Supplementary Figures Pan-Cancer Genetic Analysis Identifies PARK2 as a Master Regulator of G1/S Cyclins

Yongxing Gong¹, Travis Ian Zack^{2,3,4,5,6}, Luc G.T. Morris⁷, Kan Lin⁸, Ellen Hukkelhoven⁹, Radhika Raheja⁹, I-Li Tan⁸, Sevin Turcan¹, Selvaraju Veeriah¹, Shasha Meng¹, Agnes Viale¹⁰, Steven E. Schumacher², Perry Palmedo^{2,11}, Rameen Beroukhim^{2,3,4,5}, and Timothy A. Chan^{1, 12, 13,14}

> ¹Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Center, New York, NY 10065, USA

> > ²The Broad Institute, Cambridge, MA 02142

³Dept. of Cancer Biology, ⁴Medical Oncology, and ⁵Center for Cancer Genome Characterization, Dana-Farber Cancer Institute, Boston, MA 02215

⁶Biophysics Program, Harvard University, Boston, MA 02115

⁷Dept. of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.

⁸Weill Cornell College of Medicine, New York, NY 10065.

⁹Molecular Biology Program, ¹⁰Genomics Core, Memorial Sloan-Kettering Cancer Center, New York, NY 10065

¹¹Center for Biomedical Informatics, Harvard University, Boston, MA 02115

¹²Dept. of Radiation Oncology, ¹³Brain Tumor Center, Memorial Sloan-Kettering Cancer Center, New York, NY 10065

¹⁴Correspondence should be addressed to: T.A.C. (chant@mskcc.org)

Index of Supplementary Figures and Tables

Supplementary Figure 1. Examples of *PARK2* locus profiles from distinct cancer lineages.
Supplementary Figure 2. PARK2 regulates cell cycle progression.
Supplementary Figure 3. *PARK2* knockdown results in alterations in gene expression.
Supplementary Figure 4. Pathway analyses of 2,698 genes differentially expressed across 2 cell lines transfected with *PARK2* siRNAs.
Supplementary Figure 5. Gene expression does not change for cyclins D1 and E1 after *PARK2* knockdown.
Supplementary Figure 6. *PARK2* knockdown causes accumulation of cyclin D2 and D3 protein.
Supplementary Figure 7. Immunoprecipitation assays show binding of wild-type PARK2 to endogenous cyclins D2 and D3.

Supplementary Figure 8. Patterns of genetic alteration of FBXW7 and PARK2 in colorectal cancer.

Supplementary Table 1. Pan-cancer regions of significant SCNA and PARK2 anticorrelates.

- **Supplementary Table 2.** Significance of PARK2 anticorrelates.
- Supplementary Table 3. Gene expression changes after PARK2 knockdown.
- **Supplementary Table 4.** Pathway analyses based on genes differentially expressed after PARK2 knockdown.

Supplementary Table 5. Quantitative RT-PCR Primer and siRNA target sequences.

Ovarian Carcinoma

b

Breast Carcinoma

Supplementary Figure 1 Examples of *PARK2* locus profiles from distinct cancer lineages. Copy number data from the TCGA. Representative types of malignancies are shown. SCNA profiles of chromosome 6 (left) and a 5Mb region surrounding *PARK2* (right) are shown in the three lineages that had the highest frequency of *PARK2* deletions: ovarian cancer (a), breast cancer (b), and bladder cancer (c).

а

Supplementary Figure 2 PARK2 regulates cell cycle progression. FACS data from three cell lines as indicated. Cells were transfected with scrambled siRNA control or with *PARK2* siRNAs. DNA content and BrdU incorporation were measured after *PARK2* knockdown. Representative results are shown from triplicate experiments.

Supplementary Figure 3 *PARK2* knockdown results in alterations in gene expression. The indicated cells were treated with scrambled siRNA or *PARK2* siRNA as shown. The heat map shows the top 50 genes with increased expression.

Supplementary Figure 4 Pathway analyses of 2,698 genes differentially expressed across 2 cell lines transfected with *PARK2* siRNAs. Significant enrichment is shown in transcriptional programs governing cell growth, proliferation, protein ubiquitination, and cell cycle control.

