
Supplemental Material for

Characterization of Structural Variants with Single

Molecule and Hybrid Sequencing Approaches

Anna Ritz∗1, Ali Bashir1,3, Suzanne Sindi4, David Hsu5, Iman Hajirasouliha1 and
Benjamin Raphael†1,6

1Department of Computer Science, Brown University, RI
2Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, NY
3Institute for Genomics and Multiscale Biology, Mount Sinai School of Medicine, NY

4School of Natural Sciences, University of California, Merced, CA
5Pacific Biosciences, Menlo Park, CA

6Center for Computational Molecular Biology, Brown University, RI

Contents

1 Supplemental Methods 2
1.1 Multi-Reads . 2
1.2 A Model For Structural Variation . 2

1.2.1 Concordant and Discordant Consecutive Read Pairs 3
1.2.2 Multi-Breakpoint-Mappings . 4

1.3 Cluster Diagrams . 5
1.4 Probabilistic Model . 7
1.5 Markov Chain Monte Carlo (MCMC) . 8

1.5.1 The MCMC Algorithm . 8
1.5.2 The Proposal Distribution . 9
1.5.3 Independent Subproblems and Sampling from the Chain 10

1.6 Final Adjacency Predictions and Benchmarking 11
1.6.1 Computing the Probability of Adjacencies 11
1.6.2 Variant Calling Accuracy . 13
1.6.3 Mapping Accuracy . 16

1.7 Generalizing to Multiple Data Types . 16
1.8 Dataset Processing . 17

1.8.1 Determining Multi-Breakpoint-Mappings from Long Reads 17
1.8.2 MultiBreak-SV Hyperparameters and GASV Clustering Statistics 19
1.8.3 Comparing Algorithms for Structural Variation Prediction 19

2 Supplemental Results 21
2.1 Venter Simulation (Figure 7) . 21
2.2 1000 Genomes Simulation . 23
2.3 Alignment Analysis . 26

∗annaritz@vt.edu (Current Affiliation: Department of Computer Science, Virginia Tech, VA)
†braphael@cs.brown.edu

1

2.3.1 BLASR Alignment Analysis . 26
2.3.2 BWA Alignment Analysis . 26

2.4 Sequenced Fosmids . 28
2.4.1 Fosmid Selection Simulation . 28
2.4.2 Fosmid MCMC Results . 28

2.5 Sequenced CHM1TERT Genome . 31
2.5.1 Comparing Predictions to an Assembly 31

1 Supplemental Methods

1.1 Multi-Reads

A τ -multi-read is a fragment of DNA that is sequenced in τ portions. Single reads, including
long reads, are 1-multi-reads because they are sequenced in one contiguous portion. Paired
reads are 2-multi-reads because only the ends of the DNA fragment is sequenced. Multi-linked
reads, including strobe reads, have τ > 1 distinct segments of the fragment sequenced. Figures 1
and 2 highlight the distinction between the number of reads sequenced from the technology and
the number of segments that are aligned to a reference genome.

Multi-breakpoint-mappings, on the other hand, describe a τ -multi-read as it is aligned to
a reference genome. A 1-multi-read, for example, may align to four distinct regions of the
reference genome, producing a t-multi-breakpoint-mapping. τ -multi-reads where τ > 1 contain
segments of “dark” nucleotides that are not sequenced by the technology; however, they may
still align to t ≥ τ portions of the reference genome. Fragments with τ = 1 (such as long reads)
may still produce t-multi-breakpoint-mappings if they span a structural variant (Figure 2).

Align to Reference Genome
(t-multi-breakpoint-read)

Single/Long Reads

Paired-Reads

Multi-Linked Reads

Sequence from
Individual Genome

(-multi-read)

=1 read

=2 reads

>1 reads

t=4 read alignments

t=2 read alignments

t=5 read alignments

Figure 1: Multi-Reads and Multi-Breakpoint-Mappings.

1.2 A Model For Structural Variation

We model an individual genome that is generated by adding, duplicating, and rearranging
segments of a reference genome as well as adding novel sequences. Each pair of adjacent co-
ordinates in the individual genome that are not adjacent in the reference genome is called an
novel adjacency. We assume that these novel adjacencies are independent. In Figure 1, the
t-multi-breakpoint-mapping example for the single read contains 3 novel adjacencies.

We assume that DNA fragments are selected from the individual genome uniformly, and the
leftmost coordinates of the fragments follow a Poisson process with parameter λ equal to the
expected number of DNA fragments starting at each base in the individual genome. We first
describe generating τ -multi-reads S for τ > 1. They are generated by the following process:

2

Individual
Genome

Reference
Genome

Novel
Adjacency
(Deletion)

Long Read
Fragments

Novel
Adjacency
(Deletion)

Paired Read
Fragments

Novel
Adjacency
(Deletion)

Multi-Linked
Fragments

Figure 2: τ-Multi-Reads from Different Sequencing Platforms. Each novel adjacency is
supported by five fragments, where the colored portions are sequenced and the black portions
are not sequenced. Long read fragments have τ = 1, paired-read fragments have τ = 2, and
multi-linked fragments may have τ ≥ 2. All three fragment types in this example result in
t-multi-breakpoint-mappings with t > 1.

1. Select a starting position x1 sampled uniformly from a diploid individual genome. Select
either the forward or reverse strand with equal probability.

2. Sequence R
(S)
1 ∼ N(µ1, σ1) bases according to the Pacific Biosciences error model.

3. For i = 2, . . . , t

Advance b ∼ N(µ2, σ2) bases.

Sequence R
(S)
i ∼ N(µ1, σ1) bases according to the Pacific Biosciences error model.

Thus, S is comprised of a set of τ reads {R(S)
1 , R

(S)
2 , . . . , R

(S)
τ } (Figure 3). From a set

S = {S1, . . . , Sn} of multi-reads and the individual genome, we wish to infer the set of novel
adjacencies in the individual genome.

Strobe Read

Reference Genome

Sequencing
Errors

x x x x
Alignment

Errors

Correct
Alignment

Incorrect
Alignment

Deletion

XX X X X XX X

Subread Subread Subread
Advance Advance

Figure 3: Strobe Sequencing by Pacific Biosciences. In this example, a multi-read consists of
three reads from the same fragment of DNA separated by two advances (top). The reads are
then independently aligned to a reference genome using BLASR [2]. There are several sources
of error in this pipeline, including sequencing errors, alignment errors, and incorrect alignments
to the reference due to repetitive regions. We assume that there is at most one correct subread
alignment for each subread.

1.2.1 Concordant and Discordant Consecutive Read Pairs

To determine novel adjacencies, it is convenient to consider the set A(R
(S)
i) of full alignments

to the reference genome.1 Each read alignment a ∈ A(R
(S)
i) provides (i) the interval [xa, ya] in

1For simplicity, we describe this step when τ > 1 and τ = t.

3

the reference genome corresponding to the alignment location, (ii) the orientation signa of the
alignment, (iii) and the edit distance εa of the alignment. Let P be the set of pairs of alignments
from adjacent reads in each multi-read, or the consecutive read pairs:

P =
⋃
S∈S

t−1⋃
i=1

{
A(R

(S)
i)×A(R

(S)
i+1)

}
We infer the presence of novel adjacencies by considering P, the set of pairs of alignments

from adjacent reads.
A pair of consecutive read alignments (a1, a2) ∈ P is concordant if the aligned distance and

orientation of the pair is expected given the generative model. That is, if

signa1 = signa2 and

{
Lmin ≤ xa2 − ya1 ≤ Lmax if signa1 is positive

Lmin ≤ xa1 − ya2 ≤ Lmax if signa1 is negative

for bounds Lmin and Lmax on the advance length (Figure 4 Left). Typically Lmin and Lmax

are chosen to be three standard deviations away from the mean. If (a1, a2) is not concordant
according to the definition above, then it is discordant, and is taken to imply a novel adjacency
in the individual genome. We denote the set of discordant alignments Pdiscord ⊂ P. The type
of novel adjacency (deletion, insertion, inversion, translocation) depends on how the conditions
above are violated. We focus on deletions and insertions. For deletions (Figure 4 Middle), there
exists coordinates (x, y) in the reference genome such that

signa1 = signa2 and

{
Lmin ≤ (x− ya1) + (xa2 − y) ≤ Lmax if signa1 is positive

Lmin ≤ (x− xa2) + (ya1 − y) ≤ Lmax if signa1 is negative
.

For inversions (Figure 4 Right), there exists coordinates (x, y) in the reference genome such
that

signa1 6= signa2 and

{
Lmin ≤ (x− ya1) + (y − xa2) ≤ Lmax if signa1 is positive

Lmin ≤ (ya1 − x) + (xa2 − y) ≤ Lmax if signa1 is negative
.

The example in Figure 4 Right shows an inversion where the condition above is satisfied for

both pairs
(
a1 ∈ A(R

(S)
1), a2 ∈ A(R

(S)
2)
)

and
(
a1 ∈ A(R

(S)
2), a2 ∈ A(R

(S)
3)
)

. Other inequalities

hold for other types of novel adjacencies.

1.2.2 Multi-Breakpoint-Mappings

Each multi-read S ∈ S has a set of multi-breakpoint-mapping A(S), defined from the read

alignments A(R
(S)
t) as

A(S) =
{
A(R

(S)
1)×A(R

(S)
2)× . . .×A(R

(S)
t)
}
∪ ∅. (1)

The true multi-breakpoint-mapping alignment might be missing from the set of read alignments
(for example, if a read falls within an insertion on the individual genome with novel sequence).
Thus, we include the empty set ∅ as an element of A(S) to account for missing alignments. A
selection of one multi-breakpoint-mapping alignment from each multi-read is called a mapping
M :

M ∈ (as ∈ A(S) ∀ S ∈ S) , (2)

where some elements in M may be duplicates (i.e. in the case where multiple multi-reads have
∅ selected).

4

3 2 1 3 1

Reference Genome

Test Genome

3 2 1 3 2 1

Deletion Inversion

2

x x y y

Lmin ≤ (x - y2) + (x3 – y) ≤ Lmax

Lmin ≤ (x - y1) + (y - x2) ≤ Lmax

Lmin ≤ (y2 - x) + (x3 - y) ≤ Lmax

Lmin ≤ x2 – y1 ≤ Lmax

No Adjacency

3 2 1

3 2 1

Lmin ≤ x2 – y1 ≤ Lmax

Lmin ≤ x3 – y2 ≤ Lmax

Figure 4: Concordant and Discordant Pairs from Consecutive Read Alignments. (Left) If there
is no novel adjacency in the individual genome, the mapping for the multi-breakpoint read
contains all concordant pairs. (Middle) A deletion between two of the reads results in one
discordant and one concordant pair. (Right) An inversion that reverses the middle read results
in two discordant pairs.

Removing Concordant Multi-Breakpoint Read Alignments A concordant multi-breakpoint-
mapping for S consists of only concordant consecutive read pairs. Multi-reads that come
from non-rearranged parts of the genome and are aligned correctly will contain such a multi-
breakpoint-mapping; further, most of the individual genome will not be rearranged. Thus, if
such a concordant multi-read alignment exists, then we assume that is the true mapping and
we remove such multi-reads from consideration, since they do not indicate any adjacency. This
drastically reduces the number of multi-reads that must be considered.

