Extended examples of the functionalities of the Chimera package

Introduction

This document provides a description of the main functionalities of Chimera package
applied to the analysis of the output of ChimeraScan, FusionMap and deFuse on the
dataset published by Edgren and Kangaspeska (Edgren, et al., 2011; Kangaspeska, et al.,
2012). These papers provide a set of PCR validated fusion (TPs) events (Table 1). The
output of ChimeraScan, FusionMap and deFuse have been generated using the default
settings suggested by the tools’ developers. These data are available in the example
folder of chimera version 1.6.6 (or higher). The same folder contains the list of Edgren
validated fusions (file edgren.stat.detection.txt) detectable with the tools supported by
Chimera.

Table 1: Fusions, validated by PCR in Edgren and Kangaspeska’s papers

Sample donorEnd acceptorStart Fusions
BT-474 ACACA STAC2 ACACA:STAC2%#¢
BT-474p AHCTF1 NAAA AHCTF1:NAAAS
SK-BR-3 ANKHD1 PCDH1 ANKHD1:PCDH1
MCF-7 ARFGEF2 SULF2 ARFGEF2:SULF2°%¢
MCF-7 BCAS4 BCAS3 BCAS4:BCAS3%
KPL-4 BSG NFIX BSG:NFIX®
SK-BR-3 CCDC85C SETD3 CCDC85C:SETD3%
BT-474 CPNE1 P13 CPNE1:PI3
SK-BR-3 CSE1L KCNB1 CSE1L:KCNB1®
SK-BR-3 CYTH1 EIF3H CYTH1:EIF3H%¥
SK-BR-3 DHX35 ITCH DHX35:ITCH®
BT-474 DIDO1 TTI1 DIDO1:TTI1%®
BT-474 GLB1 CMTM7 GLB1:CMTM7°%
MCF-7* GCN1L1 MSI1 GCN1L1:MSI15%
MCF-7* GDPD1 TMEM49/VMP1 GDPD1:VMP1
BT-474 LAMP1 MCF2L LAMP1:MCF2L5
BT-474p MED1 STXBP4 MED1:STXBP4%"
BT-474p MED1 ACSF2 MED1:ACSF2°%
BT-474p MED13 BCAS3 MED13:BCAS3%#
SK-BR-3 NFS1 PREX1 NFS1:PREX1
KPL-4 NOTCH1 NUP214 NOTCH1:NUP214%%
KPL-4 PPP1R12A "SEPT10" PPP1R12A:SEPT10°%
BT-474p PIP4K2B RAD51C PIP4K2B:RAD51C%
BT-474 RAB22A MYQO9B RAB22A:MYO9B®*
SK-BR-3 RARA PKIA RARA:PKIA®
BT-474 RPS6KB1 SNF8 RPS6KB1:SNF8®
MCF-7 RPS6KB1 VMP1 RPS6KB1: VMP1
MCF-7* SMARCA4 CARM1 SMARCA4:CARM1%%¢
BT-474 SKA2 MYO19 SKA2:MYO19°
BT-474 STARD3 STARD3 STARD3:STARD3
BT-474p STX16 RAE1 STX16:RAE1®
SK-BR-3 SUMF1 LRRFIP2 SUMEF1:LRRFIP2°




SK-BR-3 TATDN1 GSDMB TATDN1:GSDMB®*

BT-474p THRA AC090627/SKAP1 THRA:SKAP1
BT-474p TOB1 SYNRG TOB1:SYNRG®®
BT-474p TRPC4AP MRPL45 TRPC4AP:MRPL45®
BT-474 VAPB IKZF3 VAPB:IKZF3°%
BT-474p USP32 MED1 USP32:MED1
SK-BR-3 WDR67 ZNF704 WDR67:ZNF704
BT-474 ZMYNDS8 CEP250 ZMYND8:CEP250°

*Fusions retrieved from (Kangaspeska, et al., 2012); Sfusions detected combining
chimeraScan and deFuse outputs. “Fusions detected by chimeraScan. *In frame fused
peptides.

