated with $CH₃CN$ (5 mL). The solution was concentrated to \sim 0.5 mL, whereupon a solid formed. The material was isolated by filtration, washed with CH₃CN (2 \times 5 mL), Et₂O (2 \times 5 mL) and pentane (2 \times 5 mL), and dried briefly to afford the title compound as dark green crystals (9.9 mg, 14 μmol, 35%).

 $31P{1H}$ NMR (CH₂Cl₂) 61.8 ppm. FTIR (CH₂Cl₂): $v_{CO} = 2029$, 1957 cm⁻¹. LI-FDI-MS: *m/z* 702.9 [M]⁺, 674.9 [M – CO]⁺. Anal. calcd for C₃₂H₃₀O₃S₂P₂Ni⁵⁷Fe: C, 54.57; H, 4.29; N, 0.00. Found: C, 54.26; H, 3.86; N, 0.00.

Fig. S2 ³¹P{¹H} NMR spectrum (CH₂Cl₂, 202 MHz) of **1'**.

Fig. S3 Observed (black) and DFT calculated (red) IR spectra of (a) [1']⁺ and (b) 1' in the v_{CO} region. The stick spectra from DFT indicate three *ν*_{CO} normal modes positions, which are mixed 3×C–O stretches (two asymmetric stretches forming the lower frequency band, and one symmetric stretch for the higher frequency band; see the electronic SI for the mode animations). CH_2Cl_2 solvent was used for observed spectra. 102% scaling of DFT vibrational frequencies was applied.

Fig. S4 Positive ion LI-FDI mass spectrum of **1** (left) and **1ʹ** (right).

[(OC)³ ⁵⁷Fe(pdt)Ni(dppe)]BF⁴ ([1ʹ]BF4)

A stirred solution of $1'$ (10.6 mg, 15 µmol) in CH_2Cl_2 (1 mL) was treated with $FeBF_4$ (4.1) mg, 15 μ mol) in CH₂Cl₂ (1 mL). After 1 min, pentane (20 mL) was added and the mixture allowed to stand overnight at −28°C. The solids were isolated by filtration, washed with pentane $(2 \times 1$ mL), and dried briefly to afford the title compound as a brown-olive powder $(5.0 \text{ mg}, 6.3 \text{ \mu}$ mol, 42%).

FTIR (CH₂Cl₂): $v_{\text{CO}} = 2057$, 1988 cm⁻¹. ESI-MS: m/z 702.7 [M – BF₄⁻]⁺. Anal. calcd for C32H30O3S2P2Ni⁵⁷FeBF4: C, 48.59; H, 3.82; N, 0.00. Found: C, 48.18; H, 3.89; N, 0.35.

Fig. S5 Positive ion ESI mass spectrum of [**1ʹ**]BF4.

Fig. S6 X-band EPR spectrum of $[1]BF_4$ and $[1']BF_4$.

Fig. S7 X-band EPR spectrum of [**1ʹ**]BF⁴ (solid trace) and its simulated spectrum (dashed trace).

Table S1 EPR simulation parameters for [**1ʹ**]BF4. The species is present as two conformers, related by a ring flip in the Fe(pdt) chelate ring.

g-factor	A ⁽⁵⁷ Fe) / MHz	line width $/G$	relative abundance
2.054, 2.053, 2.007	24, 27, 14	9, 14, 8	0.84
2.055, 2.038, 2.009	49, 38, 27	16, 12, 10	0.16

NRVS

Data were recorded according to a published procedure^{6,7} at SPring-8 BL09XU in Japan. A high heat load $[Si(1,1,1)\times Si(1,1,1)]$ monochromator (HHLM) produced 14.4 keV radiation with \sim 1.0 eV resolution, and a high energy resolution monochromator (HRM) $[Ge(4,2,2)\times 2Si(9,7,5)]$ produced 14.4 keV radiation with 0.8 meV resolution. The beam flux was $\sim 1.4 \times 10^9$ photons/s. The solids 1' and [1']BF₄ were mounted using 1-propanol as the medium, measurements being taken at 30-50 K using a liquid helium cryostat. Sample temperatures were calculated using the ratio of anti-stokes/stokes intensities

