
SplitMEM

1 SUPPLEMENTARY MATERIAL
1.1 Algorithm: from alignments to compressed de

Bruijn grpah
In this section we present an algorithm that constructs a compressed
de Bruijn graph from the set of self-alignments of length � k in
the genome. We use mummer (Kurtz et al., 2004) to preprocess
the genome and efficiently locate all self-alignments in the genome
whose lengths are at least k. Our alignment-based algorithm begins
with a graph consisting of one large node to represent the entire
genome. Then, the algorithm considers one alignment at a time. As
each alignment is incorporated into the graph, the nodes are split to
represent smaller subsequences of the genome. Occasionally, nodes
are merged when a repetition is detected in the genome. Thus our
algorithm achieves a runtime that is related to the number of self-
alignments bounded by k. The number of self-alignments shrinks
rapidly as k grows. In contrast there is no such advantage to using
large values of k in an uncompressed de Bruijn graph because the
initial number of nodes is fixed by the genome size.

Algorithm 2 depicts our alignment-based algorithm for constructing
the compressed de Bruijn graph that represents a genome. We
exclude implementation details that ensure the correctness of the
algorithm. Each node captures a distinct subsequence of length� k
in the genome. This is stored as a set of start positions and a length.
We maintain separately a sorted set of all start positions in the
graph, with pointers to the nodes that represent them, so that we
can quickly navigate to a start position in the graph and easily query
whether there is a node with a particular start position. Each distinct
subsequence of length � k in the genome is represented by exactly
one node in the compressed de Bruijn graph. Each k-mer, which we
denote by its start position in the genome, is included in exactly one
node in the graph. This invariant is true in the final graph as well as
during construction. In the final graph, there is one leaf, representing
the end of the genome. However, during construction, we allow
many nodes to be leaves, representing suffixes of the genome. At
the end of construction, each leaf (except possibly the shortest one)
has its sequence truncated and becomes a parent to the first node
whose sequence begins within the leaf’s sequence.

We now summarize the procedure of our algorithm as it processes
an alignment. We first insert the starting position of the first interval
in the alignment, alignBeg1, to the appropriate node and then
we add the starting position of the second interval, alignBeg2, to
the same node. If another node already represents alignBeg2, the
nodes are merged. Before merging nodes that begin with identical
subsequences, we ensure that they represent sequences of the same
length and precede a merge by a split (splitBackwards) if one node’s
sequence is a proper prefix of the other’s. When a starting position
is added to a node, we ensure that the subsequence is removed
from any other node that already captured it, splitting nodes as
appropriate. Thus we ensure that there are no redundancies in the
graph.

When an alignment is considered, there are several scenarios that
can occur when we insert alignBeg1.

1. align1.beg is a starting position of a node in the graph.

a. The existing node represents a longer subsequence than
the alignment. In this case, we split the existing node to
form a new node whose sequence is a proper prefix of the

existing node’s. This uses the splitBackwards routine. Then
a new start position of align2.beg is inserted to the new node
[if it was not already there].

b. The existing node represents a shorter subsequence than
the alignment. In this case, we insert the beginning of the
alignment by inserting a new start position of align2.beg
to the new node. Then the alignment is trimmed at its left
end and we continue by iterating through the rest of the
alignment.

c. The existing node represents precisely the first interval
of the alignment. In this case, align2.beg is added as a start
position for the node.

2. align1.beg is not a starting position of any node in the
graph. In other words, alignBeg1 is implicitly included within
a node.

a. The closest existing node with a start position before
align1.beg ends at align1.end In this case, we use
splitForwards to split the closest node with a start position
less than align1.beg into two nodes. Then align2.beg is
inserted as a start position to the node that represents a suffix
of the original node.

b. The closest existing node with a start position before
align1.beg extends past align1.end In this case, we use
splitMiddle to split the closest node with a start position less
than align1.beg. This creates two new nodes. align2.beg is
inserted as a start position to the new node that represents
the middle of the original node.