Fusion detection algorithms characteristics

According with the classification of fusion-finder algorithms proposed by Beccuti and
co-workers (Beccuti M, 2013), the alignment strategies of deFuse, ChimeraScan and
FusionMap can be classified as: whole paired-end (Fig. 1A), paired-end + fragmentation
(Fig. 1B) and direct fragmentation (Fig. 1C).
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Fig. 1: A) Whole paired-end approach. 1.
Mapping reads on reference genome. 2.
Search for discordant alignments. 3.
Reconstruct putative chimeric products. 4.
Align unmapped reads on the chimeric
products. B) Paired-end + fragmentation
approach. 1. As Al. 2. Not aligned reads are
fragmented. 3. Reads fragments are aligned
over genomes and used to search for
discordant alignments. Q) Direct
fragmentation. 1. As B2. 2. As B3.

The three tools also implement different sets of filters for fusion detection refinements.
deFuse uses only paired-end information. ChimeraScan uses paired-end and anchor-
length information. FusionMap uses black-lists, junction-spanning reads, quality score,
read-through transcripts, and PCR artifacts detection. Furthermore, in (Carrara, et al,,
2013) ChimeraScan resulted to be the most sensitive tool and deFuse, together with
TopHat-fusion, ranked just behind chimeraScan. Taken together the above information



suggests that the integration of the results produced by these three tools might result
more informative then the use of a single tool.

Data upload in Chimera.
importFusionData: Function importFusionData creates a list of fSet objects (see appendix
1), containing the output of one of the following fusion detection tools:

* bellerophontes

* deFuse

* FusionFinder

* FusionHunter

* mapSplice,

* tophat-fusion

* FusionMap

* chimeraScan

* STAR

* Rsubread

* fusionCatcher
As stated in the introduction, we analyze the output of only three of them, since the
objective of the analysis is simply to provide an overview of Chimera functionalities to
highlight the efficacy of the instruments available in Chimera.

#importing data

> library(chimera)

> df.e <- importFusionData("defuse"”, paste(find.package(package="chimera"),

" /examples/Edgren_df.tsv", sep=""))

> cs.e <- importFusionData("chimerascan”, paste(find.package(package="chimera"),
"/examples/Edgren_cs.txt", sep=""), org="hs")

> fm.e <- importFusionData("fusionmap", paste(find.package(package="chimera"),

" /examples/Edgreen_fm.txt", sep=""), org="hs")

On the given dataset, deFuse detects 915 fusions, ChimeraScan 13346 and FusionMap 69.
Fusion names can be extracted with the function fusionName:

#extracting fusion names

> fm.n.e <- fusionName(fm.e)
> cs.n.e <- fusionName(cs.e)
> df.n.e <- fusionName(df.e)

The fusions detected by the different algorithms show a very limited overlap (Figure
2A), as does the set of PCR validated fusions (TPs) (Figure 2B).

FusionMap is the tool that implements the largest number of filters but it is also the one
that detects the lowest number of TPs, which are totally included in the set of fusions
found by deFuse and ChimeraScan (Fig. 2B). ChimeraScan detects 25 PCR validated
fusions and 8 of them are ChimeraScan specific, whereas deFuse detects a total of 23 PCR
validated fusion and 6 of them are deFuse specific (Fig. 2B).



DF CS

Fig. 2: Venn diagram representing the overlaps between fusions detected by deFuse (DF),
ChimeraScan (CS) and FusionMap (FM). A) All set of detected fusions, B) PCR validated fusions
(Table 1). TP indicate the set of fusions confirmed by PCR in the Edgren and Kangaspeska
papers.

supportingReads: Function supportingReads allows the extraction of the reads associated
to the detected fusions. Specifically, the function provides two options: “all” and
“spanning”. The first retrieves all the reads supporting the fusion event and the latter
the reads mapping over the break-point (in case the fusion detection tool provides

#extracting the number of spanning reads supporting the fusions

> supporting.reads.fm <- supportingReads(fm.e, fusion.reads="spanning")
> supporting.reads.cs <- supportingReads(cs.e, fusion.reads="spanning")
> supporting.reads.df <- supportingReads(df.e, fusion.reads="spanning")
> names(supporting.reads.fm) <- fm.n.e

> names(supporting.reads.cs) <- cs.n.e

> names(supporting.reads.df) <- df.n.e

them).
[t is notable that deFuse detects a higher number of break-point mapping reads with
respect to ChimeraScan and FusionMap (Fig. 3).
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Fig. 3: Spanning reads supporting the PCR validated fusions.