1.3 Cluster Diagrams

A geometric interpretation of pairs was introduced for paired reads by [9], and is extended here
for multi-breakpoint-mappings. The geometric interpretation of a discordant pair d ∈ Pdiscord is
a trapezoid in R2, where the interior of the trapezoid contains the set of points (x, y) that could
correspond to the novel adjacency. If d implies a deletion, for example, (x, y) is defined by the
inequality in Equation (1). If two discordant consecutive read pairs d1, d2 ∈ Pdiscord intersect
in R2, the intersection contains possible novel adjacencies (x, y) that are consistent with both
pairs.

For the set of pairs Pdiscord (which are now represented as trapezoids in R2), we want to
concisely describe all trapezoid intersections. This can be done by constructing the Hasse
diagram for the partially ordered set (Pdiscord,⊂), which can be constructed in the following
steps:

1. Construct the directed graph Gh = (Vh, Eh) of (Pdiscord,⊂). The nodes Vh are the finite
collection of all subsets of Pdiscord with nonempty trapezoid intersections. There is a
directed edge (u, v) if u ⊂ v.

2. Remove all edges implied by the transitive property. That is, if u ⊂ v and v ⊂ z, remove
the edge (u, z).

The Hasse diagram contains redundant information, and can be very large in practice. We
apply the following node-contraction which greatly reduces the storage space of the graphs:

1. Contract nodes with a single outgoing edge.

5

2. Remove transitive edges after node contraction.

3. Repeat steps 1 and 2 until all nodes have more than one outgoing edge.

We call the resulting graph G = (V ⊆ Vh, E ⊆ Eh) a cluster diagram, which can be efficiently
computed using a line-sweep algorithm similar to [9] with additional book-keeping.

To provide some intuition about G, consider a set P ′discord ⊂ Pdiscord of trapezoids that share
a common intersection in R2 (Figure 5). That is, there are points (x, y) that are supported by
all discordant pairs in P ′discord. G will then be a single node with the set P ′discord. However,
suppose the trapezoids in P ′discord do not share a common area of intersection. Then, we are
restricted to selecting a subset of pairs in P ′discord that are consistent with points (x, y) that
indicate the adjacency. Each node in G is an informative subset of P ′discord; that is, it either is
a set of a maximal number of pairs in P ′discord that are consistent with a single adjacency or it
is a set of pairs in P ′discord that are consistent with multiple adjacencies.

x y

x

y 1,2,3

Trapezoid
Representation

Discordant Pairs

1
2
3

Ref.

Hasse Diagram Cluster Diagram

x y x

y

5

4
1,2,3

Trapezoid
Representation

Discordant Pairs

1
2
3
4
5

Ref.

Hasse Diagram Cluster Diagram

del.

del.

Figure 5: Cluster Diagrams for (Top) discordant pairs with a common area of intersection and
(Bottom) discordant pairs with no common area of intersection. Each pair d ∈ Pdiscord can be
represented as a trapezoid in R2, and the set of all transitively-reduced intersections is a Hasse
diagram (a partially ordered set on the pairs with the subset operator). After node contraction
that removes redundancy in the Hasse diagram, we get a cluster diagram. For sets of pairs with
a common intersection, the cluster diagram is simply a single node.

Set cover algorithm for identifying implied novel adjacencies M Each node in G
represents a region supporting a different adjacency, but many of the nodes contain the same
discordant pairs in the sets. Let Pdiscord(M) is the set of discordant pairs implied by M . Each
pair in this set may imply exactly one potential adjacency, and thus may only contribute to one
node in G. From above, each node v ∈ V in the cluster diagram consists of a set of discordant
pairs.

To find the set of adjacencies from M , we make a parsimony assumption (similar to the
objectives in [8, 3]) that we select the smallest number of adjacencies that completely describe
the pairs in Pdiscord(M). We employ an extension of the greedy approximation of set cover to
determine a set of pair sets UM .

6

Algorithm 1 SetCover(M)

1: UM ⇐ ∅
2: D ⇐ Pdiscord(M) // set of discordant pairs in M
3: while D 6= ∅ do
4: v′ ⇐ arg maxv∈V v ∩ D // v’ contains the most pairs in the current set.
5: u⇐ v′ ∩ D
6: UM ⇐ UM ∪ u // Add the set of pairs
7: D ⇐ D \ u // Remove pairs from consideration.
8: end while
9: return UM

1.4 Probabilistic Model

The probabilistic model incorporates two pieces of information from the alignments in M : the
quality of the read alignments and the novel adjacencies created by alignments of consecutive
pairs of read alignments in M . Our goal is to compute P (M |D), the probability of a mapping
M given the data. When we apply Bayes’ Rule to P (M |D), the probability P (D|M) of the data
given the mapping consists of two terms: the probability of the selected read alignments from
A(S) and the probability of the novel adjacencies, which are represented as a cluster diagram
G.

P (M |D) =
P (D|M)P (M)

P (D)
=
P (A(S)|M)P (G|M)P (M)

P (D)
. (3)

We first describe how to compute P (A(S)|M).

P (A(S)|M) Computation. A mapping M can be partitioned into the set A(M) of read
alignments in M and the number eM of missing alignments (empty sets). Thus, the probability
P (A(S)|M) is the product of the probability of just the alignments in P (A(M)), and the
probability of observing eM missing alignments,

P (A(S)|M) = P (A(M), eM) = P (A(M))P (eM). (4)

The probability P (A(M)) of the read alignments depends on the error rates and fragment
lengths of the sequencing technology. We have a fixed probability pseq of the sequencing error
and a fixed probability perr of completely missing an alignment. For a mapping M , let ε(M) =∑

a∈A(M) εa be the total edit distance and `(M) be the total length of all read alignments in M .
We use a binomial distribution to model the probability of observing ε(M) errors in a string
of length `(M) when the sequencing error is pseq. We approximate the Binomial term with a
Normal distribution when `(M)pseq > 6 (which is often the case).

P (G|M) Computation. We now move on to computing P (G|M). Each mapping M deter-
mines a subset Pdiscord(M) ⊆ Pdiscord of discordant pairs. We use the cluster diagram G to
identify the set of novel adjacencies that M implies. Specifically, we find the smallest number
of nodes in the cluster diagram G that cover the discordant pairs in Pdiscord(M), which corre-
sponds to the smallest number of implied novel adjacencies from Pdiscord(M). We efficiently find
such nodes using a set cover approximation on the leaves of G (Section 1.3). We partition the
discordant pairs Pdiscord(M) into the selected novel adjacencies; the number of pairs for each
adjacency is called the adjacency’s support. Let the non-zero supports be a vector Φ(M); then
P (G|M) = P (Φ(M)) is the probability of observing novel adjacencies with supports Φ(M). We
assume that the novel adjacencies are independently distributed in the individual genome, and
the multi-breakpoint-mappings are uniformly sampled from the individual genome. We model

7

the expected support of a novel adjacency as a Poisson process with parameter λd = λLavg(t−1)
where λ is the sequence coverage, t is the number of reads in the multi-breakpoint-mapping,
and Lavg is the average advance length.

P (M |D) in Equation (3) now becomes[
Bin (ε(M); `(M), pseq) peMerr

][∏
k∈Φ(M) Poiss(k;λd)

]
P (M)

P (D)
(5)

with hyperparameters pseq, perr, and λd. The hyperparameters can be pre-specified or inferred
from the read alignments. We take the prior P (M) to be uniform over all mappings. Al-
though described above for fragments from a single sequencing platform, we have generalized
the model to include multiple sequencing technologies (e.g., strobes and pairs), allowing for
multiple hyperparameters (see Section 1.7).

1.5 Markov Chain Monte Carlo (MCMC)

1.5.1 The MCMC Algorithm

We have designed a Metropolis-Hastings algorithm that draws samples of M with probability
proportional to the probability of the mappings M given the input data. The data D consists
of the set of all multi-breakpoint-mappings A(S) and a set of candidate novel adjacencies in
the form of a cluster diagram G. Algorithm 2 takes the data D and a number of iterations z,
and returns a set of z+ 1 mapping vectors M that are sampled with probability approximating
P (M |D).

Algorithm 2 MCMC(D = {A(S), G},z)
1: Initialize M (0) with a random assignment of mappings
2: for i = 1→ z do

3: M ′ ⇐

M (i−1) with probability 1

2

makeLocalMove(A(S),M (i−1)) with probability β
2

makeJumpMove(A(S),M (i−1)) with probability 1−β
2

4: ratio⇐ P (M ′|D)q(M (i−1)|M ′)
P (M (i−1)|D)q(M ′|M (i−1))

5: M (i) ⇐

{
M ′ with probability α(M ′,M (i−1)) = min (1, ratio)

M (i−1) otherwise
6: end for
7: return {M (0),M (1),M (2), . . . ,M (z−1),M (z)}

There are two ways this chain moves through the solution space: via local moves that
change the assignment of a single multi-breakpoint read and via jump moves that change the
assignment of multiple multi-breakpoint reads. β is a user-defined parameter that determines
the proportion of local vs. jump moves: we set β = 0.9.

Let M(S) be the mapping selected for S from A(S). Algorithm 3 describes the local move,
which takes the set of multi-breakpoint read alignments and a mapping vector and returns the
vector with a single entry changed.

Algorithm 4 describes the jump move, which moves sets of multi-breakpoint-mappings. The
jump move must be symmetric (if we can move from M to M ′, we must be able to move from M ′

back to M), and for mathematical convenience the jump move should not be the same as a local
move. Thus, we perform this move on a subset of connected components G̃ = {G1, G2, . . . , Gk}
of G. Consider a connected component Gk ⊆ G of the cluster diagram; there is a set of multi-
breakpoint reads S ⊆ S that have discordant pairs present in Gk. Gk is in G̃ if there are at

8

Algorithm 3 makeLocalMove(A(S),M)

1: M ′ ⇐M
2: Select multi-breakpoint read S uniformly from S.
3: mold ⇐M(S)
4: while M ′(S) = mold do

5: M ′(S)⇐

{
∅ with probability perr

aS with probability 1−perr
|A(S)|

6: end while
7: return M ′

least two strobes Si, Sj ∈ S such that |A(Si)| = |A(Sj)| = 1. Since there is only one alignment
for each of these strobes, then a move is deterministic (it moves from an error to the alignment
or vice versa). Since there are at least two alignments with this characteristic, then moving the
alignments of all such strobes cannot be done with a local move.

Algorithm 4 makeJumpMove(A(S),M)

1: M ′ ⇐M
2: Select connected component Gk uniformly from G̃.
3: for S ∈ Gk do
4: if |A(S)| = 1 then
5: if M ′(S) = ∅ then
6: M ′(S)⇐ A(S)
7: else
8: M ′(S)⇐ ∅
9: end if

10: end if
11: end for
12: return M ′

1.5.2 The Proposal Distribution

Observe that for any two mapping vectors M and M ′, there can be at most one type of move,
either the local move or the jump move, which could feasibly transition between vectors. Thus,
the proposal distribution is described as follows:

q(M ′|M) =

1 if M = M ′ (the lazy chain).

qlocal(M
′|M) if we can move from M to M ′ using a local move.

qjump(M
′|M) if we can move from M to M ′ using a jump move.