As the alignments are considered, nodes in the graph are
merged and split. There are three ways in which a node is split,
which we call splitBackwards, splitForwards, and splitMiddle.
The splitBackwards routine is used when an alignment is a prefix
to an existing node. It splits the existing node into two nodes.
The splitForwards routine is used when an alignment is implicitly
contained within an existing node, is not a prefix, and the alignment
is a suffix of the existing node. It splits the existing node into
two nodes. The splitMiddle routine is used when an alignment is
implicitly contained within an existing node, is not a prefix, and
the alignment ends earlier in the sequence than the existing node. It
splits the existing node into three nodes. The splitting routines are
depicted in Figure 1.

Self-overlapping alignments contributed additional complexity to
our algorithm. Self-overlapping alignments are tandem repeats in
the genome. We break down each self-overlapping alignment into
its smallest repeating unit and create a node to capture the tandem
repeat with all of its start positions. Then we create a separate node
that bridges the occurrences of the tandem repeats, forming a cycle
in the graph. We create an edge between these two nodes with
multipflicity to represent all recurrences of the tandem repeat.

1



Marcus et al

Fig. 1. The three splitting routines in our alignment-based algorithm. splitBackwards splits a node representing ↵� into separate nodes for ↵ and �. splitMiddle
splits a node representing ↵�� into separate nodes for ↵, � and �. splitForwards splits a node representing ↵� into separate nodes for ↵ and �. Note that
when a node representing the subsequence ↵� is split into separate nodes for ↵ and �, the overlapping k � 1 characters occur both at the end of the node for
↵ and at the beginning of the node for �.

2



SplitMEM

Algorithm 2 Construct Compressed de Bruijn Graph from Alignments
Input: genome sequence, k, set of self-alignments � k.
Output: compressed forward de Bruijn graph of genome.
for all lines in mummerOutputFile do

if splitInterval then
. set align1 and align2 to second part of self-ovlerap

splitInterval false
else

. load align1 and align2 from input file
if self overlapping alignment then

. split alignment to two parts
. set align1 and align2 to first part of self-overlap

splitInterval true
else

splitInterval false
end if

end if
while ! intervalInserted do

foundPos = findNodeBeginAtPos(align1.beg)
if foundPos 6⌘ -1 then

foundNode nodes[foundPos]
if foundNode.length > alignLength then

. foundNode is too long
splitBackwards(foundNode, alignLength)
intervalInserted true

else if foundNode.length < alignLength then
. foundNode is too short

incToNextBegin foundNode.length �k +1
align1.beg+= incToNextBegin
align2.beg+= incToNextBegin
intervalInserted false

else
. first interval is represented by foundNode

intervalInserted true
end if

else
. align1.beg not found, implicitly included in a node

lastNode closest node with start before align1.beg
if align1.end is end of lastNode then

foundNode splitNodeForward(lastNode, align1.beg)
else

foundNode splitNodeMiddle(lastNode, align1.beg, align1.length)
end if

. foundNode represents align.beg
createChild(newNode, align.beg)
intervalInserted true

end if
addedStart addStartPosToNode(foundNode, align2.beg)
if intervalInserted and addedStart then

createChild(foundNode, align2.beg)
end if

end while
end for
updateLeaves()

3



Marcus et al

Algorithm 3 Construct Repeat Nodes from MEM nodes in suffix tree in O(n log n) time and space
1: procedure CREATEREPEATNODESFROMSUFFIXTREE . recursive DFS of suffix tree
2: CREATEREPEATNODESFROMMEM(root)
3: end procedure

4: procedure CREATEREPEATNODESFROMMEM(node)
5: for all node children do
6: CREATEREPEATNODESFROMMEM(node.child)
7: end for
8: if node.MEM then
9: if node.parent 6= root then . include path from root to MEM node

10: extend node label left to include path label from root
11: end if
12: while node.strdepth � k do
13: LMAnode node.LMA
14: if LMAnode 6= null then . skip LMAnode.strdepth characters
15: if skippedChars then
16: createRepeatNode for skipped segment of MEM
17: end if
18: numCharsToSkip LMAnode.strdepth �k + 1