The three fusion detection tools are based on different combinations of alignment
approaches and filtering and it is clear, from the above results, that each tool is able to
detect only a subset of TPs. The intersection of the fusions detected by ChimeraScan,
deFuse and FusionMap contains only 3 fusions and all of them belong to the set of the
TPs, but, since the number of TPs is 40, intersection of the tool outputs substantially
reduces the detection sensitivity. The union of the fusions detected by the three tools
amounts to 14261 putative fusions: despite this large number, the union contains only
31 of the 40 TPs present in the dataset. Therefore, reducing the number of non-
informative fusions is mandatory, and for this reason Chimera provides a set of filtering
and annotating procedures that facilitate fusions prioritization.

Filtering procedures

filterList: Function filterList allows to: i) remove, from the imported fusions list, fusions
supported by a number of reads lower than a user defined threshold, e.g. at least 1 read
spanning over the break-point, ii) remove fusions including introns, iii) remove fusions
involving genomic regions that are not annotated known genes, iv) remove read-
through events, v) filter fusions on the basis of Oncofuse (Shugay, et al, 2013)
annotation (see next paragraph).

Spanning reads filter (Fig. 4) has a notable effect even with a low spanning reads
threshold, i.e. a threshold of 1 spanning read reduces the total detected fusions from
14261 to 1596 (Fig. 4A) and it has minimal effects on the number of TPs, since only
PIP4K2B:RAD51C and CCDC85C:SETD3 are lost (Fig. 4B). This dramatic effect is linked
to the default setting of ChimeraScan, which does not include spanning reads threshold
to the detected putative fusions.

#Combining chimeraScan and deFuse results

>csdf.e <- c(cs.e, df.e)

>tmp?2 <- filterList(csdf.e, type="supporting.reads"”, query=1)
#This step is very time consuming and it should be run as batch
>tmp3 <- filterList(csdf.e, type="intronic")

>tmp4 <- filterList(csdf.e, type="annotated.genes", parallel=TRUE)
>tmpb5 <- filterList(csdf.e, type="read.through")

Note that only the output of chimeraScan and deFuse have been considered for Fig.4,
since FusionMap detects a set of TPs which is included in the set detected by the other
two tools.
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Fig. 4: Reduction of detected fusions using the filter based on the number
of supporting spanning reads. A) Detected fusions. B) PCR validated
fusions.

The other available filters have a much smaller effect (Table 2).

Table 2: effects of filters on total number of detected fusions and TPs

Total number of detected

Filter fusions TPs
(ChimeraScan+deFuse)

Unfiltered 14261 31

Intronic 10368 31

Annotated 10964 31

Read-through 14237 31

The greatest reduction, corresponding to 3893 discarded fusion events, is obtained by
removing fusions in which a full intron, or part of it, is included in the mature transcript.
The rationale of this filter is that, since a fusion has to produce a translatable protein, the
presence of a long intron will produce, in the best scenario, a truncated protein.
Therefore, this filter is useful if the target of the analysis are fusions in which the two
partners produce a chimeric protein, but it can be dangerous and should not be applied
if the interest is on truncated proteins. The other filter with a comparable reduction
factor is the one based on annotated genes, which leads to 10964 retained fusions (3297
discarded). This filter keeps only fusions in which both genomic regions correspond to
the location of annotated genes. The applicability conditions are the same as for the
intronic filter. The read-through filter has a very limited effect. It is however notable that
all above mentioned filters, in the biological framework of the Edgren/Kangaspeska
studies, never discard a TP.

We have also quantified the effect of filtering procedures using precision (1) and recall
(2) on the set of 60 validated fusions and 61 false fusions described in the deFuse paper
(McPherson, et al., 2011).
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Fig. 5: Precision versus recall as a consequence of
spanning reads filtering on the set of 60 validated
fusions and 61 false fusions described in deFuse paper.
The number placed over each dot refers to the used
spanning read threshold.



The filter based on spanning reads threshold has a limited precision, i.e. ~0.5 up to a
threshold of 10 spanning reads (Fig.5). However, the increase of the threshold value
negatively affects the recall rate (Fig. 5). On the other end the “Intronic” filter performs
much better showing a precision of 0.8 and a recall of 0.87. The efficacy of fusion filters
“Annotated” and “Read-through”, implemented in Chimera, could not be evaluated since
both validated and false fusions, described in deFuse paper, are all associated to
genomic regions encompassing known genes and both genes, involved in fusion, have
different names.

