AFSM sequencing approach: a simple and rapid method for genome-wide

SNP and methylation site discovery and genetic mapping

Zhiqiang Xia, Meiling Zou, Shengkui Zhang, Binxiao Feng & Wenquan Wang

Supplementary File	Title
Supplementary Figure 1	Distribution of reads across the 85 barcoded samples obtained from the cassava KS population that were sequenced in one lane.
Supplementary Figure 2	Annotation of methylated genes (CDSMGs, GMGs, and PMGs).
Supplementary Table 1	The full list of barcode adapters for EcoRI used in the AFSM approach.
Supplementary Table 2	Adapters and PCR primers used in the AFSM library preparation.
Supplementary Table 3	High-throughput sequencing of AFSM tags by Illumina Hiseq 2500.
Supplementary Table 4	Relative levels of cytosine methylation at the CCGG sites in cassava KS population.
Supplementary Table 5	AFSM markers (including SNPs, indels, and methylated sites) obtained in the cassava population.
Supplementary Table 6	Methylation patterns in the SC12 and, KU50 parents and their F1 progenies.
Supplementary Table 7	Comparison of six high-throughput polymorphism detection approaches.
Supplementary Protocol	Detailed protocol describing AFSM sample preparation.

Supplementary Figure 1 Distribution of reads across the 85 barcoded samples obtained from the cassava KS population that were sequenced in one lane.

Supplementary Figure 2 Annotation of methylated genes (CDSMGs, GMGs, and PMGs).

Annotation of methylated genes: CDSMGs (a), GMGs (b), PMGs (c) with BGI WEGO^[31]. Of the 19,155 genes with GO annotations, 1483 CDSMGs, 2581 GMGs and 1052 PMGs showed significant enrichment differences (P<0.05, χ^2 test) compared with total analysed cassava genes.

Annotations are grouped by cellular component, molecular function or biological process based on the JGI cassava gene GO annotation information. Gene numbers and percentages (on a log scale) are listed for each category.

uppr	ouen.										
	Barcode		Barcode		Barcode		Barcode		Barcode		Barcode
No.	Adapter	No.	Adapter	No.	Adapter	No.	Adapter	No.	Adapter	No.	Adapter
	Sequence		Sequence		Sequence		Sequence		Sequence		Sequence
1	TGGCT	17	CGCGT	33	GCGGA	49	TAACA	65	AAGCG	81	CTTAT
2	GAGAT	18	TCACA	34	CAATA	50	TCTCT	66	CGCCG	82	GTAGA
3	GCCTT	19	CCGCA	35	TCTGA	51	ACCTG	67	GGATA	83	CCTCG
4	CAGCT	20	CATGG	36	ACTAA	52	CGGTG	68	TGTAG	84	GAACT
5	TGCTT	21	TAGTT	37	GGCAT	53	GATTA	69	TCCAA	85	TTACT
6	ATAGG	22	CTCTA	38	CTACA	54	GCACT	70	TCATT	86	ATCCG
7	TGTTG	23	TCCGT	39	TACCT	55	ACTGG	71	TATCA	87	CGTCA
8	CTTAG	24	TATGT	40	TCGCG	56	ATTCA	72	GGAGG	88	CAGAA
9	GTCGT	25	TCGTA	41	CTCAT	57	TGAGA	73	CACCA	89	ACAGT
10	AATGA	26	GAATT	42	TTCCA	58	GGCCA	74	TGCGG	90	GGTTG
11	AACTT	27	ACCGA	43	ATATT	59	GTGTT	75	ATGCT	91	GCTAT
12	CTCGG	28	ACACG	44	GCGAG	60	CCATG	76	GTTCT	92	ATGTG
13	TGTGT	29	GCTCA	45	TTCTG	61	CCTTA	77	ATCAA	93	GTGCG
14	GTAAG	30	CTTGA	46	GAGTG	62	TTGAA	78	CCGAT	94	TGAAT
15	ACGTT	31	TAGAG	47	CATAT	63	TGCAA	79	AATTG	95	CAAGT
16	AATCT	32	ATTAT	48	GTTAA	64	TCCAG	80	AAGCA	96	GGTGT

Supplementary Table 1 The full list of 96 developed barcode adapters for EcoRI in AFSM approach.

A total of 85 barcode adapters (No. 1-85) were used in this study.