Supplementary Figure 5 Gene expression does not change for cyclins D1 and E1 after *PARK2* knockdown. Two independent *PARK2* siRNAs were used. Experiments were repeated five times. Error bars, 1 standard deviation. NS, not significant.

Supplementary Figure 6 *PARK2* knockdown causes accumulation of cyclin D2 and D3 protein. T202 cells were transfected with scrambled siRNA control or with *PARK2* siRNAs and protein blots were performed with the antibodies specific for each cyclin type as indicated. Representative results are shown from triplicate experiments.

Nature Genetics: doi:10.1038/ng.2981

Supplementary Figure 7 Immunoprecipitation assays show binding of wild-type PARK2 to endogenous cyclins D2 and D3. HEK 293T cells were transfected with either vector only (pcDNA3.1) or with vector encoding wild-type PARK2. Assays were performed as described in Online Methods.

Supplementary Figure 8 Patterns of genetic alteration of *FBXW7* and *PARK2* in colorectal cancer. In colorectal cancer, FBXW7 is primarily mutated while PARK2 is deleted and mutated. Shown are data from The Cancer Genome Atlas Project (<u>http://www.cbioportal.org/public-portal/</u>). Point mutations are noted in green and deletions are noted in blue. Percentages denote total numbers of tumors with alterations in the gene. *p*, not significant.

Nature Genetics: doi:10.1038/ng.2981

Supplementary Table 1. Pan-cancer regions of significant SCNA and PARK2 anticorrelates

A) Amplification

Peak Name	Overall Gistic Rank	Genomic location	Peak region	GISTIC q- value	Gene count	Target(s)	Frequently mutated genes ^B
CCND1	1	11q13.3	chr11:69464719-69502928	2.05E-278	2	CCND1 ^K	<i>CCND1</i> = 6.6e-08
EGFR	2	7p11.2	chr7:55075808-55093954	2.30E-240	1	EGFR ^K	EGFR = 2.2e-15
MYC	3	8q24.21	chr8:128739772-128762863	6.50E-180	1	MYC ^K	
TERC	4	3q26.2	chr3:169389459-169490555	5.40E-117	2	TERC P	
ERBB2	5	17q12	chr17:37848534-37877201	1.59E-107	1	ERBB2 ^K	ERBB2 = 1.3e-06
CCNE1	6	19q12	chr19:30306758-30316875	4.77E-90	1	CCNE1 ^K	
MCL1	7	1q21.3	chr1:150496857-150678056	1.25E-80	6	MCL1 K	
MDM2	8	12q15	chr12:69183279-69260755	2.59E-62	2	MDM2 ^K	
INTS4	9	11q14.1	chr11:77610143-77641464	1.01E-54	1	INTS4	
CDK4	11	12q14.1	chr12:58135797-58156509	5.14E-41	5	CDK4 ^K	CDK4 = 0.0048
SOX2	13	3q26.33	chr3:181151312-181928394	1.21E-38	2	SOX2 ^K	
PDGFRA	14	4q12	chr4:54924794-55218386	1.08E-37	3	PDGFRA ^K	
BDH1	15	3q29	chr3:197212101-197335320	1.21E-31	1	BDH1 ^M	
MDM4	17	1q32.1	chr1:204367383-204548517	1.98E-29	3	MDM4 ^K	
TERT	18	5p15.33	chr5:1287704-1300024	9.34E-27	1	TERT ^K	
KDM5A	19	12p13.33 ^T	chr12:1-980639	1.59E-25	11	KDM5A ^E	
MYCL1	20	1p34.2	chr1:40317971-40417342	3.99E-25	2	MYCL1 K	
IGF1R	21	15q26.3	chr15:98667475-100292401	8.62E-25	9	IGF1R ^K	
BCL2L1	27	20q11.21	chr20:30179028-30320705	2.85E-15	4	BCL2L1 K	
BRD4	32	19p13.12	chr19:15310246-15428182	5.04E-10	3	NOTCH3 ^P , BRD4 ^{P,E}	
KRAS	33	12p12.1	chr12:24880663-25722878	9.47E-10	7	KRAS K	KRAS = 1.5e-14
NKX2-1	34	14q13.2	chr14:35587755-37523513	1.33E-09	14	NKX2-1 ^K	<i>NFKBIA</i> =0.0098, <i>RALGAPA1</i> =0.027
ZNF217	36	20q13.2	chr20:52148496-52442225	5.83E-08	1	ZNF217 ^K	ZNF217 = 0.0082
AKT1	48	14q32.33	chr14:105182581-105333748	0.00028451	7	AKT1 ^K	AKT1 = 1.1e-14
CDK6	49	7q21.2	chr7:92196092-92530348	0.00069831	3	CDK6 ^K	
6p21.1	50	6p21.1	chr6:41519930-44297771	0.0010459	70		
E2F3	56	6p22.3	chr6:19610794-22191922	0.0033658	7	E2F3 ^K	
NEDD9	63	6p24.2	chr6:11180426-11620845	0.082606	2	NEDD9 ^K	
PAX8	69	2q13	chr2:113990138-114122826	0.19717	2	PAX8 ^K	