Annotation procedures

oncofuseRun: Chimera embeds Oncofuse, a recently published naive Bayes Network
Classifier for fusions events (Shugay, et al., 2013). Oncofuse can be downloaded using
the function oncofuselnstallation and it can be run using the function oncofuseRun, which
returns Oncofuse results organized in a data frame structure. When the parameter “plot”
is set to TRUE, oncofuseRun provides also a plot (Fig. 6) of the expression gain scores, as
functions of the Bayes probability that the fusion behaves as a passenger event for the
tumor, i.e. a low p-value corresponds to a high probability for the fusion to be a driver
tumor mutation (for more information see (Shugay, et al., 2013)).
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Fig. 6: Plot of the fusion expression gain as function of the
probability of the fusion to behave as tumor driver event. The
smoothed density representation of the scatterplot is shown in
blue. The PCR validated fusions are shown as red dots. The
dashed vertical line refers to p-value=0.1. So, for example,
VAPB:IKZF3 is the fusion characterized by a probability to be a
passenger mutation below 0.1 and an expression gain score
greater than 1.



Furthermore, the output of Oncofuse is used by the function listFilter to filter fusions on
the basis of Oncofuse annotation. The filtering procedure selects fusions located on
exons or coding regions (CDS) and those being putative tumor driver mutations, i.e.
characterized by low passenger probability, or being characterized by a specific
expression gain score threshold.

#Installing Oncofuse

>installOncofuse()

#executing oncofuse using epithelial tissue model, since the fusions are related to breast
cancer

>csdf.of <- oncofuseRun(csdf.e, tissue="EPI", plot=TRUE)

#extracting only fusions located in the CDS of both genes

>tmp6 <- filterList(csdf.e, oncofuse.output=csdf.of, type="oncofuse",
oncofuse.type="g5g3CDS", parallel=TRUE)

#extracting the fusions characterized by a probability to be a passenger mutation < 0.1
>tmp7 <- filterList(csdf.e, oncofuse.output=csdf.of, type="oncofuse",
oncofuse.type="passenger.prob”, query=0.1, parallel=TRUE)

chimeraSeqSet: It is also possible to reconstruct the sequence of the fused transcript
using the function chimeraSeqSet. Fusion reconstruction is particularly useful to remap
the reads over the putative transcripts of interest, specifically in cases in which this
option is not provided by the fusion finder used for the mapping, as in the case of

#PCR validated fusions

>tp <- read.table(paste(find.package(package="chimera"),"examples”,
"Edgren_true.positives.txt" , sep="/"),sep="\t",header=T)

#extracting fusion names for chimeraScan+deFuse results

csdf.e.n <- fusionName(csdf.e, parallel=T)

#detected fusions
>length(csdf.e.n[which(csdf.e.n%in%as.character(tp$fusions))])

[1] 51

>length(unique(csdf.e.n[which(csdf.e.n%in%as.character(tp$fusions))]))

[1] 29

>tmp.seq <- chimeraSeqSet(csdf.e[which(csdf.e.n%in%as.character(tp$fusions))],
parallel=FALSE)

#saving the transcripts fusions as fasta file.

>sapply(tmp.seq, function(x){writeXStringSet(x, "detected.fusions.fa", format="fasta",
append=TRUE)})

ChimeraScan.

The 29 TPs present in the union of chimeraScan and deFuse results are represented by
51 fusion events, since different break-points for the same fusion transcript have been
detected. The sequence data generated by chimeraSeqSet can be imported as extended
description of the fusion of interest with the function addRNA, see Appendix 1. The name
of the fasta sequence encompassing the fusion transcript, generated by chimeraSeqSet,
has the following structure: transcriptl name - breakpoint on transcriptl: transcript2
name - breakpoint on transcript2, e.g. uc002loy.4-522:uc002mwd.3-5482.



fusionPeptides: To know more about the characteristics of a break-point, the
reconstructed fusions can be used to extract the donor and acceptor peptides involved
in the fusion. This operation can be done using function fusionPeptides, which provides a
brief output describing the type of observed events (see green inset below).