Name	Sequence (5'to3')
Adaptor Type	
"barcode" adapter	TAGCTCGTAGACACCGTCAG[barcode]G
	AATTC[barcode]CTGACGGTGTCTACGAGCTA
"Hpall-methylation" adapter	CGGTGAGATGAGGCATGAC
	GTCATGCCTCATCTCAC
"MspI-methylation" adapter	CGGACTAATGAGGCATGAC
	GTCATGCCTCATTAGTC
Primer Name	
AFSM primer EcoRI_all	TAGCTCGTAGACACCGTCAG
AFSM primer HpaII	GTCATGCCTCATCTCACCGG
AFSM primer MspI	GTCATGCCTCATTAGTCCGG

Supplementary Table 2 Adapters and PCR primers used in AFSM library preparation.

	Number	Mapping efficiency
		(% HQ reads)
Raw reads	113,472,592	/
HQ reads	99,446,059	/
The highest HQ reads in one sample	3,164,835	/
The lowest HQ reads in one sample	428,131	/
The average HQ reads per sample	1,169,954	/
^a CV in HQ reads	45.33%	/
HQ reads with "HpaII-methylation" adapter and	50,780,017	/
HpaII cut-site		
HQ reads with "MspI-methylation" adapter and	48,457,678	/
MspI cut-site		
Mapped reads	48,253,199	48.52%
The highest mapped reads in one sample	1,561,416	49.34%
The lowest mapped reads in one sample	201,558	47.08%
The average mapped reads per sample	567,685	48.52%
^a CV in mapped reads	44.44%	/
Mapped reads with "HpaII-methylation" adapter	25,055,929	49.34%
and HpaII cut-site		
Mapped reads with "MspI-methylation" adapter	24,179,781	49.90%
and MspI cut-site		

Supplementary Table 3 High-throughput sequencing of AFSM tags by Illumina Hiseq 2500.

^aCV: The coefficient of variation

		Methylated CCGG site	es
KS population	Total	Hemi-methylated sites	Fully methylated sites
All	13598	9193 (67.61%)	4405 (32.39%)
Promoter	1354 (9.96%)	658 (7.16%)	696 (15.80%)
Gene	2937 (21.60%)	1092 (11.88%)	1845 (41.88%)
CDS	1661 (12.22%)	561 (6.10%)	1100 (24.97%)

Supplementary Table 4 Relative levels of cytosine methylation at the CCGG sites in cassava KS population.

	Total	SNP	Indel	Methylated	А	FSM Mark	ker
				Site ^a	Gene	CDS	Promoter
All	316,276	278,737	23,941	13,598	113,907	49,831	48,058
Filtered	15,176	10,685	3,246	1,245	5,566	2,621	2,685

Supplementary Table 5 AFSM markers (including SNP, indel, and methylated sites) obtained in cassava population.

^a Hemi-methylated or full methylated sites > 2/3.

	SC	SC124 KU50 F		SC124		1	Number of
Pattern	Hemi-	Full	Hemi-	Full	Hemi-	Full	sites
	methylation	methylation	methylation	methylation	methylation	methylation	
A1	+	-	+	-	+	-	534
A2	-	+	-	+	-	+	182
B1	+	-	-	+	+	-	0
B2	+	-	-	+	-	+	0
В3	-	+	+	-	+	-	0
Β4	-	+	+	-	-	+	0
C1	+	-	+	-	-	+	0
C2	-	+	-	+	+	-	0
D1	+	-	+	-	+	+	333
D2	-	+	-	+	+	+	197
D3	+	-	-	+	+	+	1148
D4	-	+	+	-	+	+	890

Supplementary Table 6 Methylation patterns in the SC12 and, KU50 parents and their F1 progenies.