(6)

Below we describe the calculations required for qlocal and qjump.

qlocal: Suppose that we have made a move by selecting multi-read S with probability 1/n.
Thus, we have proposed a mapping vector A′ after calling makeLocalMove(A(S),M). Note that
M and M ′ differ only by M(S) and M ′(S), and multi-breakpoint read S has |A(S)| possible
alignments. The probability of proposing M ′ from M is

9

qlocal(M
′|M) =

1

n
×

1 if M(S) 6= ∅ and M ′(S) = ∅ and |A(S)| = 1

perr if M(S) 6= ∅ and M ′(S) = ∅ and |A(S)| > 1
1

|A(S)| if M(S) = ∅ and M ′(S) 6= ∅
1−perr
|A(S)|−1 if M(S) 6= ∅ and M ′(S) 6= ∅

.

Conversely, the probability of proposing M from M ′ is

qlocal(M |M ′) =
1

n
×

1 if M(S) = ∅ and M ′(S) 6= ∅ and |A(S)| = 1

perr if M(S) = ∅ and M ′(S) 6= ∅ and |A(S)| > 1
1

|A(S)| if M(S) 6= ∅ and M ′(S) = ∅
1−perr
|A(S)|−1 if M(S) = j and M ′(S) 6= ∅

.

qjump: Suppose that we have made a move by selecting connected componentGk with probabil-
ity 1/|G̃|. Thus, we have proposed a mapping vector M ′ after calling makeJumpMove(A(S),M).
By definition, all of the multi-reads with unique alignments that support Gk are flipped (if they
are errors in M they are set to the alignment in M ′, and if they are alignments in M they are
set to errors in M ′). Thus,

qjump(M |M ′) = qjump(M
′|M) =

1

|G̃|
.

1.5.3 Independent Subproblems and Sampling from the Chain

Running MCMC(D,z) on the entire space of multi-reads S would require a very long convergence
time, since the number of possible solutions grows exponentially with the number of multi-
breakpoint reads . However, the repetitive nature of the reference genome often results in
mutually exclusive sets of events to decipher. This allows us to divide S into independent
subsets for which the MCMC algorithm can be run in parallel.

A set of multi-reads S̄ ⊆ S is independent of all other multi-reads if all alignments from the
corresponding multi-breakpoint-mappings appear in clusters with only other multi-breakpoint-
mappings from multi-reads from S̄. More formally,

S, S′ ∈ S̄ if ∃ v = {d1, d2, . . .} ∈ V : di ∈ A(S) and dj ∈ A(S′),

where v is a node in the cluster diagram G. We run the MCMC chain for two to ten million
iterations for each independent subset, depending on the size of the subproblem:

1. Very Short jobs are run for 500,000 iterations; they contain ≤ 5 discordant consecutive
read pairs.

2. Short jobs are run for two million iterations: they contain ≤ 10 discordant consecutive
read pairs.

3. Medium jobs are run for four million iterations: they contain between 11 and 500 dis-
cordant consecutive read pairs.

4. Long jobs are run for twenty million iterations: they contain more than 500 discordant
consecutive read pairs.

The numbers above were selected to balance the number of jobs for 30X coverage simulations;
the low-coverage multi-read simulations contain mostly short jobs. Note that the number of
discordant consecutive read pairs does not directly correlate to the number of multi-reads (the

10

size of S̄). Some subproblems contain few multi-reads, each with many ambiguous alignments;
these may be considered medium or long jobs. Other subproblems contain many multi-reads
with unique read alignments; these may be considered short jobs.

Burnin Methods Rather than recording all mapping vectors M sampled by the chain, in
practice we run the chain for a number of iterations before we start recording the sampled
states. In all experiments we had a burnin time of 90% of the iterations, and recorded the
last 10%. We also tested our method with a shorter burnin (10% burnin rate) and a thinning
method (sampling every 100,000th iteration); however, the longer burnin of 90% produced the
most stable results due to the convergence of the chain.

1.6 Final Adjacency Predictions and Benchmarking

The MCMC method returns a set of z+1 mapping vectors M that are sampled with probability
proportional to P (M |D). However, we wish to select a subset of nodes Û ⊆ V (G) that denotes
the predicted adjacencies from the candidate cluster diagrams. There are many ways to perform
this transformation: one straightforward way is to select a mapping vector Â and use the Φ(G|Â)
function to get an adjacency vector. One may select Â as the maximum likelihood estimate or
by thresholding the mapping frequencies, for example. However, this metric relies on a single Â
to describe the entire space and thus it has limited power. Instead, we have developed a metric
that utilizes information from the entire space.

To determine the precision and accuracy of our predictions, we establish two different metrics
to determine which predictions are correct. The first metric counts true positives at an adjacency
breakpoint level, which is used in the experiments with real data where we have a reported novel
adjacency coordinate. The second metric counts true positives at an alignment level, which is
used in our simulation experiments where we know where each multi-breakpoint read comes
from in the constructed genome.

1.6.1 Computing the Probability of Adjacencies

A discordant pair d may appear in a number of mappings M ; thus the probability P (d) of the
discordant pair is computed from the mapping probabilities P (M |D),

P (d) =
∑

d∈Pdiscord(M)

P (M |D), (7)

where Pdiscord(M) are the discordant pairs present in mapping M .
The probability P (d) is calculated so that if many multi-breakpoint-mappings are sampled

with relatively low frequency but they all contain the same discordant pair d, the probability
of that pair will be large. Here, we describe how to take these discordant pair probabilities and
use them to calculate the probability of a particular adjacency, represented as a node v in the
cluster diagram G.

Each node v ∈ V represents a set of discordant pairs in Pdiscord. Consider the leaf nodes
l ∈ V : outdeg(l) = 0: these represent maximal sets of discordant pairs in the cluster dia-
gram. This notion of maximal is similar to [9]; there are no discordant pairs to add to the
set that will still have a non-empty area of intersection in R2. We would like to compute the
probability P (l|supported by k) that the leaf l was sampled with support k. The probability
P (l|supported by k) for k = 1, . . . , kmax is then the probability of all combinations of |l|-choose-
k selections of discordant pairs in the node. Formally, let {b, . . . , b|l|} be a binary vector that
determines which discordant pairs are selected for node l.

11

P (l|supported by k) =
∑

{b1,...,b|l|}:
bi∈{0,1},∑

i bi=k

 ∏
i:bi=1

P (di)
∏
i:bi=0

(1− P (di))

 .

This is the probability that there are k correct pairs and |l|−k incorrect pairs in l. If k > |r|, then
this probability is zero. Note that P (v|supported by k) includes terms only for the parents of
v; however, if we believe that v is the correct variant, then all discordant pairs in the connected
component that are not in v should be assigned elsewhere. Thus, after we have computed the
probabilities for all nodes in G, we adjust them by multiplying them by the pairs that should
be assigned elsewhere. Define d̄v as the pairs that are in nodes in the connected component
of v but does not appear in v itself. The final probability for each node v ∈ V and support
k = 1, . . . , kmax is then

P (l|supported by k) =
∑

{b1,...,b|l|}:
bi∈{0,1},∑

i bi=k

 ∏
i:bi=1

P (di)
∏
i:bi=0

(1− P (di))

 ∏
d∈d̄l

(1− P (d)).

Example Consider a node v in the cluster diagram as the associated set of discordant pairs:

v = {d1, d2, . . . d|v|} ⊆ Pdiscord.

If v is a true novel adjacency, then we assume that mappings with at least some of the discordant
pairs in v are highly probable. Other discordant pairs not in v that intersect at least one of
{d1, d2, . . . dnv} must be incorrect, so we assume that mappings containing these pairs are less
probable. Call these pairs v̄ = {d̄1, d̄2, . . . , d̄|v̄|}. As a concrete example, consider the right
child in the cluster diagram in Figure 5 bottom. Here, there are four discordant pairs in
v : {d1, d2, d3, d4}, and one discordant pair in v̄ : {d5}.

We wish to compute the probability that v is supported by k discordant pairs for k =
0, 1, . . . , |v|. First, however, we must determine the probability of a single discordant pair d ∈
Pdiscord The discordant pair d may appear in a number of mappings M ; so we simply count the
number of times the discordant pair appears in the chain of {M (0),M (1),M (2), . . . ,M (z−1),M (z)}:

P (d) =
1

z + 1

z∑
i=0

1d∈Pdiscord(M(i)).

Note that the chain may be thinned or have a burnin time. To compute the probability that v
is supported by k discordant pairs, we could compute the probability of all

(|v|
k

)
options. In our

example above, for k = 3 we compute the following:

P (v ={d1, d2, d3, d4}, v̄ = {d5} is supported by 3 discordant pairs) =

P (select d1, d2, d3 and not d4, d5)+

P (select d1, d2, d4 and not d3, d5)+

P (select d2, d3, d4 and not d1, d5).

We assume the discordant pairs are independent, so each term is simply a product of discor-
dant pair probabilities determined by Equation 8. For nodes with many discordant pairs in v,
however, this enumerative method is prohibitively slow. Instead, we have a dynamic program
takes as input v and v̄ and returns the probability that v is supported by k discordant pairs for

12

k = 0, 1, . . . , |v|. Once we have the probability that v is supported by k discordant pairs, the
probability of the variant depends on the coverage and sequencing technology. After testing a
range of parameters (data not shown), we use the following tail probabilities:

P (v, v̄|strobe data) =

|v|∑
k=1

P (v, v̄ supported by k discordant pairs) (8)

P (v, v̄|paired data) =

|v|∑
k=10

P (v, v̄ supported by k discordant pairs) (9)

Figure 6 shows a simplified version of a cluster diagram from the 1000 Genomes Simulation.
First, we compute the probability of each multi-read alignment using the sampled mappings.
We then combined the multi-read alignments to compute the probability that each cluster is
supported by exactly k multi-reads; note that this implies that the other multi-read alignments
that are not members of the cluster are not selected. Then, the tail probability that the cluster
is supported by > t multi-reads is computed; the cluster with the largest tail probability is
selected as the predicted cluster.

Dynamic Program for Efficient Computation of Node Probabilities If we calculated
P (l|supported by k) naively for each leaf node l ∈ G, then we will re-calculate the same terms
multiple times. Specifically, the other nodes in G are terms that are shared by multiple calcula-
tions at the leafs. We use this hierarchy to recursively calculate this probability. The probability
P (v|supported by k) for a node v ∈ G is computed after the probabilities have been computed
for all parent nodes {g1, g2, . . . , gG}. Each parent gi may have a different support ki; we take
the product of all combinations of the parents such that the supports sum to k:

P (v|supported by k) =
∑

{k1,...,kG}:
0≤ki≤|gi|,∑G

i ki=k

[
G∏
i

p(gi|supported by ki)

]
.

We can compute this efficiently using a dynamic program. The dynamic program takes
as input v and v̄ and returns the probability that v is supported by k discordant pairs for
k = 0, 1, . . . , |v| (Algorithm 5). The method fills a 0-indexed table T , where Tij is the probability
that the node is supported by i discordant pairs out of the first j pairs (which are arbitrarily
ordered). Lines 2-6 in NodeProbability(v,v̄) are initializations for the recurrence. There are two
ways that the node can be supported by i discordant pairs in the first j pairs in the recursive step
(Line 9): either the jth pair is included in the count (and we use the probability in T(i−1)(j−1)

or it is not (and we use the probability in T(i−1)j). Lines 12-14 account for the discordant pairs
in v̄ by multiplying T by the probability that these are not selected (as these would denote
other nodes in the cluster diagram G).