#Extracting the peptide sequences involved in the fusion
>tmpx <- lapply(tmp.seq, fusionPeptides)

fused proteins are not in frame

fused proteins are in frame

>tmpx[c(1:3,50:51)]

The output produced by fusionPeptides is a list of objects encompassing i) the fusion
event, if present, ii) the 5’ end peptide, iii) the 3’ end peptide, iv) the full 5’ end protein
and v) the full 3’ end protein (Fig. 7).

$ uchB2xvp.1-243:ucl@2iyu.4-1031"

A AAStringSet instance of length 5

width seg

[1] (%]
[2] 6@ MQRTGGGAPRPGRNHGLPGSLRQPDPVALLMLLVDADQPEPMRSGARELALFLTPEPGAE
[3] 106 GTFDRSVTLLEVCGSWPEGFGLRHMSSMEHTEEGLRERLADAMAESPSROVVGSGTELQREGSIETLSNSSGSTSGSIPRNFDGYRSPLPTNESQPLSLFPTGFP*
[4] 126 MQRTGGGAPRPGRNHGLPGSLRQPDPVALLMLLVDADQPEPMRSGARELALFL. . .EGMLLRLEEFCSLADLIRSDTSQILEENIPVLKAKLTEMRGIYAKVDRLES*
[5] 914 MNEAMATDSPRRPSRCTGGVVVRPQAVTEQSYMESVVTFLQDVVPQAYSGTPL. . .GTELQREGSIETLSNSSGSTSGSIPRNFDGYRSPLPTNESQPLSLFPTGFP*

$ uc@1@cuy.3-107:ucl@2hrs.3-1862"

A AAStringSet instance of length 5

width seg

[1] 44 MFREFTQQNICVGVGRSKDADGFIRVSSGKKRGLVPVDALTEI*
[2] 9 MFREFTQQN
[3] 35 ICVGVGRSKDADGFIRVSSGKKRGLVPVDALTEI*
[4] 992 MFREFTQQNKATLVDHGIRRLTFLVAQKDFRKQVNYEVDRRFHREFPKFFTFR. ..SRDYVLKQIRSLVQANPEVAMDSIIHMTQHISPTQRAEVIRILSTMDSPST*
[S] 412 MTEMSEKENEPDDAATHSPPGTVSALQETKLQRFKRSLSLKTILRSKSLENFF. . .PFSGNKEQGYMSLKENQICVGVGRSKDADGFIRVSSGKKRGLVPVDALTEI*

names
fusion
plpep
p2pep
pl

p2

names
fusion
plpep
pZpep
pl

pl

Fig. 7: Output of fusionPeptides functions. uc002xvp.1-243:uc002iyu.4-1031 fusion involves coding

regions for both genes but the fusion is not in frame. uc010cuy.3-107:uc002hrs.3-1862 fusion involves
coding regions that produce a small in-frame fusion protein. uc010wdb.2-1:uc002hrs.3-2596

The output of fusionPeptides reveals a total of 6 in-frame fusions out of the 29 TPs (Table
1, fusions marked with #). It has to be noted that the 29 TPs used in this analysis have
been validated in breast cancer cell lines by PCR (Edgren, et al., 2011; Kangaspeska, et
al,, 2012) but, to the best of our knowledge, there is no experimental evidence that all 29
fusion events are able to generate fusion proteins.

subreadRun: The reconstructed fusions generated by chimeraSeqSet function are also of

potential interest as reference for remapping. This option could be of interest in case the
fusion detection tool does not use, in the alignment procedure, reconstructed fusions, as
in the case for ChimeraScan.

Chimera uses Rsubread (Liao, et al., 2013) for alignment and the wrapper function
subreadRun generates a sorted and indexed bam file containing only the mapped reads.



>download.file("http://130.192.119.59 /public/edgren_1.fastq.gz",
"edgren_1.fastq.gz", mode="wb")

>download.file("http://130.192.119.59 /public/edgren_2.fastq.gz",
"edgren_2.fastq.gz", mode="wb")

>system("gzip -d *.gz")

>require(Rsubread)

#This step is significantly time consuming and it should be run as batch

> subreadRun(ebwt=paste(find.package(package="chimera"),

" /examples/uc002xtx.4-272_uc010zyd.2-988.fa", sep=""), inputl="edgren_1.fastq",
input2="edgren_2.fastq", outfile.prefix="accepted_hits", alignment="se", cores=48)
>dir()

[1] "accepted_hits_mapped.bam

accepted_hits_mapped.bam.bai"

Mapped reads can be imported as part of the description of the fusion event, using the
method addGA (see appendix 1).