	2b-RAD ²²	RAD ¹⁹	GBS ²⁰	RSTA ³²	SFP ³³	AFSM
Methylation site	No	No	No	No	No	Yes
detection						
Fully methylated	No	No	No	No	No	Yes
site detection						
Hemi-methylate	No	No	No	No	No	Yes
d site detection						
Number of	/	/	/	/	/	13,598
cytosine						
methylated site						
surveyed						
Number of	/	/	/	/	/	4,405
cytosine fully						
methylated site						
surveyed						
Number of	/	/	/	/	/	9,193
cytosine						
hemi-methylated						
site surveyed						
Marker type	33~36bp Sequence	Sequence data: SNPs	Sequence data:	Restriction cut	SNP and indels	Sequence data:
	data: SNPs	next to restriction cut	SNPs and	site		SNPs, indels
		sites	indels next to	polymorphism		and
			restriction cut	s:		methylated
			sites	distinguishes		sites
				SNPs and		
				indels		
High quality	11,829,959	41,622	102,505,713	50,935	92,924	99,446,059
reads						
Read length (bp)	33~36 ^b	26 ^b	86 ^b	50 ^b	25 ^b	2X132 ^a
TT1 (C ⁻¹)	NY	N	120/			15 2201
I he coefficient	Not mentioned	Not mentioned	43%	Not mentioned	Not mentioned	45.33%
(CV)	5 051 475	A	Net mentioned	10.421	2.807	48 252 100
number of	3,031,473	Approximately	not mentioned	12,431	5,800	40,200,199
identified		13,000				
Information	42 70/	210/	Not mant's set	240/	10/ at a 50/ fal.	10 520/
mormative	42.1%	51%	Not mentioned	∠4%)	4% at a 5% false	48.32%
marker rate		DOT	N 7 - (discovery rate cut off	N7 .
Prior	Not necessary	EST or genome	Not necessary	EST, 454 or	EST, 454 or genome	Not necessary
information		sequence to map short		genome	sequence	
required		sequence reads		sequence		

Supplementary Table 7 Comparison of six high-throughput polymorphism detection approaches.

Polymorphism	Custom Perl scripts	Custom Perl scripts	Custom Perl	Genotype	Hybridization signal	Custom Perl
identification	for sequence	for sequence	scripts for	clusters across	difference among	scripts for
	alignment	alignment	sequence	study	study individuals	sequence
			alignment	individuals		alignment
Individual	Not mentioned	Not mentioned	Not mentioned	Yes	No	Yes
genotype data						
Organisms	Arabidopsis	Neurospora	Barley	Purple sea	Yeast, Arabidopsis,	Cassava
studied				urchin	Anopheles, several	
					seed plants	
Sequencing	Illumina sequencing	Illumina sequencing	Illumina	Custom	Custom high-density	Illumina
platform			HiSeq2000	high-density	oligonucleotide array	HiSeq2500
				oligonucleotid	(Affymetrix)	
				e array		
				(Agilent)		
Sonication	Not required	Yes	Not required	\	١	Not required
de novo analysis	No	No	Yes	No	No	Yes
without						
sequenced						
genome still						
work						

^a Paired-end read sequencing ^b Single-end read sequencing

Supplementary Protocol. Detailed protocol describing AFSM sample preparation.

The protocol can be adopted for detection of genome-wide SNPs, indels and cytosine methylations (including full methylations and hemi-methylations) in 85 samples in a simple and easy way.

The collected samples should be fresh and in the same organization part, and the growth conditions and the growth period should be consistent. Long-term preservation samples to liquid nitrogen or below -70° C refrigerator.

High quality DNA is required for AFSM. DNA need be quantified using NANODROP 2000C spectrophotometer instrument and DNA concentration were normalized to $100ng/\mu L$. Note-before processing a new set of samples, digested and non-digested total DNA need to run an agarose gel, to test whether DNA extraction are of sufficient quality for library construction. As control, non-digested sample should look identical to the original DNA after 8 hours at $37^{\circ}C$, while the digested samples should be clearly degraded.

Three types of adapters were designed: Barcodes Adapter, HpaII-Methylation Adapter and MspI-Methylation Adapter. Besides, two primer pairs were designed for PCR.

Combined two restriction enzyme pairs (EcoRI-MspI and EcoRI-HpaII) are used in this protocol.

Digest DNA

1 In two 85 well plates set up each of the 2 reactions in each well plate. A reaction mix is in a total volume of 20μ L as follows. Tap to mix. Spin briefly in tabletop centrifuge. Incubate at 37 °C for 8 hours.