Once we have the probability that v is supported by k discordant pairs, the probability that
v is supported by k or more discordant pairs is simply the tail of this distribution:

P (v has ≥ k discordant pairs) =

|v|∑
i=k

Tkj . (10)

1.6.2 Variant Calling Accuracy

From a set of clusters (e.g. the nodes in the cluster diagram G), we determine the subset of
clusters that represent the true deletions in the individual genome. Each true deletion in the

13

500 1000 1500 2000 2500 3000 3500 4000 4500
hg19 Chr 1 +6.5849e7

124024_0.0.0-1.0.0
124025_0.0.0-1.0.0
124022_1.0.0-2.0.0
124023_1.0.0-2.0.0
124028_0.0.0-1.0.0
124029_0.0.0-1.0.0
124030_0.0.0-1.0.0
124024_1.0.0-2.0.0

Discordant Pairs from 1000G Cluster 287

Cluster
Diagram

Pr=0.98
Pr=0.98

Pr=0.99

Pr=0.98
Pr=0.77

Pr=0.97
Pr=0.98

Pr=0.77

Pr=5.3e-7

Select
Do Not
Select

Do Not
SelectD2

Pr=0.23

Predicted
Cluster

SelectD1

Pr=2.3e-6

Select
Do Not
Select

Multi-Breakpoint Read
Selection Probabilities

D2

D1

Figure 6: Cluster Diagram from 1000 Genomes Simulation. (Top) Discordant Pairs that cluster
to produce the cluster diagram. (Middle) Cluster Diagram as generated by MultiBreak-SV.
Yellow nodes and solid lines are in the cluster diagram, green nodes are true positive multi-read
alignment, and the red node is a false positive multi-read alignment. For each cluster, we first
compute the probability of the cluster given that it is supported by exactly k multi-reads. We
then compute the probability of the cluster given that it is supported by > t multi-reads (in
this example, t = 0). The predicted cluster is the one with the largest tail probability; in
this case, the predicted cluster contains all the true positive multi-read alignments and avoids
the one false positive multi-read alignment. (Bottom) Schematic of the same cluster diagram.
(Left) 8 multi-breakpoint read mappings, 7 correct (green) and 1 incorrect (red), result in three
different clusters (light green, light and dark green, light green and red). First, we compute
the probability of observing each multi-breakpoint read mapping in the solution space from the
MCMC method. (Right) Then, we compute the probability of each novel adjacency prediction
by computing the probability that we select at least one multi-breakpoint read mapping that
supports the cluster and we select none of the mappings that support another cluster. The
adjacency with the largest probability, D2, is selected as the predicted cluster.

14

Algorithm 5 NodeProbability(v,v̄)

1: T is a (|v|+ 1)-by-(|v|+ 1) table
2: T00 ⇐ 1
3: Tij ⇐ 0 for i > j
4: for j ⇐ 1 to |v| do
5: T0j ⇐ T0(j−1) × (1− P (dj))
6: end for
7: for i⇐ 1 to |v| do
8: for j ⇐ i to |v| do
9: Tij = T(i−1)(j−1) × P (dj) + Ti(j−1) × (1− P (dj))

10: end for
11: end for
12: for i⇐ 0 to |v| do
13: Ti|v| ⇐ Ti|v| ×

∏
d̄∈v̄(1− P (d̄))

14: end for
15: return Ti|v| for 0 ≤ i ≤ |v|

individual genome corresponds to a pair of coordinates (x, y) in the reference genome. Thus, any
clusters whose area of intersection contain (x, y) are considered true positive novel adjacencies.
However, small (<20bp) indels and slightly-shifted read alignments to the reference may cause
the correct cluster to not contain (x, y). Thus, we consider a more “relaxed” definition of a
true positive cluster, modified from the ’double-uncertainty metric’ introduced in [10]. This
metric captures the uncertainty in the novel adjacency coordinates and the uncertainty in the
adjacency predictions; thus it is ideal for real sequencing data from relatively well-characterized
individual genomes (such as the Fosmid simulations).

From a true adjacency (x, y), we construct a square ±Lmax/2 around the point in R2. Lmax

depends on the sequencing technology; thus, Lmax is larger for multi-reads than for paired-end
reads. Each node v ∈ V in the cluster diagram corresponds to a polygon in R2, indicating the
possible adjacency coordinates that are supported by the associated discordant pairs. We call
cluster v a true positive for the true adjacency (x, y) if these two polygons (the square and
the predicted adjacency region) overlap. In the example in Figure 5 Bottom, all three nodes
in the cluster diagram might be considered true positives depending on the size of the square
around the point (x, y). When we calculate the number of true positive clusters from a set
of candidates, we count the number of true deletions that are covered by some true positive
cluster; in other words, we do not over-count true positive clusters if multiple clusters cover the
same true deletion.

To compute ROC and Precision-Recall curves, we select a minimum support t and compute
the tail of the cluster probability:

P (v|supported by ≥ t). (11)

For each connected component in Gi ∈ G, we select the node vi with the largest cumulative
probability from (11). We then sort these nodes in decreasing order and calculate the number
of true positives and false positives at each step as we walk down this list. We only count a
true positive once: that is, if there are multiple adjacencies that all support the same correct
prediction, they count as a single true positive and zero false positives (this is similar to [10]).
Thus, the y-axis has an upper bound of the number of true positive deletions we wish to detect.

15

1.6.3 Mapping Accuracy

For each read’s alignments A(R
(S)
i) from multi-read S, we determine at most one alignment that

represents the correct mapping to the reference. We only determine this type of true positive
for simulated experiments, where we have explicitly constructed the individual genome from

rearranging the reference. For a simulated read R
(S)
i , we first take the coordinates (z, z + 1)

in the individual genome and determine the coordinates (x, y) in the reference genome. We

then consider all alignments a ∈ A(R
(S)
i), and select the alignment a that meets the following

criteria:

1. a must be on the same strand as the simulated read R
(S)
i .

2. a must be at least 80% of the length of the simulated read R
(S)
i (it cannot be a “partial

alignment”).

3. a defines an interval [x′, y′] on the reference. The following must hold:

[x, y] ∩ [x′, y′]

[x, y] ∪ [x′, y′]
≥ 0.8.

The last item ensures that the two intervals overlap by a large amount, while allowing for slightly
misaligned reads. This is useful because BLASR tends to clip the basepairs at the extremities of
the reads, producing an alignment that is slightly less than the actual read length. If there are
multiple alignments that satisfy the conditions above, the alignment with the largest overlap
(Item 3) is selected as the correct mapping to the reference.

To compute ROC and Precision-Recall curves, we compute P (d) for each discordant pair
and sort them in decreasing order. A discordant consecutive read pair d is a true positive if
both read alignments are true positives according to the criteria above.

1.7 Generalizing to Multiple Data Types

Suppose, rather than one set of multi-breakpoint reads S, you have E sets of multi-breakpoint
reads {S(1), . . .S(E)} corresponding to E different experiments. S(e) may also be paired-read
data from next generation sequencing technologies, which are translated into 2-read multi-
breakpoint reads. For each experiment 1 ≤ e ≤ E, we have the following information:

1. M(S(e)): the set of multi-breakpoint read alignments

2. λ
(e)
d : the expected number of multi-breakpoint reads that supports an adjacency

3. p
(e)
seq: the sequencing error rate

4. p
(e)
err: the probability that a multi-breakpoint read is not aligned

We cluster the union of the multi-breakpoint read alignments {A(S)(1), . . . , A(S)(E)} and
get a cluster diagram G = (V,E). For a node v ∈ V , let v(e) be the set of pairs that belong to
experiment e. Finally, for a mapping vector M let M (e) be the set of indices that correspond
to multi-breakpoint reads from experiment e. Then,

P (M |A(S)(1), . . . , A(S)(E), G) ∝ P (M)P (A(S)(1), . . . , A(S)(E)|M)P (G|M) (12)

=
E∏
e=1

B (ε(M (e)); `(M (e)), p(e)
seq

)
× p(e) |{i:M(S)(e)=∅}|

err ×
∏

u∈U(e)
M

Poiss(|u|;λ(e)
d)

 (13)

16

Note that if multi-breakpoint reads from one experiment support a novel adjacency, then the
probability of that adjacency is computed for all experiments. The MCMC algorithm is applied
as before.

To select the final set of adjacencies, instead of computing P (v|supported by ≥ t) for a
single threshold t, we have a set of thresholds t1, . . . , tE that corresponds to the coverages of
each of the experiments. The probability of an adjacency is then

P (v|supp. by ≥ te for e = 1, . . . , E) =
1

E

E∑
e=1

|v(e)|∑
k=t

P (v(e)|supp. by k). (14)

The results from each experiment are weighted equally above.

1.8 Dataset Processing

1.8.1 Determining Multi-Breakpoint-Mappings from Long Reads

Long read alignments might produce “split reads,” which indicate a structural variant within the
read itself (rather than within the advance length, as described above with τ -multi-reads where
τ > 1). As sequenced reads become longer, the opportunity to capture multiple, nearby variants
within single reads motivates the need for a ’multiply-split read’ framework. In this scenario,
each long read is an instance of a 1-multi-read, where the partial alignments are pieced together
to produce a t-multi-breakpoint reads that each indicate some number of novel adjacencies (see
Figure 1). Unlike multi-reads, however, candidate alignments for each long read may be split
in different locations within the read.

1. Determine multi-breakpoint-mappings from partial alignments. Algorithm 6 enu-
merates all possible virtual t-multi-breakpoint-mappings from a set of partial alignments A(R)
from 1-multi-read R. The algorithm also takes a user-specified parameter h, which denotes
the minimum length of the non-overlapping portions of alignments when considering whether
to consider a pair of alignments in the same multi-breakpoint-mapping. We use an overhang
threshold h rather than a minimum overlapping threshold because we found that exact repeats
at the novel adjacency coordinates produced alignments that overlapped many basepairs (e.g.,
a deletion within an Alu might have overlapping alignments spanning hundreds of basepairs).
We set h = 100, requiring at least 100bp of each read does not overlap in the alignments.

First, we create a directed graph (G) with vertices corresponding to the alignments A(R),
and edges corresponding to allowed alignment pairs. For every pair of alignments we look at the
query start and query end positions. If the query end of the left alignment is less than the query
start of the right alignment (or they overlap but have at least h non-overlapping basepairs on
either end) then create an edge. We then traverse this graph in a depth-first manner, retrieving
multi-breakpoint-mapping alignments.

In Algorithm 6, an alignment a has coordinates in the long read queryStart(a) and queryEnd(a).
We first construct the graph G, and then enumerate all paths via depth-first traversal. When
constructing the graph G, two alignments a, a′ overlap if they share coordinates in the long
read. a overhangs by ≥ h basepairs if queryStart(a′)-queryStart(a) ≥ h. a′ overhangs by ≥ h
basepairs if queryEnd(a′)-queryEnd(a′) >≥ h. The traversal step calls AddAlignmentPaths(),
which recursively constructs the multi-breakpoint-mappings.