Validation tool

Only the tools based on “whole paired-end alignment approach” generate putative
fusions and use them to detect reads mapping in the break-point region. However, to the
best of our knowledge (Beccuti M, 2013), there is no tool that assesses if the reads
mapping on a putative fusion transcripts are able to reconstruct, by de novo assembly,
the break-point region.

gapfillerRun: This function integrates in the package the GapFiller tool (Nadalin, et al,,
2012), previously developed by two of the co-authors of Chimera. GapFiller is a seed-
and-extend local assembler able to correctly fill the gap between paired reads, thus it
generates accurate longer sequences with respect to input reads.

The rationale of the reconstruction approach of gapfillerRun is summarized in Fig. 8.
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Fig. 8: De novo reconstruction of break-point in chimera. A)
chimeraSeqSet is used to reconstruct putative fusions. B)
subreadRun is used to remap the reads over the putative fusion
transcripts. C) De novo reconstruction. 1. GapFiller is used to
assemble the sequence between the two mates of the paired reads.
2. GapFiller contigs are aligned to the fusion transcript, and if at
least one of them overlaps the break-point, the fusion is considered
validated by de novo assembly.



It is important to remark that the alignment of the ungapped sequence lying between
the two mates of a paired read (i.e. a GapFiller contig) provides a stronger evidence for
the mapping to be correct, with respect to the alignment of paired reads alone. Indeed,
having the contig instead of the paired read, means having the exact distance between
the mates as well as the complete sequence, which can be mapped with less ambiguity
against the fusion transcript.

To test the efficacy of the above-mentioned approach we have used fusions detected by
ChimeraScan in (Edgren, et al.,, 2011) (Table 3).

Table 3: De novo reconstruction of the break-point region

Fusion # reads at break-point in GapfFiller break-point
fusion transcript reconstruction

RPS6KB1:SNF8 396 YES
BCAS4:BCAS3 216 YES
MED1:ACSF2 167 YES
LAMP1:MCF2L 122 YES
CCDC85C:SETD3 80 YES
PIP4K2B:RAD51C 80 YES
BSG:NFIX 73 YES
SMARCA4:CARM1 72 YES
DIDO1:TTI1 64 YES
MED1:STXBP4 61 YES
NOTCH1:NUP214 58 YES
TOB1:SYNRG 43 YES
VAPB:IKZF 42 YES
RAB22A:MYO09B 42 YES
GLB1:CMTM7 41 YES
MED13:BCAS3 35 NO
GCN1L1:MSI1 29 NO
DHX35:ITCH 7 NO
ARFGEF2:SULF2 4 YES
CYTH1:EIF3H 1 NO
SUMF1:LRRFIP2 1 NO
TATDN1:GSDMB 0 NO
ACACA:STAC2 0 NO
ZMYNDS8:CEP250 0 NO
PPP1R12A:SEPT10 0 NO

The remapping of Edgren data on the fusion transcripts shows that the number of reads
spanning over the break-point ranges between 396 and 0. We have investigated the 9
cases in which we do not validate the fusions by de novo assembly (Table 3). In the case
of the absence of reads covering the break point (TATDN1:GSDMB, ACACA:STACZ,
ZMYND8:CEP250, PPP1R12A:SEPT10) de novo assembly fails because of the lack of
overlapping reads that allows the joining of the contigs of the two transcripts. A similar
situation also happens in the case of CYTH1:EIF3H, SUMF1:LRRFIP2, MED13:BCAS3
(Fig. 9A), where all spanning reads comes from one of the two transcripts over the break
point. The possibility that fusion has a high probability of being an artifact, when the
majority of the spanning reads come from only one of the two fused transcripts, was also
highlighted in the Edgren paper (Edgren, et al., 2011). We have other two cases in which



de novo assembly of break points fails: GCN1L1:MSI1 (Fig. 9B) and DHX35:ITCH (Fig.
9C). In both cases the reads spanning the break point comes from both transcripts but
their number is a very little fraction of the total reads mapping on the two transcripts.
We are now working on a new version of GapFiller to overcome this issue.
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Fig. 9: Coverage of fusions not validated by de novo assembly. A)
MED13:BCAS3, B) GCN1L1:MSI1, C) DHX35:ITCH. In blue full fusion
transcript coverage. In yellow break point coverage. Break point is
shown by a dashed read line.