B) Deletion

Blue indicates large gene

Peak Name	Overall Gistic Rank	Genomic location	Peak region	GISTIC q- value	Gene count	Target(s)	Frequently mutated genes ^B
CDKN2A	1	9p21.3	chr9:21865498-22448737	0	4	CDKN2A ^K	CDKN2A = 4.4e-15
STK11	2	19p13.3	chr19:1103715-1272039	1.46E-238	7	STK11 ^K	<i>STK11</i> = 2.5e-13
PDE4D	3	5q11.2	chr5:58260298-59787985	2.02E-143	3	PDE4D ^L	
PARK2	4	6q26	chr6:161693099-163153207	5.85E-137	1	PARK2 ^{L,K}	
LRP1B	5	2q22.1	chr2:139655617-143637838	4.25E-107	1	LRP1B ^L	
CSMD1	6	8p23.2	chr8:2079140-6262191	2.39E-96	1	CSMD1 ^L	
ARID1A	8	1p36.11	chr1:26900639-27155421	5.74E-87	2	ARID1A ^K	ARID1A = 1.5e-14
PTEN	9	10q23.31	chr10:89615138-90034038	1.12E-79	2	PTEN K	<i>PTEN</i> = 2.2e-15
WWOX	10	16q23.1	chr16:78129058-79627770	8.14E-76	1	WWOX ^L	WWOX = 0.092
RB1	11	13q14.2	chr13:48833767-49064807	3.88E-75	2	RB1 ^K	RB1 = 1.7e-13
FHIT	17	3p14.2	chr3:59034763-61547330	3.01E-55	1	$FHIT^{L}$	
RBFOX1	18	16p13.3	chr16:5144019-7771745	1.00E-45	1	RBFOX1 ^L	
PTPRD	19	9p24.1	chr9:8310705-12693402	3.24E-38	1	PTPRD ^L	
FAT1	21	4q35.2	chr4:187475875-188227950	6.81E-36	1	FAT1 ^K	FAT1 = 2.4e-15
NF1	26	17q11.2	chr17:29326736-29722618	6.59E-23	5	NF1 ^K	<i>NF1</i> = 3.3e-13
MACROD2	27	20p12.1	chr20:14302876-16036135	9.00E-19	3	MACROD2 ^L	
5q15	33	5q15	chr5:73236070-114508587	8.15E-13	156	APC ^K , CHD1 ^E	APC=2.6e-13, RASA1=0.0029
MLL3	34	7q36.1	chr7:151817415-152136074	9.26E-13	1	MLL3 ^{K,E}	<i>MLL3</i> = 1.1e-05
IKZF2	41	2q34	chr2:211542637-214143899	3.24E-09	4	<i>IKZF2</i> ^K , ERBB4 ^L	ERBB4 = 0.00058
CNTN4	42	3p26.3 ^T	chr3:1-3100786	6.44E-09	3	CNTN4 ^L	
3p12.2	43	3p12.2	chr3:75363575-86988125	1.22E-07	12	ROBO1 ^L , CADM2 ^L	
RAD51B	44	14q24.1	chr14:68275375-69288431	1.38E-07	2	RAD51B ^L	ZFP36L1 = 0.0016
11q23.1	45	11q23.1	chr11:105849158-117024891	5.31E-07	84	ATM ^K	<i>ATM</i> =1.4e-06, <i>POU2AF1</i> =0.082
IMMP2L	46	7q31.1	chr7:109599468-111366370	5.74E-07	2	$IMMP2L^{L}$	
NEGR1	47	1p31.1	chr1:71699756-74522473	7.25E-07	2	NEGR1 ^L	
BRCA1	48	17q21.31	chr17:41178765-41336147	7.25E-07	2	BRCA1 K	BRCA1 = 3.5e-08
9q34.3	49	9q34.3	chr9:135441810-139646221	8.73E-06	94	NOTCH1 ^K , BRD3 ^E , GTF3C4 ^E	<i>NOTCH1</i> =1e-08, <i>RXRA</i> =2.1e-05, <i>COL5A1</i> =0.0022, <i>TSC1</i> =0.012