19: end if
20: node node.suffixSkips[0]
21: if numCharsToSkip > 0 then . use suffix skips to traverse numCharsToSkip suffix links quickly
22: numCharsToSkip��
23: if node.MEM then
24: break
25: end if
26: while numCharsToSkip > 0 do
27: slinkIndex floor(log(numCharsToSkip) / log(2))
28: slinkTraversing pow(2, slinkIndex)
29: if node.closestLMA[slinkIndex] 6= null then
30: if node.closestLMAproximity[slinkIndex] < numCharsToSkip then
31: adjust numCharsToSkip to extend over skipped LMA
32: end if
33: end if
34: node node.suffixSkips[slinkIndex]
35: numCharsToSkip � = slinkTraversing
36: end while
37: end if
38: end while
39: if needLastNode then
40: createRepeatNode for overhang beyond last embedded MEM
41: end if
42: end if
43: end procedure

4



SplitMEM

Fig. 2. Example suffix tree and suffix skips for the string “babab$”. For clarity, only a subset of the suffix links and skips are displayed. Leaf nodes with $
characters are also not shown.

5



Marcus et al

Table 1. The 9 B. anthracis and 9 E. coli strains included in our pan-genome analysis.

Strain Size Accession

B. anthracis A0248 uid33543 5178 KB CP001598
B. anthracis A16R uid40353 5179 KB CP001974
B. anthracis A16 uid40303 5179 KB CP001970
B. anthracis Ames 0581 uid10784 5178 KB AE017334
B. anthracis Ames uid309 5178 KB AE016879
B. anthracis CDC 684 uid31329 5181 KB CP001215
B. anthracis CI uid36309 5147 KB CP001746
B. anthracis H9401 uid49361 5170 KB CP002091
B. anthracis str Sterne uid10878 5180 KB AE017225

E. coli 0127 H6 E2348 69 uid32571 4919 KB FM180568
E. coli 042 uid40647 5193 KB FN554766
E. coli 536 uid16235 4893 KB CP000247
E. coli 55989 uid33413 5107 KB CU928145
E. coli ABU 83972 uid38725 5083 KB CP001671
E. coli APEC O1 uid16718 5034 KB CP000468
E. coli APEC O78 uid184588 4753 KB CP004009
E. coli BL21 DE3 uid20713 4516 KB CP001509
E. coli BL21 DE3 uid28965 4516 KB AM946981

6



SplitMEM

Table 2. The number of nodes with suffixSkip[i] decreases rapidly. For 9
strains of B. anthracis, k-mer lengths of 25, 100 and 1000 bp, the longest
MEM is 5227319 bp long.

i k=25 k=100 k=1000

B. anthracis

1 40151049 40151049 40151049
2 30974258 22527962 6987800
3 30974258 22527962 6987800
4 30974258 22527962 6987800
5 29713445 22527962 6987800
6 25692642 22527962 6987800
7 20529276 20529276 6987800
8 15101442 15101442 6987800
9 10308390 10308390 6987800
10 6895641 6895641 6895641
11 5234634 5234634 5234634
12 4697489 4697489 4697489
13 4567441 4567441 4567441
14 4523377 4523377 4523377
15 4461156 4461156 4461156
16 4362852 4362852 4362852
17 4166244 4166244 4166244
18 3863600 3863600 3863600
19 3339312 3339312 3339312
20 2290736 2290736 2290736
21 193584 193584 193584

Table 3. The number of nodes with suffixSkip[i] decreases rapidly. For 9
strains of E. coli, k-mer lengths of 25, 100 and 1000 bp, the longest MEM is
2235388 bp long.