 $\text{according to: } S(E)$. ⁸⁻¹⁰ Delayed nuclear fluorescence and Fe K fluorescence $S(-E)$ $\frac{\zeta}{S(E)} = e$ $-\frac{E}{kT}$ (from internal conversion) were recorded with a 2×2 APD array. NRVS data were recorded with a step size of 0.28 meV, the counting time per point being 5 s. Analysis was performed using the PHOENIX software package.^{7,9}

DFT Calculations

The initial coordinates for the DFT calculations on the $[(OC)_3^{\frac{5}{7}}Fe (pdf)Ni (dppe)]^{0/+}$ ([**1ʹ**] 0/+) model compounds were based on the X-ray structures of the natural abundance complexes 1^{11} and $[(OC)_3Fe(pdt)Ni(dcpe)]^{+,12}$ respectively ([Fig.](#page-8-0) S8). The latter Ni(II)Fe(I) complex was used as the structural reference for $[1']^+$, subject to dcpe to dppe ligand replacement. The structure optimization and subsequent normal mode analysis were done using GAUSSIAN 09,¹³ based on the densities exported from single point calculations using JAGUAR 7.9.¹⁴ The BP8615,16 functional and the LACV3P** basis set as implemented in JAGUAR 7.9 were employed. For the first- and second-row elements, LACV3P^{**} implies 6-311G^{**} triple-zeta basis sets including polarization functions. For the Fe and Ni atoms, LACV3P** consists of a triple-zeta quality basis set for the outermost core and valence orbitals, and the quasirelativistic Los Alamos effective core potential (ECP) for the innermost electrons. The [**1ʹ**] 0/+ species environment was considered via self-consistent reaction field (SCRF) polarizable continuum model using the integral equation formalism $(IEF-PCM)^{17}$ as implemented in GAUSSIAN 09 with the IEF-PCM parameters at their default values for water. Based on the normal mode outputs, ⁵⁷Fe partial vibrational density of states (PVDOS) spectra which complement the NRVS experiment were generated using the Q-SPECTOR program. Q-SPECTOR is an in-house Python tool for analysis of the normal modes calculated using computational chemistry software (here, GAUSSIAN 09), successfully applied earlier.¹⁸⁻²¹ To account for the resolution of the present NRVS and IR experiments, the simulated spectra were broadened by convolution with a 6 cm−1 Lorentzian. A homogeneous empirical scaling of the calculated frequencies was applied to provide improved (and otherwise apparent) mapping between the observed and calculated spectral features: by 108/98% in the 0- 400/400-650 cm−1 ranges, respectively, for the NRVS bands ([Fig.](#page-9-0) S9), and by 102% for the v_{CO} IR bands around ~2000 cm⁻¹ ([Fig.](#page-4-0) S3). The observed vs. calculated bands correspondence is further provided in [Table](#page-9-1) S3.

Our results on the electronic structure of ⁵⁷Fe $[1']^{0/+}$ complexes are in line with previous DFT studies on the natural abundance variants $[1]^{0}$ ^{11,22} and $[1]^{+.12}$ The reduced $[1']^{0}$ species (metal oxidation levels $Ni(I)Fe(I)$, total spin $S = 0$) displays essentially zero spin population at both the metal centers even in case open-shell (spin-unrestricted) DFT formalism is applied. The calculations on the 1e[−] oxidized [1']⁺ species (metal oxidation levels Ni(II)Fe(I), total spin $S = \frac{1}{2}$ verify the unpaired electron to reside at the Fe(I) center. Notably, when $1e^-$ was added to the $[1']^+$ species solution (*i.e.*, using the optimized $[1']^+$ structure *and* electron density as an initial guess) and open-shell $S = 0$ singlet formalism was applied, the resulting species displayed $Ni(I)Fe(I)$ character and zero spin populations, similarly to [**1ʹ**] 0 .