2. Determine potential deletion coordinates within full alignments. The top align-
ment of each read was evaluated using a three-state hidden Markov model (HMM). In short, a
pairwise BLASR alignment of length l was converted into a new string of length l, correspond-
ing to 3 character states (0 deletion, 1 match/mismatch, 2 insertion). For the match state
emission probabilities, we fit a 20% error (symmetrically for insertions and deletions), thus 0.8

17

Algorithm 6 ConstructMultiBreakpointMappings(A(R), h)

1: V ← A(R)
2: E ← ∅
3: //First, get edges for graph G
4: for a ∈ A(R) do
5: for a′ ∈ A(R) do
6: if (a, a′ do not overlap and queryEnd(a) < queryStart(a′)) or

(a, a′ overlap and a overhangs by ≥ h bp and a′ overhangs by ≥ h bp) then
7: E ∪ (a, a′)
8: end if
9: end for

10: end for
11: G = (V,E)
12: //Then, enumerate all paths via depth-first traversal
13: A← ∅
14: for a ∈ V do
15: P ← ∅
16: A← AddAlignmentPaths(G,P,A, a)
17: end for
18: return A

Algorithm 7 AddAlignmentPaths(G = (V,E), P,A, u)

1: P ← P ∪ u
2: Adj[u]← {v : (u, v) ∈ E}
3: if |Adj[u]| > 0 then
4: for v ∈ Adj[u] do
5: return AddAlignmentPaths(G,P,A, v)
6: end for
7: else
8: return A ∪ P
9: end if

18

MultiBreak-SV
Hyperparameters

Dataset pseq λd perr

Venter Strobes 5X 0.15 4 0.01
Venter Pairs 30X 0.01 18 0.01
Venter Hybrid 2X/30X 0.15/0.01 2/18 0.01
Venter Long 5X 0.15 3 0.01
Fosmids 9X-32X 0.15 5-20 0.005-0.15
CHM1TERT 10X 0.15 8 0.01

Table 1: MultiBreak-SV parameters for all datasets. The Fosmids were used to evaluate pa-
rameter robustness.

probability of emitting a match state. For insertions and deletions we used a 0.9 probability of
emitting their respective states. We allowed a 0.01 probability of transition from insertion and
deletion states to a match state and a strict 1 × 10−10 probability to transition from a match
state to either insertion or deletion states. Initialization and termination states were both en-
forced to be match states, and the Viterbi path was selected to identify potential insertions and
deletions. Only deletions greater than 200 base pairs were passed for downstream analysis.

Additional filters. We ignored any t-multi-breakpoint-mapping where t = 1 (that is, it
aligns in one contiguous piece to the reference), since these are considered concordant multi-
reads in the long read framework. We also removed any multi-breakpoint-mapping that aligned
within 1Mb of either end of the chromosomes or within 1Mb of the centromere to remove
telomeric/centromeric mappings.

From multi-breakpoint-reads to discordant pairs for GASV clustering. From these
multi-breakpoint-mappings, we determine concordant and discordant consecutive read pairs,
where here the “read pairs” are consecutive partial alignments from the same long read. While
strobe and paired-read sequence data considers the advance length to determine Lmin and
Lmax, we take the outer coordinates and use the read lengths to compute Lmin and Lmax. For
example, suppose we have a consecutive read pair (a1, a2) ∈ Pdiscord; instead of taking the
rightmost coordinate of a1 and the leftmost coordinate of a2, we take the leftmost coordinate
of a1 and the rightmost coordinate of a2. Since these are approximating split reads, we expect
that the novel adjacency implied by these coordinates still results in a split read; thus we set
Lmin and Lmax where Lmax − Lmin = 100; that is, the implied novel adjacency must be within
50bp of the long read length. Note that, since Lmin and Lmax are computed with respect to the
read lengths, they are different for every discordant pair; we bin the values (in steps of 100bp)
to pass to GASV.

1.8.2 MultiBreak-SV Hyperparameters and GASV Clustering Statistics

1.8.3 Comparing Algorithms for Structural Variation Prediction

We compared the results of MultiBreak-SV applied to the Strobe datasets to that of [8], the
only other known SV detection algorithm for strobe sequencing. [8] formulated the problem as
an optimization problem that minimized the total number of adjacencies given the data, and
designed an Integer Linear Program (ILP) to find a single optimal solution. The ILP method
thresholds by the minimum support during a graph construction phase. To generate curves for
the ROC and Precision-Recall plots, we ran the ILP method 14 times ranging the minimum
support from 2, 3, 4, . . . , 15. The 15 points are connected to form a curve.

19

Discordant # Conn Comps from
Multi-Breakpoint- # GASV Cluster Diagrams

Dataset Multi-Reads Mappings (% Ambig) Clusters (Largest CC Size)

Venter Strobes 5X 377912 1955 (33%) 358 60 (775)
Venter Pairs 30X 11818168 2270 (0%∗) 146 4 (6)
Venter Hybrid 2X/30X 11967408 3594 (7%∗) 279 45 (37)
Venter Long 5X 229377 24386 (70%) 18849 338 (38)
Fosmids 9X-32X 3099-15728 68-2628 (32%-95%) 1-2503 0-13 (129)
CHM1TERT 10X 3679463 304215 (48%) 245900 338 (171)
∗We took unique alignments for paired-read data.

Table 2: Dataset preprocessing and GASV clustering statistics. The Venter simulations are
aligned to hg18, the real datasets are aligned to hg19. The last column lists connected compo-
nents with more than one node. BLASR was used to align all PacBio data; BWA was used to
align all Illumina/paired-read data.

Previously-published methods such as GASV [9], GASV-Pro [10], VariationHunter [3], Delly
[7] and Hydra [6] are designed for paired-read data. GASV-Pro and Hydra both accommodate
paired-end reads with multiple alignments to the reference genome. We compare Strobes and
Hybrid to a previously-published parsimony algorithm designed for multi-reads [8].

Paired Multi- Variant Calling Mapping
Algorithm Reads Reads Parameter Parameter

MultiBreak-SV X X Pr[support ≥ k] Pr[Alignment]
Parsimony-Based [8] X X min. support k min. support k
GASV [9] X min. support k min. support k
GASV-Pro [10] X Pr[support ≥ k] Pr[Alignment]
Hydra [6] X min. Hydra score min. Hydra score
Delly [7] X min. support k min. support k
VariationHunter [3] X min. support k min. support k

Table 3: Algorithms for Comparison. The Variant Calling Parameter and the Mapping Parame-
ter are thresholds that determine the number of adjacency and mapping predictions. Probability
computations are described in the Methods.

20

2 Supplemental Results

2.1 Venter Simulation (Figure 7)

Venter Simulation ROC curves for variant calling accuracy and precision-recall curves for map-
ping accuracy. The curves are divided by (Row 1) MultiBreak-SV vs. Parsimony Solution for
1X,2X, and 5X strobes, (Row 2) MultiBreak-SV vs. Parsimony Solution for 1X,2X, and 5X
hybrid datasets, (Row 3) the paired dataset run with a variety of methods, and (Row 4) all
the MultiBreak-SV runs. GASVPro-HQ is the original predictions output by GASVPro on
unique alignments, and GASVPro-HQ Pruned removes overlapping variants from the predic-
tions. Hydra-HQ is the Hydra method applied to unique alignments. In addition, we also ran
the probabilistic method on 60X coverage of pairs; strobe and hybrid datasets still outperform
60X pairs in terms of variant calling accuracy.

0 5 10 15 20
#FP Variants

0

20

40

60

80

100

#
TP

 V
ar

ia
nt

s

Venter Variant Calling Accuracy
(Receiver Operating Characteristic)

1X Strobe MBSV
2X Strobe MBSV
5X Strobe MBSV

1X Strobe Parsimony Sol.
2X Strobe Parsimony Sol.
5X Strobe Parsimony Sol.

0.0 0.2 0.4 0.6 0.8 1.0
Recall: #TP/(Total TP)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n:
 #

TP
/(T

P+
FP

)

Venter Mapping Accuracy
(Precision and Recall)

1X Strobe MBSV
2X Strobe MBSV
5X Strobe MBSV

1X Strobe Parsimony Sol.
2X Strobe Parsimony Sol.
5X Strobe Parsimony Sol.

0 5 10 15 20
#FP Variants

0

20

40

60

80

100

#
TP

 V
ar

ia
nt

s

Venter Variant Calling Accuracy
(Receiver Operating Characteristic)

1X/30X Hybrid MBSV
2X/30X Hybrid MBSV
5X/30X Hybrid MBSV

1X/30X Hybrid Parsimony Sol.
2X/30X Hybrid Parsimony Sol.
5X/30X Hybrid Parsimony Sol.

0.0 0.2 0.4 0.6 0.8 1.0
Recall: #TP/(Total TP)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n:
 #

TP
/(T

P+
FP

)

Venter Mapping Accuracy
(Precision and Recall)

1X/30X Hybrid MBSV
2X/30X Hybrid MBSV
5X/30X Hybrid MBSV

1X/30X Hybrid Parsimony Sol.
2X/30X Hybrid Parsimony Sol.
5X/30X Hybrid Parsimony Sol.

0 5 10 15 20
#FP Variants

0

20

40

60

80

100

#
TP

 V
ar

ia
nt

s

Venter Variant Calling Accuracy
(Receiver Operating Characteristic)

30X Pairs MBSV
60X Pairs MBSV
30X Pairs GASV
30X Pairs Hydra
30X Pairs VH

30X Pairs Delly
30X Pairs Delly
(inc. LowQual)
30X Pairs GASVPro (pruned)
30X Pairs GASVPro (unpruned)

0.0 0.2 0.4 0.6 0.8 1.0
Recall: #TP/(Total TP)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n:
 #

TP
/(T

P+
FP

)

Venter Mapping Accuracy
(Precision and Recall)

30X Pairs MBSV
60X Pairs MBSV
30X Pairs GASV
30X Pairs Hydra

30X Pairs VH
30X Pairs GASVPro (pruned)
30X Pairs GASVPro (unpruned)

0 5 10 15 20
#FP Variants

0

20

40

60

80

100

#
TP

 V
ar

ia
nt

s

Venter Variant Calling Accuracy
(Receiver Operating Characteristic)

30X Pairs MBSV
60X Pairs MBSV
1X Strobe MBSV
2X Strobe MBSV

5X Strobe MBSV
1X/30X Hybrid MBSV
2X/30X Hybrid MBSV
5X/30X Hybrid MBSV

0.0 0.2 0.4 0.6 0.8 1.0
Recall: #TP/(Total TP)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n:
 #

TP
/(T

P+
FP

)

Venter Mapping Accuracy
(Precision and Recall)

30X Pairs MBSV
60X Pairs MBSV
1X Strobe MBSV
2X Strobe MBSV

5X Strobe MBSV
1X/30X Hybrid MBSV
2X/30X Hybrid MBSV
5X/30X Hybrid MBSV

Figure 7: Venter Simulation.

21

Sub-Optimal mappings contribute to true positive novel adjacencies. We considered
the set of sub-optimal multi-breakpoint-mappings that are true positives according to the map-
ping accuracy for deletions. Here, a mapping is sub-optimal if at least one of the reads is not
the top hit by the BLASR score. For the 5X Strobe dataset, 13% (163 of 1069) discordant
pairs that span a true positive deletion include at least one sub-optimal mapping. While this
number is relatively modest, it shows that sub-optimal mappings span true deletions. For the
5X Long Read dataset, 97% (396 of 410) discordant pairs contain at least one sub-optimal map-
ping. Sub-optimal mappings from long reads may either come from sub-optimal read alignments
or breakpoints identified within concordant alignments using the HMM. From these numbers,
sub-optimal mappings are necessary for the long read data.