Reagent	Volume (µL)	
Genomic DNA (100ng/µL)	2.0	
NEBuffer 4 (10x)	2.0	
EcoRI (20U/μL)	0.5	
MspI (20U/µL)	0.5	
dH ₂ 0	15.0	
Total	20.0	

Reagent	Volume (µL)	
Genomic DNA (100ng/µL)	2.0	
NEBuffer 1 (10x)	2.0	
EcoRI (20U/µL)	0.5	
HpaII (10U/µL)	1.0	
dH ₂ 0	14.5	
Total	20.0	

2. Inactive the enzyme at 65° C for 30 min. Hold samples to ice.

3. For each sample, load 8µL digested DNA on an agarose gel alongside a comparable amount of

intact DNA from the same sample as control.

Double stranded adaptors preparation

Combine the two oligonucelotides for each adaptor (Adaptor_1 and Adaptor_2). Standard, unmodified oligos were ordered in complimentary pairs and annealed in a high-salt solution to form the double-stranded adapter prior to use. The adapter were annealed by heating to 95°C and then slowly cooling to 30°C at a rate of -1° C/minute by programming a single step PCR cycle at 95°C for 1 minute and then decreasing the temperature by 1°C each cycle for 65 cycles. After ligation, the adapters were adjusted to a uniform concentration of 1.0µM each.

AFSM

Туре	Adapter_1 (5'to3')	Adapter_2 (5'to3')	
"Danaada" Adantan	TAGCTCGTAGACACC	AATTC[barcode]CTGACG	
Barcode Adapter	GTCAG[barcode]G	GTGTCTACGAGCTA	
"Man Mathulation" Adaptan	CGGACTAATGAGGC	GTCATGCCTCATTAGTC	
Mspi-methylation Adapter	ATGAC		
"HpaII-Methylation" Adapter	CGGTGAGATGAGGC	GTCATGCCTCATCTCAC	
	ATGAC		

Ligation

1 In two 85 well plates set up each of the 2 reactions in each well plate. A reaction mix is in a total volume of 20μ L as follows. Tap to mix. Spin briefly in tabletop centrifuge. Incubate at 16° C over night.

Reagent	Volume (µL)	
Digested DNA	10.0	
T4 ligase buffer (10x)	2.0	
1.0µM "Barcodes" Adapter	1.5	
1.0µM "MspI-Methylation" Adapter	1.5	
NEB T4 DNA ligase (200 U/µL)	0.5	
dH ₂ 0	4.5	
Total	20.0	

Reagent	Volume (µL)	
Digested DNA	10.0	
T4 ligase buffer (10x)	2.0	
1.0µM "Barcodes" Adapter	1.5	
1.0µM "HpaII-Methylation" Adapter	1.5	
NEB T4 DNA ligase (200 U/µL)	0.5	
dH ₂ 0	4.5	
Total	20.0	

2. Inactive the enzyme at 65° C for 20 min. Hold samples to ice.

Clean-up and Multiplexing

- 1. EcoRI-HpaII ligated samples were pooled and clean-up using E.Z.N.A. Cycle-pure Kit (Omega Bio-tek, Inc., US, D6492), then elute in 50μ L elution buffer in one tube .
- EcoRI-MspI ligated samples were pooled and clean-up, then elute in 50µL elution buffer in another tube.

PCR Amplification

1. Prepare the following master mix:

Reagent	Volume (µL)
DNA from previous step	10.0
NEB 2x Taq Master Mix	25.0
AFSM primer EcoRI_all (5µM)	4.0
AFSM primer HpaII (5µM)	4.0
dH ₂ 0	7.0
Total	50.0

Reagent	Volume (µL)
DNA from previous step	10.0
NEB 2x Taq Master Mix	25.0
AFSM primer EcoRI_all (5µM)	4.0
AFSM primer MspI (5µM)	4.0
dH ₂ 0	7.0
Total	50.0

2. Amplify using the following PCR cycling protocol:

a、30 seconds at 95°C

b, 23 cycles of:

30 seconds at 95 $^\circ\!\!\mathbb{C}$

30 seconds at 55℃

30 seconds at 68°C

c、 5 minutes at 72℃

d、Hold at 16° C

3. Load these PCR products on a 2% agarose gel.

PCR product purification and size select

Purified the PCR product and receive the products with the size 250 to 500bp using the E.Z.N.A. Gel Extraction Kit (Omega Bio-tek, Inc., US, D2500-1).

After EcoRI-MspI 85-plex library and EcoRI-HpaII 85-plex library had been constructed, equal amount of the two libraries were combined into one 85-plex library.