Notably, our attempts to vary the DFT methodology described above using (*i*) alternative functionals (non-hybrid PBE^{23,24} and hybrid B3LYP^{25,26}), *(ii)* larger basis set *(adding* '+' diffuse functions), (*iii*) two-body D3 dispersion corrections by Grimme *et al.*, 27,28 and (*iv*) options on the SCRF procedure did not produce any better correspondence between the calculated ⁵⁷Fe PVDOS and experimental NRVS spectra for [**1ʹ**] 0/+ .

The wavefunctions were analyzed using the DGrid program²⁹ by means of the electron localization function (ELF) ,³⁰ the electron localizability indicator based on the parallelspin electron pair density $(ELI-D)^{31}$ and the Laplacian of the electron density and bondpath analyses within the quantum theory of atoms in molecules (QTAIM).³² For this purpose, the Kohn-Sham orbitals of the single point calculations in GAUSSIAN 09 (basis sets and functional see above) were transferred to DGrid and the examined property was calculated on a grid with 50 points per Bohr. The results of ELF, ELI-D, QTAIM, density Laplacian and bond-path analyses were visualized using the Paraview program,³³ with the results presented in [Fig.](#page-11-0) S11 and [Fig.](#page-12-0) S12.

	$[1]^{0}$			$[1]^{+}$
	X -ray 11	DFT	X -ray $b12$	DFT
Fe-Ni	2.467	2.459	2.818	2.803
Fe-S1	2.284	2.331	2.289	2.328
$Fe-S2$	2.275	2.310	2.296	2.327
$Fe-C1$	1.794	1.772	1.834	1.804
$Fe-C2$	1.800	1.774	1.799	1.728
$Fe-C3$	1.800	1.776	1.790	1.786
$Ni-S1$	2.278	2.349	2.228	2.272
$Ni-S2$	2.231	2.286	2.235	2.261
$Ni-P1$	2.159	2.199	2.187	2.230
$Ni-P2$	2.146	2.197	2.191	2.224

Table S2 Metal-metal and metal-ligand internuclear distances (\hat{A}) in $[1]^{0/+}$ from X-ray data analyses and DFT optimization.*^a*

^a Atoms labeled as per [Fig.](#page-8-0) S8.

^{*b*} In absence of X-ray data for $[(CO)_3Fe(pdt)Ni(dppe)]^+$ $([1]^+)$, data for a very similar complex [(CO)₃Fe(pdt)Ni(dcpe)]⁺ is used [\(Fig.](#page-8-0) S8), where dcpe has cyclohexyl rings instead of the phenyl rings in dppe.

Fig. S8 X-ray structures of 1 (left) and $[1]^+$ analog $[(CO)_3Fe(pdt)Ni(depe)]^+$ (right).^{11,12}

Fig. S9 Observed and DFT calculated NRVS (⁵⁷Fe PVDOS) data for **1ʹ** (blue, bottom) and [**1ʹ**] + (red, top). The DFT spectra (thin lines) are superimposed with the corresponding experimental spectra in halftransparent (thick lines). Fe-Ni (green), Fe-S (yellow), and Fe-C (black) KED diagrams are provided for both the [**1ʹ**] 0/+ species, based on the DFT results. The left and right panels correspond to 108% and 98% scaling of the DFT vibrational frequencies in the 0-400 cm⁻¹ and 400-650 cm⁻¹ regions, respectively. Correspondence between the observed and calculated bands is provided in [Table](#page-9-1) S3.

	[1'] ⁰			$[1']^{+}$		
	Observed	DFT raw	DFT scaled	Observed	DFT raw	DFT scaled
NRVS, $100-400$ cm ⁻¹ $DFT \times 1.08$	105	103	111	105-115 c	98	106
	126	123	133	124-133 c	119	129
	158	145	157	173	159	172
	192	177	191	191	181	196
	241	226	244	232	209	226
	262	246	266	282-293 c	265	286
	303	288	311	308-333 c	296	320
	317, 329 b	310	335			
	349	331	357			
	373	357	386			
NRVS, 400-650 cm ⁻¹ DFT \times 0.98	469	480	470	435-469 c	470	460
	496	508, 519 b	497, 508 b	492	504	493
	557	576	564	533	551	539
	588	602	589	567	579	567
	613	621	608	603	608	595
IR,	1953	1924	1962	1988	1943	1981
1900-2100 cm ⁻¹ $DFT \times 1.02$	2029	1995	2034	2057	2012	2051