22

2.2 1000 Genomes Simulation

We generated a simulated dataset based on validated variants from the 1000 Genomes Project
[1]. There are 734 deletions, 214 mobile element insertions, 26 tandem duplications, and 4
novel sequence insertions reported on chromosome 1 for individuals sequenced at low coverage
and individual NA12878, which was sequenced to high coverage. We removed overlapping
variants and inserted the remaining 794 rearrangements (557 deletions and 237 insertions) in
the reference. Of these deletions, 219 (42.86%) have repetitive sequence spanning both of the
novel adjacency coordinates.

We assessed the accuracy of MultiBreak-SV on the 1000Genomes data by generating Strobe,
Pair, and Hybrid datasets similar to the Venter simulation. In general, all methods perform
very well in terms of variant calling accuracy, predicting up to three false positives in order
to recover over 450 true positive novel adjacencies (Figure 8 Left). The only outlier is the
parsimony solution for strobe data, which requires about 50 false positives to achieve similar
sensitivity as the other methods. All methods tend to also perform well in terms of mapping
accuracy (Figure 8 Right); 30X Pairs MultiBreak-SV has slightly better precision (0.95) over
the other methods (0.9) at all values of recall. The Hybrid dataset performs similarly since
most of the mappings are from the 30X Pairs data.

0 10 20 30 40 50
#FP Variants

0

100

200

300

400

500

#
TP

 V
ar

ia
nt

s

1000G Variant Calling Accuracy
(Receiver Operating Characteristic)

30X Pairs MBSV
30X Pairs Hydra
30X Pairs GASV
30X Pairs VH

5X Strobe MBSV
5X Strobe Parsimony Sol.
2X/30X Hybrid MBSV

0.0 0.2 0.4 0.6 0.8 1.0
Recall: #TP/(TP+FN)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n:
 #

TP
/(T

P+
FP

)

1000G Mapping Accuracy
(Precision and Recall)

30X Pairs MBSV
30X Pairs Hydra
30X Pairs GASV
30X Pairs VH

5X Strobe MBSV
5X Strobe Parsimony Sol.
2X/30X Hybrid MBSV

Figure 8: (Left) Variant calling accuracy and (Right) mapping accuracy for datasets from the
1000 Genomes simulation.

Plots for the 1000 Genomes Simulation for all methods and data coverages are in Figure 9.
The curves are divided by (Row 1) MultiBreak-SV vs. Parsimony Solution for 1X,2X, and 5X
strobes, (Row 2) MultiBreak-SV vs. Parsimony Solution for 1X,2X, and 5X hybrid datasets,
(Row 3) the paired dataset run with a variety of methods, and (Row 4) all the MultiBreak-SV
runs. GASVPro-HQ is the original predictions output by GASVPro on unique alignments, and
GASVPro-HQ Pruned removes overlapping variants from the predictions. Hydra-HQ is the
Hydra method applied to unique alignments. In addition, we also ran the probabilistic method
on 60X coverage of pairs; strobe and hybrid datasets still outperform 60X pairs in terms of
variant calling accuracy

23

0 5 10 15 20
#FP Variants

0

100

200

300

400

500

#
TP

 V
ar

ia
nt

s

1000G Variant Calling Accuracy
(Receiver Operating Characteristic)

1X Strobe MBSV
2X Strobe MBSV
5X Strobe MBSV

1X Strobe Parsimony Sol.
2X Strobe Parsimony Sol.
5X Strobe Parsimony Sol.

0.0 0.2 0.4 0.6 0.8 1.0
Recall: #TP/(Total TP)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n:
 #

TP
/(T

P+
FP

)

1000G Mapping Accuracy
(Precision and Recall)

1X Strobe MBSV
2X Strobe MBSV
5X Strobe MBSV

1X Strobe Parsimony Sol.
2X Strobe Parsimony Sol.
5X Strobe Parsimony Sol.

0 5 10 15 20
#FP Variants

0

100

200

300

400

500

#
TP

 V
ar

ia
nt

s

1000G Variant Calling Accuracy
(Receiver Operating Characteristic)

1X/30X Hybrid MBSV
2X/30X Hybrid MBSV
5X/30X Hybrid MBSV

1X/30X Hybrid Parsimony Sol.
2X/30X Hybrid Parsimony Sol.
5X/30X Hybrid Parsimony Sol.

0.0 0.2 0.4 0.6 0.8 1.0
Recall: #TP/(Total TP)

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ec
is

io
n:

 #
TP

/(T
P+

FP
)

1000G Mapping Accuracy
(Precision and Recall)

1X/30X Hybrid MBSV
2X/30X Hybrid MBSV
5X/30X Hybrid MBSV

1X/30X Hybrid Parsimony Sol.
2X/30X Hybrid Parsimony Sol.
5X/30X Hybrid Parsimony Sol.

0 5 10 15 20
#FP Variants

0

100

200

300

400

500

#
TP

 V
ar

ia
nt

s

1000G Variant Calling Accuracy
(Receiver Operating Characteristic)

30X Pairs MBSV
30X Pairs GASV
30X Pairs Hydra

30X Pairs VH
30X Pairs GASVPro (pruned)
30X Pairs GASVPro (unpruned)

0.0 0.2 0.4 0.6 0.8 1.0
Recall: #TP/(Total TP)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n:
 #

TP
/(T

P+
FP

)

1000G Mapping Accuracy
(Precision and Recall)

30X Pairs MBSV
30X Pairs GASV
30X Pairs Hydra

30X Pairs VH
30X Pairs GASVPro (pruned)
30X Pairs GASVPro (unpruned)

0 5 10 15 20
#FP Variants

0

100

200

300

400

500

#
TP

 V
ar

ia
nt

s

1000G Variant Calling Accuracy
(Receiver Operating Characteristic)

30X Pairs MBSV
1X Strobe MBSV
2X Strobe MBSV
5X Strobe MBSV

1X/30X Hybrid MBSV
2X/30X Hybrid MBSV
5X/30X Hybrid MBSV

0.0 0.2 0.4 0.6 0.8 1.0
Recall: #TP/(Total TP)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n:
 #

TP
/(T

P+
FP

)

1000G Mapping Accuracy
(Precision and Recall)

30X Pairs MBSV
1X Strobe MBSV
2X Strobe MBSV
5X Strobe MBSV

1X/30X Hybrid MBSV
2X/30X Hybrid MBSV
5X/30X Hybrid MBSV

Figure 9: 1000 Genomes Simulation ROC and Precision-Recall curves.

24

Differences Between Venter and 1000G Simulations For the Venter simulated chro-
mosome, the 30X Pairs dataset performs worse than the Strobes and Hybrid datasets,
regardless of the method used. In contrast, 30X Pairs performed well on 1000G simulated
chromosome. All adjacencies in 1000G were determined from several different high-throughput,
short-read sequencing technologies, and primarily from Illumina and SoLID sequencing. Thus
it is reasonable to assume that simulated short reads will predict a majority of the variants.
Venter structural variants were established using older, Sanger sequencing technology. Of the
124 deletions in Venter, 112 (90.32%) have repetitive sequence spanning both of the novel
adjacency coordinates. Of the 511 deletions in 1000G, 219 (42.86%) have repetitive sequence
spanning both novel adjacency coordinates. When BWA aligns reads in paired-mode, it tries
to find unique paired-end read alignments consistent with the expected fragment distribution.
Due to the repetitive sequence at the novel adjacency coordinates in Venter, BWA mistakenly
reports a concordant alignment for 48% of the multi-reads from 30X Pairs that support a dele-
tion. Compare this to an incorrect concordant alignment for 10% of the multi-reads from 30X
Pairs in the 1000G chromosome. There are also more false positive alignments in Venter
(25%) compared to 1000G (10%), which originate from more varied sources of error (Table 4).
For these reasons, the 1000G simulation is “easier” to predict the detectable deletions than the
Venter simulation.

25

2.3 Alignment Analysis

2.3.1 BLASR Alignment Analysis

1000GChr1 VenterChr17

Individual Chromosome Construction
Chr 1 17
insertions 557 8752
deletions 237 8801
inversione 0 4
Total # of SVs 794 17377
deletions ≥ 120bp (D) 511 124

Simulated Paired Data
of fragments that span a del. in D (S) 16679 3466
Avg. # of fragments that span a deletion 32.6 29.5

BWA Alignments
of deletion ESPs > 600bp and < 1Mb 15300 1791
– # with correct coordinates (TP) 13802 (90.2%) 1345 (75.1%)
– # with incorrect coordinates (FP) 1498 (9.8%) 446 (24.9%)
in D supported by at least one TP 499 93
Where do FPs Come From?
–# from split read 1440 (96.1%) 284 (63.7%)
–# from read in novel sequence 55 (3.7%) 123 (27.6%)
–# that span another SV 1 39 (8.7%)
–# other 1 0

BWA Alignments for Fragments in S
with a deletion ESP alignment 13606 (81.6%) 1351 (39.0%)
– # with correct coordinates 13570 (99.7%) 1304 (96.5%)
with a non-del. ESP alignment 22 16
that are unmapped/qual < 10 1392 (8.4%) 639 (18.4%)
with a concordant alignment 1659 (10.0%) 1659 (47.9%)
–# that are ≤ 600bp (truly concordant) 1120 (67.5%) 663 (40.0%)
–# that are > 600bp 537 (32.4%) 716 (43.2%)
–# with read in novel sequence 2 81 (4.9%)

Table 4: Simulation Statistics for 1000 Genomes and Venter simulations. Percentages are shown
in parentheses when the value is > 1%. The TP and FP alignments are determined by the
mapping accuracy.

2.3.2 BWA Alignment Analysis

Using the Venter Chr17 simulation, we assessed the usefulness of incorporating ambiguous
paired-read alignments. We tested three alignment pipelines utilized by different publications
(Figure 10).

1. Novoalign We aligned fragments that correctly span a deletion greater than 20bp in
the individual genome with Novoalign, a more sensitive aligner than BWA that returns
multiple alignments [5]. After computing Novoalign alignments for each read (single-read
mode), we paired all vs. all alignments for each paired-read, which determines the set of
discordant ESPs for clustering.

2. Hydra Pipeline (BWA+Novoalign+Novoalign) We ran the alignment pipeline from
Hydra [6], which involves running BWA once to find unique alignments and then Novoalign

26

twice with the remaining reads, gaining sensitivity in the alignments at each step. [10]
also used this method of collecting ambiguous alignments from paired-end reads.

3. BWA>10 We take all unique alignments with a BWA mapping quality greater than 10.
Note that this is more generous than many default parameters for SV detection, which
usually thresholds the alignments at a mapping quality of 30.

There are two ways to run Hydra: Hydra-HQ selects the best alignment for each read, and
Hydra with the “all” option (Hydra-All) includes all alignments for each read. When we run
Novoalign on the correct fragments, Hydra performs well at detecting the structural variants,
but the number of alignments produced by this pipeline is very large (the number of false
positive pairs approach 60,000). When we run the Hydra pipeline, the number of false positive
alignments is appropriately reduced, but over half of the true positive variants are lost due to
the paired mode of BWA and Novoalign. Thus, we take the set of BWA alignments for the
paired read datasets.