ANKS1B	50	12q23.1	chr12:99124001-100431272	8.73E-06	2	ANKS1B ^L	
DMD	51	Xp21.2	chrX:30865118-34644819	5.15E-05	4	$DMD^{ m L}$	
PRKG1	53	10q11.23	chr10:52644085-54061437	9.79E-05	3	PRKG1 ^L	
AGBL4	55	1p33	chr1:48935280-50514967	0.000219	2	AGBL4 ^L	
CDKN1B	56	12p13.1	chr12:12710990-12966966	0.00035777	5	CDKN1B ^K	CDKN1B = 2.2e-06
SMAD4	63	18q21.2	chr18:48472083-48920689	0.036866	3	SMAD4 ^K	SMAD4 = 6.6e-15

Notes

^BGENE = p-value from [Lawrence et al. *upublished data*] corrected to FDR within peak

^KKnown frequently amplified oncogene or deleted TSG

^PPutative cancer gene

^EEpigenetic regulator

^MMitochondria-associated gene **Immediately adjacent to peak region

^TAdjacent to telomere or centromere of acrocentric chromosome

Supplementary Table 2. Significance of PARK2 anticorrelates

A) Amplification

p-value	gene1	gene2	q-value	
0.012143	PAX8	PARK2		0.181759
0.004796	CCND1	PARK2		0.113663
0.016531	CDK4	PARK2		0.215656
0.0001	CCNE1	PARK2		0.009673
0.000204	BCL2L1	PARK2		0.016122

B) Deletion

p-value	gene1	gene2	FDR p-value	
0.004184	PARK2	BRCA1		0.108167

Note: q-value of <0.25 is significant

Supplementary Table 5. Quantitative RT-PCR Primer and siRNA target sequences

Name	Oligonucleotide sequence (5' -> 3')
siRNAs	
siPARK2_1	AGTGCCGTATTTGAAGCCTCAGGAACAAC
siPARK2_2	GTACGCTTCTTTACATTCCCGGCAGAAGG
siFBX4_1	GCCGGTACAGTGTGATTCCACAGATTCAA
siFBX4_2	GGCATTGAGTGGATTCTTGAAGAAGTGGA
siFBXW7_1	ACAGGACAGTGTTTACAAATT
siFBXW7_2	GTGAAGTTGTTGGAGTAGATT
qPCR primers	
cyclin D1_F	CTGGCCATGAACTACCTGGA
cyclin D1_R	GTCACACTTGATCACTCTGG
cyclin E1_F	GTTATAAGGGAGACGGGGGAG
cyclin E1_R	TGCTCTGCTTCTTACCGCTC
GAPDH_F	AATGAAGGGGTCATTGATGG
GAPDH_R	AAGGTGAAGGTCGGAGTCAA