Table S3 Peak frequencies (cm**[−]**¹) for experimental NRVS/IR bands of [**1**] 0/+ and their equivalents from DFT calculations.*^a*

a Corresponding experimental (observed) and calculated (scaled DFT) spectra are provided in Figs. 2, [Fig.](#page-9-0) [S9](#page-9-0) left (NRVS, 100-400 cm⁻¹), [Fig.](#page-4-0) S9 right (NRVS, 400-650 cm⁻¹), and Fig. S3 (IR, 1900-2100 cm⁻¹).

The band positions rounded to the nearest cm**[−]**¹ . Homogeneous scaling factors were applied to the raw DFT frequencies, as specified in the leftmost column and explained in the text. Animations of the DFT normal modes producing the NRVS/IR bands listed is available as part of the electronic SI.

b Correspondence can only be provided between a pair of experimental bands and single calculated band, or vice versa.

^c Complex set of experimental features matching a single calculated band.

Fig. S10 Scaled arrow depiction of nuclear displacements for selected normal modes with significant Fe-Ni character calculated for **1ʹ** (157, 266, 311, and 386 cm−1). Animated representations of all the significant [**1ʹ**] 0/+ modes are available in the electronic SI.

ELF Plot: **1** ELF Plot: [**1**] +

Fig. S11 ELF (top) and ELI-D (bottom) analyses of the Ni−Fe bonding in [**1**] 0/+ (left/right) with the corresponding color map legends (far right). Ni−Fe bond attractor positions for [**1**] ⁰ are indicated by the arrows. Plots are shown in the Fe-Ni-C1 plane with atoms labeled as in [Fig.](#page-8-0) S8.

Red Point = Attractor Blue Point = Ring Critical Point Green Point = Saddle Point Yellow Point = Minimum

Fig. S12 QTAIM topologic (top) and total electron density Laplacian (bottom) of Ni−Fe bonding in [1]^{0/+} (left/right). The position of the bond critical point and of the Laplacian attractor for $[1]$ ⁰ are indicated by the arrows. Plots are shown in the Fe-Ni-C1 plane with atoms labeled as in [Fig.](#page-8-0) S8.