0 10 20 30 40 50
0

20

40

60

80

100

120

NovoAlign All Correct Fragments
Variant Calling Accuracy

GASV
Hydra
Hydra All

0 2 4 6

x 10
4

0

1000

2000

3000

4000

NovoAlign All Correct Fragments
Alignment Calling Accuracy

GASV
Hydra
Hydra All

0 10 20 30 40 50
0

20

40

60

80

100

120

Hydra Pipeline
Variant Calling Accuracy

GASV
Hydra
Hydra All

0 1000 2000 3000
0

200

400

600

800

1000

1200

Hydra Pipeline
Alignment Calling Accuracy

GASV
Hydra
Hydra All

0 10 20 30 40 50
0

20

40

60

80

100

120

Unique Alignments (BWA QUAL > 10)
Variant Calling Accuracy

GASV
Hydra−HQ

0 100 200 300 400 500
0

500

1000

1500

Unique Alignments (BWA QUAL > 10)
Alignment Calling Accuracy

GASV
Hydra−HQ

Figure 10: Recovery of true positive variants and alignments with various alignment pipelines
on paired data. For each pipeline tested, we plot the variant calling accuracy (Left) and the
alignment calling accuracy (right) for GASV, Hydra, and Hydra-All.

27

2.4 Sequenced Fosmids

2.4.1 Fosmid Selection Simulation

We simulated 3-strobes uniformly from the constructed individual chromosomes with read and
advance lengths that mimic the real Fosmid data from D1. Table 5 shows the detectability of
reported adjacencies for simulated strobes and simulated paired-read data.

We called a deletion or inversion detectable if a novel adjacency prediction with at least
five supporting discordant pairs lies within fosmid’s coordinates when aligned to the reference
genome. Since the fosmids harbor adjacencies, a full alignment to the reference is not always
obtainable. Thus, we find the best-scoring partial alignment of the fosmid to the reference and
add a buffer of 100Kb. Since this region is much larger than the fosmid length, the detectability
counts are conservative in the sense they may include false positive calls. We focused on two
deletions (D1 and D2) that were detectable by both strobes and pairs (Figure 11) and two
inversions (I1 and I2) that were detectable by the strobe simulation but not the paired simulation
(Figure 12).

Simulations for 44 Deletions Simulations for 19 Inversions

Paired-End Paired-End Paired-End Paired-End
Detected Undetected Total Detected Undetected Total

Strobe Detected 25 10 35 4 9 13
Strobe Undetected 2 7 9 0 6 6

Total 27 17 44 4 15 19

Table 5: Detectability of Reported Adjacencies on Simulated Strobe and Paired-Read Data.
(Left) Over half of the reported deletions are detectable by both paired-end and strobe datasets;
we selected two of the fosmids harboring these deletions as controls. (Right) Strobes are able
to detect nine more inversions than the paired-end dataset; we selected two of the fosmids
harboring these deletions as “difficult” cases.

2.4.2 Fosmid MCMC Results

Figure 13 shows the distribution of sequence coverage for the four fosmids selected for sequenc-
ing. Figure 14 shows the results of MultiBreak-SV applied to the sequenced fosmids for different
parameter values.

Reported Reported Reported Detectable Detectable
Name Accession Chr Start [4]∗ End [4]∗ Junction [4] with Pairs? with Strobes?

D1 AC158335 3 68739688 68747866 2 X X
D2 AC153483 16 78371638 78384899 0 X X
I1 AC195776 19 39264278 39280958 1236 X
I2 AC193137 14 35017063 35031477 7063 X

∗Coordinates lifted over from hg18 to hg19.

Table 6: Fosmids Selected for Pacific Biosciences Sequencing. The reported junction is the
length of unmatched sequence found across the adjacency [4]. The last two columns report
whether simulations indicate that the variant is detectable with paired-read sequencing or strobe
sequencing.

28

6.874 6.875 6.876 6.877 6.878

x 10
7

0

2

4

6

x 10
4

hg19 chr3 Coordinate

of

 T
im

es
 B

as
e

is
 A

lig
ne

d

M4 Paired Read Simulation

All Aligned Subreads
Discordantly−Aligned Subreads
Reported Adjacency (junction size = 2)

6.874 6.875 6.876 6.877 6.878

x 10
7

0

2

4

6

x 10
4

hg19 chr3 Coordinate

of

 T
im

es
 B

as
e

is
 A

lig
ne

d

M4 Strobe Simulation

All Aligned Subreads
Discordantly−Aligned Subreads
Reported Adjacency (junction size = 2)

6.874 6.875 6.876 6.877 6.878

x 10
7

DNA

LINE

LTR

SINE

Simple_repeat

SegDups

hg19 chr3 Coordinate

Repeats Within Fosmid Coordinate

7.836 7.837 7.838 7.839 7.84 7.841

x 10
7

0

2

4

6

x 10
4

hg19 chr16 Coordinate

of

 T
im

es
 B

as
e

is
 A

lig
ne

d

B13 Paired Read Simulation

All Aligned Subreads
Discordantly−Aligned Subreads
Reported Adjacency (junction size = 0)

7.836 7.837 7.838 7.839 7.84 7.841

x 10
7

0

2

4

6

x 10
4

hg19 chr16 Coordinate

of

 T
im

es
 B

as
e

is
 A

lig
ne

d

B13 Strobe Simulation

All Aligned Subreads
Discordantly−Aligned Subreads
Reported Adjacency (junction size = 0)

7.836 7.837 7.838 7.839 7.84 7.841

x 10
7

DNA

LINE

LTR

SINE

Simple_repeat

SegDups

hg19 chr16 Coordinate

Repeats Within Fosmid Coordinate

Figure 11: Paired Read and Strobe Simulations for Deletions D1 (M4) and D2 (B13). Both
pairs and strobes have the ability to detect the deletions in simulation. (Top) Read Coverage for
a paired read simulation. (Middle) Read Coverage for a strobe simulation. (Bottom) Repeats
within the fosmid coordinate (hg19).

3.9265 3.927 3.9275 3.928 3.9285 3.929 3.9295 3.93 3.9305

x 10
7

0

2

4

6

x 10
4

hg19 chr19 Coordinate

of

 T
im

es
 B

as
e

is
 A

lig
ne

d

C3 Paired Read Simulation

All Aligned Subreads
Discordantly−Aligned Subreads
Reported Adjacency (junction size = 1236)

3.9265 3.927 3.9275 3.928 3.9285 3.929 3.9295 3.93 3.9305

x 10
7

0

1

2

3

4

5

x 10
4

hg19 chr19 Coordinate

of

 T
im

es
 B

as
e

is
 A

lig
ne

d

C3 Strobe Simulation

All Aligned Subreads
Discordantly−Aligned Subreads
Reported Adjacency (junction size = 1236)

3.9265 3.927 3.9275 3.928 3.9285 3.929 3.9295 3.93 3.9305

x 10
7

DNA

LINE

LTR

SINE

Simple_repeat

SegDups

hg19 chr19 Coordinate

Repeats Within Fosmid Coordinate

3.5015 3.502 3.5025 3.503 3.5035 3.504 3.5045 3.505 3.5055

x 10
7

0

1

2

3

4

5

x 10
4

hg19 chr14 Coordinate

of

 T
im

es
 B

as
e

is
 A

lig
ne

d

F4 Paired Read Simulation

All Aligned Subreads
Discordantly−Aligned Subreads
Reported Adjacency (junction size = 7063)

3.5015 3.502 3.5025 3.503 3.5035 3.504 3.5045 3.505 3.5055

x 10
7

0

2

4

6

x 10
4

hg19 chr14 Coordinate

of

 T
im

es
 B

as
e

is
 A

lig
ne

d

F4 Strobe Simulation

All Aligned Subreads
Discordantly−Aligned Subreads
Reported Adjacency (junction size = 7063)

3.5015 3.502 3.5025 3.503 3.5035 3.504 3.5045 3.505 3.5055

x 10
7

DNA

LINE

LTR

SINE

Simple_repeat

SegDups

hg19 chr14 Coordinate

Repeats Within Fosmid Coordinate

Figure 12: Paired Read and Strobe Simulations for Inversion I1 (C3) and I2 (F4). Pairs could
not detect the inversions in simulation. See Figure 11 for plot description.

29

0 20 40 60
0

1000

2000

3000

4000

5000

6000

Seqence Coverage
mean=17.78
stddev=5.20

B

as
e

P
ai

rs

D1 Coverage

0 20 40 60
0

1000

2000

3000

4000

5000

6000

Seqence Coverage
mean=9.29
stddev=2.99

B

as
e

P
ai

rs

D2 Coverage

0 20 40 60
0

1000

2000

3000

4000

5000

6000

Seqence Coverage
mean=31.71
stddev=7.93

B

as
e

P
ai

rs

I1 Coverage

0 20 40 60
0

1000

2000

3000

4000

5000

6000

Seqence Coverage
mean=29.98
stddev=6.31

B

as
e

P
ai

rs

I2 Coverage

Figure 13: Sequence coverage for the four fosmids.

5
10

15
20

0.005
0.01

0.05
0.1

0.15

0

0.2

0.4

0.6

0.8

1

λ
d

D1 True Positives

p
err

#

5
10

15
20

0.005
0.01

0.05
0.1

0.15

0

0.2

0.4

0.6

0.8

1

#

D1 False Positives

λ
d

p
err

5
10

15
20

0.005
0.01

0.05
0.1

0.15

0

0.2

0.4

0.6

0.8

1

λ
d

D2 True Positives

p
err

#

5
10

15
20

0.005
0.01

0.05
0.1

0.15

0

0.2

0.4

0.6

0.8

1

λ
d

D2 False Positives

p
err

#

5
10

15
20

0.005
0.01

0.05
0.1

0.15

0

2

4

6

8

10

λ
d

I1 True Positives

p
err

#

5
10

15
20

0.005
0.01

0.05
0.1

0.15

0

2

4

6

8

10

λ
d

I1 False Positives

p
err

#

5
10

15
20

0.005
0.01

0.05
0.1

0.15

0

0.5

1

1.5

2

λ
d

I2 True Positives

p
err

#

5
10

15
20

0.005
0.01

0.05
0.1

0.15

0

0.5

1

1.5

2

λ
d

I2 False Positives

p
err

#

Figure 14: MCMC Results on Sequenced Fosmids. For each fosmid (Top row: D1, D2; Bottom
row: I1, I2), the plot on the left indicates the number of true positives recorded and the plot
on the right indicates the number of false positives for combinations of λd = (5, 10, 15, 20) and
perr = (0.005, 0.01, 0.05, 0.1, 0.15). The true positive and false positive plots are scaled by the
same range on the Z-axis for each fosmid.

30

2.5 Sequenced CHM1TERT Genome

0 1 2 3 4 5
Time (min)

0
100
200
300
400
500
600
700
800

#
 S

ub
pr

ob
le

m
s

26 subproblems took
longer than 5 min.

Running Time of Subproblems

Figure 15: Histogram of times for each sampled run.

0 1000 2000 3000 4000 5000
Size (bp) of 3600 deletions <5Kb

0
200
400
600
800

1000
1200
1400

#
 o

f P
re

di
ct

ed
 D

el
et

io
ns

Predicted Approx. Deletion Size

Figure 16: CHM1TERT Structural Variants Predicted by MultiBreak-SV.

