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Supp movies 

Supp. Movie 1 (see Fig. 1): Single droplet loading and delivery that demonstrates the basic module – First 
sequence: 1 cycle in real-time to describe each cycle step by step; Second sequence: 12 cycles (accelerated 
5.5 fold) to demonstrate robustness of the basic module. 

Supp. Movie 2 (see Fig. 2): Pooling, merging and delivering a precise number of droplets (13 droplets, real-
time). 

Supp. Movie 3 (see Fig. 6): Multiplex delivery of 8 droplets with stage moving with droplets - First sequence: 1 
cycle in real-time to describe each cycle step by step; Second sequence: 9 cycles (accelerated 6.3 fold) to 
demonstrate robustness of the multiplex module. 

Supp. Movie 4 (see Fig. 6): Wide-field movie of multiplex delivery of 8 droplets – (25 fps, real-time, 267 
seconds). 

Supp. Movie 5 (see Fig. 7): Auto correction mechanism of droplet trapping- First phase accelerated 3-fold, 
second phase is real-time.  

Supp. Movie 6: Movie showing failure modes of the droplet delivery system including a case where droplets 
are not spaced properly, a case where a small droplet blocks a trapping chamber, and a situation where the air 
used to deliver droplets pushes a droplet out of the trapping chamber (4 fps, 21 seconds). 1) “near misses”:  
9.7sec, 4 fps; 2) “small droplet”:  2.1sec, 4fps; 3) “too many droplets”:  3.1sec, 4fps  
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Δܣ ൌ 	െ2
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௪௛ ௖ܸ௔௣ ൅  ௖௔௣ (18)ܣ

To calculate Vcap and Scap we consider the shape of the cap to be a spherical cap defined by its radius Rcap or 
curvature Ccap and the radius of the base of the cap d/2. To estimate C we consider that the droplet is at 
equilibrium without external forces and that the Laplace pressure is constant across the droplet, such that the 
curvature of the cap should be the same as the curvature of the free surface at the entrance of the trap (point B 
in Fig. ). In point B we assume that the curvature is dictated by the geometry such that the local curvatures are 
h/2 and w/2, hence: 
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The surface area of a spherical cap is: 

ܣ ൌ ሺܽଶߨ	 ൅ ݄ଶሻ     (21) 

 where a is the radius of the base of the cap, and h is the height of the cap. The relationship between h, R, and 
a is the following: 

݄ ൌ ܴ െ √ܴଶ െ ܽଶ    (22) 

hence,  
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The volume of the spherical cap derives from: 
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Simple calculation to estimate the upper limit of the trapping energy 

We can easily estimate the upper limit of the effect of the microfluidic anchor by considering that the most 
efficient trapping would occur if the value of the cap diameter is equal to the diameter of the well of energy or 
Dcap=d. In this case, we can still use: 
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Numerical applications: 

With d = 50m, h = 35m, w = 110 m, wleak = 20 m and lleak = 110 m: 

 

 A 
Leak channel (eq. 10) 6300 

Microfluidic anchor (eq. 32) 1420 
Microfluidic anchor upper limit (eq. 38) 1460 

 

Numerical application in our configurations shows that: 

Ε௟௘௔௞	௖௛௔௡௡௘௟~6.3 ∗ 10ଷ(1)   ߛ 

 

Ε௠௜௖௥௢௙௟௨௜ௗ௜௖	௔௡௖௛௢௥~1.4 ∗ 10ଷ(3)  ߛ 

 