References

- 1 G. G. Nunes, R. C. R. Bottini, D. M. Reis, P. H. C. Camargo, D. J. Evans, P. B. Hitchcock, G. J. Leigh, E. L. Sá, J. F. Soares, *Inorg. Chim. Acta*, 2004, **357**, 1219.
- 2 M. E. Carroll, J. Chen, D. E. Gray, J. C. Lansing, T. B. Rauchfuss, D. Schilter, P. I. Volkers, S. R. Wilson, *Organometallics*, 2014, **33**, 858.
- 3 M. Schmidt, G. G. Hoffmann, *J. Organomet. Chem.*, 1977, **124**, c5.
- 4 D. Schilter, T. B. Rauchfuss, *Dalton Trans.*, 2012, **41**, 13324.
- 5 B. E.Barton, T. B. Rauchfuss, *J. Am. Chem. Soc.*, 2010, **132**, 14877.
- 6 Y. Guo, H. Wang, Y. Xiao, S. Vogt, R. K. Thauer, S. Shima, P. I. Volkers, T. B. Rauchfuss, V. Pelmenschikov, D. A. Case, E. Alp, W. Sturhahn, Y. Yoda, S. P. Cramer, *Inorg. Chem.*, 2008, **47**, 3969.
- 7 S. P. Cramer, Y. Xiao, H. Wang, Y. Guo, M. C. Smith, *Hyperfine Interact.*, 2006, **170**, 47.
- 8 M. C. Smith, Y. Xiao, H. Wang, S. J. George, D. Coucouvanis, M. Koutmos, W. Sturhahn, E. E. Alp, J. Zhao, S. P. Cramer, *Inorg. Chem.*, 2005, **44**, 5562.
- 9 W. Sturhahn, T. S. Toellner, E. E. Alp, X. Zhang, M. Ando, Y. Yoda, S. Kikuta, M. Seto, C. W. Kimball, B. Dabrowski, *Phys. Rev. Lett.*, 1995, **74**, 3832.
- 10 H. Wang, Y. Yoda, S. Kamali, Z.-H. Zhou, S. P. Cramer, *J. Synchrotron Rad.*, 2012, **19**, 257.
- 11 W. Zhu, W. A. C. Marr, Q. Wang, F. Neese, D. J. E. Spencer, A. J. Blake, P. A. Cooke, C. Wilson, M. Schröder, *Proc. Nat. Acad. Sci. U.S.A.*, 2005, **102**, 18280.
- 12 D. Schilter, M. J. Nilges, M. Chakrabarti, P. A. Lindahl, T. B. Rauchfuss, M. Stein, *Inorg. Chem.*, 2012, **51**, 2338.
- 13 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, *Gaussian 09*, Revision A.02, Gaussian Inc., Wallingford CT, 2009.
- 14 *Jaguar*, version 7.9, Schrödinger, LLC, New York, NY, 2012
- 15 A. D. Becke, *Phys. Rev. A*, 1988, **38**, 3098.
- 16 J. P. Perdew, *Phys. Rev. B*, 1986, **33**, 8822.
- 17 J. Tomasi, B. Mennucci, R. Cammi, *Chem. Rev.*, 2005, **105**, 2999.
- 18 D. Mitra, S. J. George, Y. S. Guo, S. Kamali, S. Keable, J. W. Peters, V. Pelmenschikov, D. A. Case, S. P. Cramer, *J. Am. Chem. Soc.* 2013, **135**, 2530.
- 19 L. F. Yan, V. Pelmenschikov, C. H. Dapper, A. D. Scott, W. E. Newton, S. P. Cramer, *Chem. Eur. J.*, 2012, **18**, 16349.
- 20 V. Pelmenschikov, Y. S. Guo, H. Wang, S. P. Cramer, D. A. Case, *Faraday*

Discuss., 2011, **148**, 409.

- 21 D. Mitra, V. Pelmenschikov, Y. S. Guo, D. A. Case, H. Wang, W. B. Dong, M. L. Tan, T. Ichiye, F. E. Jenney, M. W. W. Adams, Y. Yoda, J. Y. Zhao, S. P. Cramer, *Biochemistry*, 2011, **50**, 5220.
- 22 H. S. Shafaat, K. Weber, T. Petrenko, F. Neese, W. Lubitz, *Inorg. Chem.*, 2012, **51**, 11787.
- 23 J. P. Perdew, K. Burke, M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865.
- 24 J. P. Perdew, K. Burke, M. Ernzerhof, *Phys. Rev. Lett.*, 1997, **78**, 1396.
- 25 C. T. Lee, W. T. Yang, R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785.
- 26 A. D. Becke, *J. Chem. Phys.*, 1993, **98**, 5648.
- 27 S. Grimme, J. Antony, S. Ehrlich, H. Krieg, *J. Chem. Phys.*, 2010, **132**, 154104.
- 28 L. Goerigk, S. Grimme, *Phys. Chem. Chem. Phys.*, 2011, **13**, 6670.
- 29 M. Kohout, DGrid, version 4.6, Radebeul, **2011**.
- 30 A. D. Becke, K. E. Edgecombe, *J. Chem. Phys.* **1990**, *92*, 5397; A. Savin, O. Jepsen, J. Flad, O. K. Andersen, H. Preuss, H. G. Vonschnering, *Angew. Chem. Int. Ed.* **1992**, *31*, 187; M. Kohout, A. Savin, *Int. J. Quantum. Chem.* **1996**, *60*, 875.
- 31 M. Kohout, *Int. J. Quantum. Chem.* **2004**, *97*, 651; M. Kohout, K. Pernal, F. R. Wagner, Y. Grin, *Theor. Chem. Acc.* **2004**, *112*, 453.
- 32 R. F. W. Bader, *Atoms in Molecules: A Quantum Theory*, Oxford University Press, Oxford, **1990**.
- 33 Paraview, version 4.1, Kitware Inc., Clifton Park, New York, USA, **2014**; available from http://www.paraview.org.