i k=25 k=100 k=1000

E. coli

1 43523338 43523338 43523338
2 36840466 35286760 31589536
3 36840466 35286760 31589536
4 36840466 35286760 31589536
5 36584898 35286760 31589536
6 35844384 35286760 31589536
7 34929097 34929097 31589536
8 33880911 33880911 31589536
9 32781069 32781069 31589536
10 31539198 31539198 31539198
11 29765911 29765911 29765911
12 26863423 26863423 26863423
13 22433712 22433712 22433712
14 16980038 16980038 16980038
15 12225376 12225376 12225376
16 9541879 9541879 9541879
17 8103467 8103467 8103467
18 6707025 6707025 6707025
19 5204759 5204759 5204759
20 4178743 4178743 4178743
21 3130167 3130167 3130167
22 5227319 5227319 5227319

7



Marcus et al

Table 4. The 62 available strains of E. coli included in our scaling experiments. To highlight the maximum similarity between the genomes, seven of the
strains were reverse complemented to be in the same orientation as the others.

Strain Size Accession Orientation
E. coli 0127 H6 E2348 69 uid32571 4919 KB FM180568 Forward
E. coli 042 uid40647 5193 KB FN554766 Forward
E. coli 536 uid16235 4893 KB CP000247 Forward
E. coli 55989 uid33413 5107 KB CU928145 Forward
E. coli ABU 83972 uid38725 5083 KB CP001671 Forward
E. coli APEC O1 uid16718 5034 KB CP000468 Forward
E. coli APEC O78 uid184588 4753 KB CP004009 Forward
E. coli BL21 DE3 uid20713 4516 KB CP001509 Forward
E. coli BL21 DE3 uid28965 4516 KB AM946981 Forward
E. coli BW2952 uid33775 4535 KB CP001396 Forward
E. coli B REL606 uid18281 4586 KB CP000819 Forward
E. coli CFT073 uid313 5182 KB AE014075 Forward
E. coli C ATCC 8739 uid18083 4702 KB CP000946 Forward
E. coli DH1 uid30031 4587 KB CP001637 Reverse
E. coli DH1 uid52077 4578 KB AP012030 Forward
E. coli E24377A uid13960 4933 KB CP000800 Forward
E. coli ED1a uid33409 5161 KB CU928162 Forward
E. coli ETEC H10407 uid42749 5105 KB FN649414 Forward
E. coli HS uid13959 4600 KB CP000802 Forward
E. coli IAI1 uid33373 4657 KB CU928160 Forward
E. coli IAI39 uid33411 5084 KB CU928164 Forward
E. coli IHE3034 uid43693 5060 KB CP001969 Forward
E. coli JJ1886 uid218163 5082 KB CP006784 Forward
E. coli KO11FL uid33875 4874 KB CP002516 Reverse
E. coli KO11FL uid62299 4975 KB CP002970 Reverse
E. coli K 12 substr DH10B uid20079 4642 KB CP000948 Forward
E. coli K 12 substr MDS42 uid78215 3939 KB AP012306 Forward
E. coli K 12 substr MG1655 uid225 4958 KB U00096 Forward
E. coli K 12 substr W3110 uid16351 4603 KB AP009048 Forward
E. coli LF82 uid33825 4728 KB CU651637 Forward
E. coli LY180 uid203308 4790 KB CP006584 Forward
E. coli NA114 uid66975 4925 KB CP002797 Forward
E. coli O103 H2 12009 uid32511 5398 KB P010958 Forward
E. coli O104 H4 2009EL 2050 uid81097 5204 KB CP003297 Reverse
E. coli O104 H4 2009EL 2071 uid81099 5263 KB CP003301 Reverse
E. coli O104 H4 2011C 3493 uid81095 5224 KB CP003289 Reverse
E. coli O111 H 11128 uid32513 5321 KB AP010960 Forward
E. coli O157H7 EDL933 uid259 5477 KB AE005174 Forward
E. coli O157H7 uid226 5447 KB BA000007 Forward
E. coli O157 H7 EC4115 uid27739 5520 CP001164 Forward
E. coli O157 H7 TW14359 uid30045 5476 KB CP001368 Forward
E. coli O26 H11 11368 uid32509 5644 KB AP010953 Forward
E. coli O55 H7 CB9615 uid42729 5336 KB CP001846 Forward
E. coli O55 H7 RM12579 uid68245 5215 KB CP003109 Forward
E. coli O7 K1 CE10 uid63597 5264 KB CP003034 Forward
E. coli O83 H1 NRG 857C uid41221 4703 KB CP001855 Forward
E. coli P12b uid59455 4889 KB CP002291 Forward
E. coli S88 uid33375 4985 KB CU928161 Forward
E. coli SE11 uid18057 4842 KB AP009240 Forward
E. coli SE15 uid19053 4673 KB AP009378 Forward
E. coli SMS 3 5 uid19469 5021 KB CP000970 Forward
E. coli UM146 uid50883 4946 KB CP002167 Reverse
E. coli UMN026 uid33415 5253 KB CU928163 Forward
E. coli UMNK88 uid42137 5138 KB CP002729 Forward
E. coli UTI89 uid16259 5018 KB CP000243 Forward
E. coli W uid48011 4855 KB CP002185 Forward
E. coli W uid62301 4852 KB CP002967 Forward
E. coli Xuzhou21 uid45823 5336 KB CP001925 Forward
E. coli BL21 Gold DE3 pLysS AG uid30681 4528 KB CP001665 Reverse
E. coli clone D i14 uid52023 4991 KB P002212 Forward
E. coli clone D i2 uid52021 4991 KB CP002211 Forward
E. coli c321D uid215084 4600 KB CP006698 Forward