2.5.1 Comparing Predictions to an Assembly

We used nucmer to align each chromosome in the NCBI CHM1TERT assembly to hg19. We
then identified alignments larger than 7Kb and the top hit when aligning the assembly to
the reference and the reference to the assembly using delta-filter -l 7000 -1 provided by
the nucmer software distribution. We then reported the coordinates using the show-coords

program provided by nucmer.
For the high-probability deletions, we tested whether they were confirmed by the assembly.

For every high-probability deletion with coordinates in the reference, we found the two flanking
alignments aleft and aright from the assembly that have the closest coordinates to the left and
right breakpoints of the predicted deleted region in the reference. If aleft is within 100bp of
the left predicted breakpoint, aright is within 100bp of the right predicted breakpoint, and the
leftmost coordinate of aright in the assembly is larger than the rightmost coordinate of aleft by
no more than 10bp, then we call the prediction confirmed by the assembly.

For those deletions that were not confirmed by the assembly, we examined whether they
could propose a deletion in the assembly; that is, the deletion is not represented in the Illumina-
based assembly. To do this, we found alignments aleft and aright from the assembly that span
the left and right breakpoints of the predicted deleted region in the reference. For a predicted

31

deleted region in the reference with coordinates (x, y), we mapped x to the assembly coordinates
using aleft and mapped y to the assembly coordinates using aright to produce coordinates (x′, y′)
in the assembly. If the assembly does not reflect the deleted region, then y−x should be about
the same as y′ − x′. Thus, we call the deletion proposed if the length y − x in the reference is
within 80% (between 80% and 120%) of the length y′ − x′ in the assembly. The 128 deletions
that are proposed in the Illumina assembly (Prob > 0.9; k = 5) are shown in Tables 7-9.

References

[1] 1000 Genomes Project Consortium. A map of human genome variation from population-
scale sequencing. Nature, 467(7319):1061–1073, 2010.

[2] M J Chaisson and Glenn Tesler. Mapping single molecule sequencing reads using basic local
alignment with successive refinement (blasr): application and theory. BMC bioinformatics,
13(1):238, 2012.

[3] F Hormozdiari et al. Combinatorial algorithms for structural variation detection in high-
throughput sequenced genomes. Genome Res, 19(7):1270–1278, 2009.

[4] J. M. Kidd et al. A human genome structural variation sequencing resource reveals insights
into mutational mechanisms. Cell, 143:837–847, 2010.

[5] Novocraft. Novoalign. http://www.novocraft.com/main/index.php.

[6] A R Quinlan et al. Genome-wide mapping and assembly of structural variant breakpoints
in the mouse genome. Genome Res, 20(5):623–635, 2010.

[7] T Rausch et al. Delly: structural variant discovery by integrated paired-end and split-read
analysis. Bioinformatics, 28(18):i333–i339, 2012.

[8] A Ritz, A Bashir, and B J Raphael. Structural variation analysis with strobe reads.
Bioinformatics, 26(10):1291–1298, 2010.

[9] S Sindi et al. A geometric approach for classification and comparison of structural variants.
Bioinformatics, 25(12):i222–i230, 2009.

[10] S S Sindi et al. An integrative probabilistic model for identification of structural variation
in sequencing data. Genome Biol, 13(3):R22, 2012.

32

ClusterID Probability # Multi-Breakpoint-Mappings Predicted Deletion

c214623 1.000000 6 chr12:22129571-22131592
c215458 1.000000 9 chr12:123010130-123010705
c40909 1.000000 9 chr2:240958939-240959289
c142689 1.000000 9 chr6:33093369-33093754
c142687 1.000000 5 chr6:33009528-33009811
c143932 1.000000 6 chr6:158548266-158549415

c214386.4 1.000000 10 chr12:7968504-7978148
c123784.0 1.000000 9 chr5:141455486-141459550
c207558 1.000000 9 chr11:104010469-104010834
c143026 1.000000 12 chr6:57533106-57534178
c161019 1.000000 6 chr7:151223097-151223602
c229757 1.000000 7 chr15:75867300-75867638
c241376 1.000000 8 chr19:57680219-57681186

c143020.2 1.000000 8 chr6:57381814-57382114
c143021.1 1.000000 7 chr6:57449479-57449821
c207291 1.000000 7 chr11:74134201-74145429
c214531 1.000000 5 chr12:14151168-14151682
c243165 1.000000 9 chr21:30263561-30264318
c175248 1.000000 7 chr8:140475258-140475668
c3862 1.000000 9 chr1:152555494-152588089

c142385 1.000000 11 chr6:11903312-11903800
c225684 1.000000 5 chr14:77687204-77702477
c234282 1.000000 8 chr16:71164332-71164738
c73255.3 1.000000 12 chr3:75778031-75787828
c207453 1.000000 10 chr11:89932512-89932883
c173746 1.000000 9 chr8:2215426-2216367
c99646 1.000000 6 chr4:164077149-164077610
c1782 1.000000 8 chr1:72766304-72811873

c243686 1.000000 29 chr22:21574865-25012381
c234027 1.000000 23 chr16:46421134-46428212
c243131 1.000000 5 chr21:24828945-24829598
c98099 1.000000 5 chr4:31492757-31493310
c187968 1.000000 18 chr9:68434017-70835512
c238983 1.000000 10 chr18:27872407-27872915
c225193 1.000000 5 chr14:24486705-24487053
c215299 1.000000 5 chr12:97220952-97221403
c143690 1.000000 11 chr6:129737058-129737414
c228806 1.000000 15 chr15:21933591-21934783
c239203 1.000000 8 chr18:55177456-55178018
c4563 1.000000 6 chr1:226985308-226986122

c243644 1.000000 5 chr22:20658024-20659538
c232865 1.000000 5 chr16:12354864-12355825
c243054 1.000000 5 chr21:9483464-9484661
c40464.1 1.000000 12 chr2:181925818-181933366
c221277 1.000000 10 chr13:57975474-57975882
c221559 1.000000 8 chr13:98721210-98721586
c143015 1.000000 6 chr6:57239071-57239440
c98369 1.000000 7 chr4:58087334-58087758
c98579 1.000000 15 chr4:69790854-69791219
c243052 1.000000 8 chr21:9448717-9449089
c233648 1.000000 6 chr16:32337970-32338470
c40708 1.000000 5 chr2:209451666-209452064

Table 7: CHM1TERT deletions that fill a gap in the Illumina assembly (Prob > 0.9; k = 5).
Table 1 of 3.

33

ClusterID Probability # Multi-Breakpoint-Mappings Predicted Deletion

c245147 1.000000 16 chrX:77696433-77697501
c199247 1.000000 9 chr10:104527817-104528521

c206934.5 1.000000 6 chr11:48928940-48934942
c160413 1.000000 8 chr7:90022129-90022508
c1885 1.000000 11 chr1:79392117-79401859

c214675 1.000000 7 chr12:25669994-25670524
c123285 1.000000 10 chr5:89860414-89861070
c242107 1.000000 8 chr20:4166113-4166631
c40912 1.000000 5 chr2:241047820-241048325
c1111 1.000000 7 chr1:28247753-28248121

c214573 1.000000 6 chr12:18317393-18317948
c3209 1.000000 7 chr1:145255746-145256019

c158930 1.000000 8 chr7:14449027-14449435
c123289 1.000000 8 chr5:90574678-90575002
c38987.1 1.000000 5 chr2:87623152-87626040

c2606 1.000000 5 chr1:142812683-142813916
c188662 1.000000 7 chr9:115937074-115937429
c197995 1.000000 6 chr10:18849888-18850416
c233177 1.000000 6 chr16:19506314-19506657
c243069 1.000000 8 chr21:9841703-9842091
c98801 1.000000 6 chr4:81991499-81991863
c237219 1.000000 5 chr17:43257773-43259144
c206445 1.000000 7 chr11:7716867-7717264
c206712 1.000000 8 chr11:32286610-32286993
c174993 1.000000 5 chr8:101904323-101904746
c72160 1.000000 6 chr3:2495660-2496474
c73151 1.000000 7 chr3:70415101-70415468
c98995 1.000000 10 chr4:97572089-97572449
c37837 1.000000 8 chr2:23803024-23803792

c143146.0 1.000000 7 chr6:74156152-74156783
c73756 1.000000 13 chr3:124890024-124891136
c198395 1.000000 6 chr10:47036090-47036344

c206915.1 1.000000 6 chr11:48880687-48882114
c188781 1.000000 5 chr9:139474544-139475441
c245793 1.000000 11 chrX:143206583-143206936
c242232 1.000000 5 chr20:18757019-18757495
c221337 1.000000 7 chr13:63643097-63643518

c175195.1 1.000000 8 chr8:132228122-132228613
c98462 1.000000 5 chr4:64194129-64194948

c221547.0 1.000000 7 chr13:96633419-96633849
c240938 1.000000 8 chr19:43167386-43167889
c39974 1.000000 8 chr2:133115523-133115842
c242290 1.000000 6 chr20:32043888-32045286

c143773.1 1.000000 6 chr6:139602655-139603007
c3765 1.000000 7 chr1:148854410-148855886
c40468 1.000000 8 chr2:182565234-182565598

c233577.0 1.000000 5 chr16:32109626-32109978
c243222 1.000000 8 chr21:41812220-41812739
c143023 1.000000 7 chr6:57422951-57429307

c188562.0 1.000000 7 chr9:101028705-101029115
c73746 1.000000 5 chr3:124086096-124087068

Table 8: CHM1TERT deletions that fill a gap in the Illumina assembly (Prob > 0.9; k = 5).
Table 2 of 3.

34

ClusterID Probability # Multi-Breakpoint-Mappings Predicted Deletion

c906 1.000000 5 chr1:19151766-19152500
c143161 1.000000 6 chr6:74865433-74866599
c237193 1.000000 5 chr17:40489893-40490604
c214389 1.000000 5 chr12:8132224-8133071
c98793 1.000000 10 chr4:81302519-81302937
c98545 1.000000 7 chr4:69307973-69308858
c215472 1.000000 7 chr12:125334367-125334740
c175011 1.000000 8 chr8:103940550-103940994
c4661 1.000000 7 chr1:241360528-241360955

c185724 1.000000 5 chr9:33423359-33424931
c72412 1.000000 5 chr3:18868173-18868578
c3154.1 1.000000 10 chr1:145026722-145027817
c40034.1 1.000000 7 chr2:138245282-138245708
c221260 1.000000 8 chr13:55634060-55634448
c236646 1.000000 8 chr17:18637452-18637888
c240475 1.000000 5 chr19:4885192-4886125
c143024 1.000000 11 chr6:57478147-57478871
c98740 1.000000 8 chr4:76948610-76949116

c38798.0 1.000000 5 chr2:83375213-83375687
c2084.1 1.000000 7 chr1:91914106-91914596
c40914 1.000000 7 chr2:241241730-241242599
c159387 1.000000 5 chr7:37998504-37998831
c1757 1.000000 5 chr1:70946193-70946600

c214691 1.000000 10 chr12:26937673-26938325
c99814 1.000000 5 chr4:187795674-187796042

Table 9: CHM1TERT deletions that fill a gap in the Illumina assembly (Prob > 0.9; k = 5).
Table 3 of 3.

35