An example of break point validation is provided in the green inset below.

#extracting ARFGEF2:SULF2 from ChimeraScan output

> my.fset <- cs.e[[which(cs.n.e=="ARFGEF2:SULF2")]]

#remapping reads on ARFGEF2:SULF2

> subreadRun(ebwt=paste(find.package(package="chimera"), " /examples/uc002xtx.4-
272_uc010zyd.2-988.fa", sep=""), input1=paste(find.package(package="chimera"),
" /examples/uc002xtx.4-272_uc010zyd.2-988_R1.fastq", sep=""),
input2=paste(find.package(package="chimera"), "/examples/uc002xtx.4-
272_uc010zyd.2-988_R2.fastq", sep=""), outfile.prefix="accepted_hits", alignment="se",
cores=4)

my.fset <- addGA (my.fset,"accepted_hits.bam")

my.fset <- addGA (my.fset,"accepted_hits.bam")

#evaluating the number of reads spanning on the break-point at nt 268

> tmp.ga <- fusionGA(my.fset)

> tmp.acc <- which(start(tmp.ga) < 268)

> tmp.don <- which(end(tmp.ga) > 268)

> length(tmp.ga[intersect(tmp.acc, tmp.don)])

[1] 4

# Installing GapFiller

> gapfillerInstallation(os="mac64")

#running gapfiller

> tmp <- gapfillerRun(fusion.fa= paste(find.package(package="chimera"),

" /examples/uc002xtx.4-272_uc010zyd.2-988.fa", sep=""),seed 1=
paste(find.package(package="chimera"), "/examples/uc002xtx.4-272_uc010zyd.2-
988_R1.fastq", sep=""), seed2= paste(find.package(package="chimera"),

" /examples/uc002xtx.4-272_uc010zyd.2-988_R2.fastq", sep=""), slack=7, block.length=5,
overlap=20)

de novo alignment has overlap over the fusion break point

>tmp

#The output of gapfillerRun is a list encompassing:

#1i) the contigs generated by GapFiller,

#ii) the conting encompassing the break-point

#iii) the sequence of the fusion transcripts.

Visualization tool

prettyPrint: the function prettyPrint reorganizes a list of fSet objects, in a format suitable to
be saved in a a tab delimited file (Fig. 10).

#Extracting the peptide sequences involved in the fusion

> tmp <- importFusionData("fusionmap”,
paste(find.package(package="chimera")," /examples/mcf7. FMFusionReport", sep=""),
org="hs")

> prettyPrint(tmp, "tmp.df.txt", fusion.reads="spanning")




genel chr.genel brega:::;nn strandl.gene transcripts.genel gene2 chr.gene2 bre;:::;n(. strand.gene2 transcripts.gene2 fusion.breakpoint supporting.reads
HMGN2 chrl 26795003 - uc001bmp.4 ESYT1 chr12 56527458 - uc001sjr.3,uc001sjq.3  ICCTCTTCTTCACActgctcca 1
ccapis chrl 52818776 + uc001ctq.2,uc001ctr.3,uc001cts.3 DTYMK chr2 242615169 + 10zpb.2,uc002wbz.2,uc002wCACATGCTTAACAGgtcgttt! 1
NOS1AP chrl 162336994 + 10pks.1,uc001gbw.2,uc001gbv.2,uc005w: Clorf226 chrl 162351681 + uc010pkt.1,uc001gby.2 5GCAGCCCCTTAGttgaccac 1
GREB1 chr2 11682953 + uc002rbm.3 GREB1 chr2 11696580 + uc002rbk.1,uc002rbl.3  AAAGTGAGTTCAGtagctge 1
RYBP chr3 72495772 + uc003dpe.3 YAF2 chri2 42631957 + 10skp.2,uc001rmv.3,uc001rm TTGTCTTTTTGGC Cctggtgg| 1
SLC30AS chrs 68400246 + uc011cre.2,uc003jvg.3 AZIN1 chr8 103842164 - uc003yky.3,uc003ykx.3 CTAGGATTACAGtagaaaaz 1
TUBB chré 30691455 - uc003nrl.3,uc011dmq.2 KRT80 chri2 52574593 + uc001rzw.3 TATCATAGAGGGCtttgattg 1
EEF1A1 chré 74228908 + uc003phi.3,uc0212zbs.1,uc003phj.3 GHITM chr10 85912360 - 10gma.1,uc001kcs.1,uc010gmTACCAGCTTCAAattcacca 1
HNRNPK chr9 86584135 - )04anh.4,uc011lsx.2,uc004anf.4,uc004an| AATF chr17 35311150 + uc002hni.3 CTGTTCACCAGATgttttccc. 1
NDUFA1 chrX 115007356 + uc004esc.4 SYNJ2BP-COX16 chri4 70834275 - uc001xmc.4 CTATGTGTCAAAGacggagt 1
FAM208B chr10 5727138 + uc001iij.3 FAM208B chr10 5751493 + uc021pmm.1 ACGCCAAGGACGGcatttatg 1
YLPM1 chri4 75294295 + uc001xgo.1 ITPK1 chri4 93406390 - )01ybf.3,uc001ybh.3,uc001yblCTGTATTGCTGCccggctttt 1
SULF2 chr20 46365686 + 002xto.3,uc002xtr.3,uc002xtq.3,uc010gh ARFGEF2 chr20 47538547 - uc002xtx.4 (CCTGCATGGAACcgageget 2