8



SplitMEM

Fig. 3. Levels of genome sharing in the nodes of the pan-genome graph of all 62 strains of E. coli. The distribution is approximately exponential in shape,
although with an extended tail of highly conserved sequences.

9



Marcus et al

Fig. 4. The running time and peak memory of Sibelia (Minkin et al.,
2013) on the pan-genome graphs of increasing numbers of E. coli strains.
Each point represents the minimum value recorded over 5 trials to
reduce measurement noise introduced by competing activity of the server.
The line represents the linear regression of the points. Following the
recommended settings, we used commands of the form sibelia.py -s

loose ecoli.XXXstrains.fa where ecoli.XXXstrains.fa

was a multifasta file containing the selected XXX genomes.

10



SplitMEM

Fig. 5. The compressed de Bruijn graph for the B. anthracis pan genome with k=25 artistically rendered in Gephi using the ForceAtlas 2 placement algorithm.

11



Marcus et al

Fig. 6. The compressed de Bruijn graph for the B. anthracis pan genome with k=100 artistically rendered in Gephi using the ForceAtlas 2 placement algorithm.

12



SplitMEM

Fig. 7. The compressed de Bruijn graph for the B. anthracis pan genome with k=1000 artistically rendered in Gephi using the ForceAtlas 2 placement
algorithm.

13



Marcus et al

Fig. 8. The compressed de Bruijn graph for the E. coli pan genome with k=25 artistically rendered in Gephi using the ForceAtlas 2 placement algorithm.

14



SplitMEM

Fig. 9. The compressed de Bruijn graph for the E. coli pan genome with k=100 artistically rendered in Gephi using the ForceAtlas 2 placement algorithm.

15



Marcus et al

Fig. 10. The compressed de Bruijn graph for the E. coli pan genome with k=1000 artistically rendered in Gephi using the ForceAtlas 2 placement algorithm.

16



SplitMEM

Fig. 11. Distributions of node lengths in the compressed de Bruijn graphs for the pan-genomes of 9 strains of E. coli and 9 strains of B. anthracis.

17



Marcus et al

Fig. 12. Distributions of node lengths in the compressed de Bruijn graphs for the pan-genomes of all 62 strains of E. coli.

18



SplitMEM

Fig. 13. Distributions of distances to the core genome in the compressed de Bruijn graphs for the pan-genomes of 9 strains of E. coli and 9 strains of B.
anthracis.

19