Fig. 10: Example of the tabular output generated by prettyPrint function

breakpointOverlaps: this function uses the information stored in the fusionRNA and
fusionGA slots of an fSet object to produce a plot of the coverage of the full fusion transcript
(Fig. 11, blue) and of the region spanning over the break point (Fig. 11, yellow). A
GAlignment object encompassing all the reads spanning over the break point is also
produced.
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Fig. 11: Coverage plot of the full fusion transcript (blue) and of the reads spanning
over the break point (yellow). The break point is marked by a dashed line (red)

#Inspecting break point spanning reads

> load(paste(find.package(package="chimera"), " /examples/fset ARFGEF2-SULF2.rda",
sep="))

> my.seq <- chimeraSeqs(my.fset)

> my.fset <- addRNA(my.fset, my.seq)

> tmp <- breakpointOverlaps(my.fset,plot=TRUE)
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Appendix 1:

Data from each fusion are stored in a data structure called fSet encompassing the
following information:

slots:
@ fusionInfo: a list encompassing the following fusion informations derived
from the output of the fusion detection tool:
$ fusionTool: the tool that has generated the fusions
$ UniqueCuttingPositionCount: the number of unique cutting
positions detected for the fusion.
$ SeedCount:
* the number of reads overlapping the break-point, i.e.
spanning reads (FusionMap, FusionHunter, mapSplice,
Tophat-fusion, ChimeraScan, STAR, Rsubread,
FusionCatcher).
* Both spanning and encompassing reads (Bellerophontes,
FusionFinder).
* Encompassing reads, i.e. one read of a pair on gene 1, and
the other on gene2 (deFuse).
$ RescuedCount:
* the number of reads overlapping the break-point rescued
after identification of the break point (FusionMap).
* Encompassing reads (Tophat-fusion, FusionCatcher).

* Both spanning and encompassing reads (ChimeraScan,
STAR, Rsubread).

$ SplicePattern: the splice pattern for a fusion junction
$ FusionGene: the name of the fusion gene in the format genel ->
geneZ2.
$ frameShift: frameshift at break-point
@ fusionLoc: A GRangesList encompassing genomic coordinates for gene 1
and 2.
@ fusionRNA: A DNAStringSet encompassing the fusion transcript sequence.
@ fusionGA: A GAlignments object encompassing positions for all reads
mapping on the DNAStringSet representing the fusion.

Methods:
fusionData is an accessory function used to retrieve the list in @fusionInfo
slot.
fusionGRL is an accessory function used to retrieve from @fusionLoc the
GRangesList encompassing fusion locations for gene 1 and 2.
fusionRNA is an accessory function used to extract from @ fusionRNA the
DNAStringSet encompassing the fusion sequence.
addRNA is an accessory function used to add a DNAStringSet encompassing
the fusion sequence into the @fusionRNA slot.
fusionGA is an accessory function used to extract the GAlignments object
encompassing positions for all reads mapping on the fusion from the
@fusionGA slot.

addGA is an accessory function used to add the GAlignments object into the
@fusionGA slot.






