Conformational dynamics and aggregation behavior of piezoelectric diphenylalanine peptides in an external electric field # **Supplementary Material** Catherine M. Kelly^{1,2,+}, Thomas Northey^{1,2,+}, Kate Ryan^{1,3}, Bernard R. Brooks⁴, Andrei Kholkin⁵, Brian J. Rodriguez^{1,3}, Nicolae-Viorel Buchete^{1,2,*} ¹School of Physics, University College Dublin, Belfield, Dublin 4, Ireland ²Complex and Adaptive Systems Laboratory, University College Dublin, Belfield, Dublin 4, Ireland ³Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland ⁴Laboratory of Computational Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States ⁵Department of Materials and Ceramic Engineering & CICECO, University of Aveiro, Portugal Date: August 27th, 2014 + Equal contribution * Email: buchete@ucd.ie **Figure S1.** Population distribution of the end-to-end distance, d_{EE} , for the single-FF system with charged termini for different simulation times, 10, 25, 50, 75, 100 ns, showing peak convergence at >50 ns. **Figure S2.** The end-to-end distance, d_{EE} , of the single-FF system with charged termini (A(i)) and neutral termini (A(ii)). RMSDs of non-hydrogen atoms of the single-FF system with respect to its average atomic position with charged termini (B(i)) and with neutral termini (B(ii)). Dipole magnitude over time for the single-FF system with charged (C(i)) and neutral termini (C(ii)). **Figure S3.** d_{EE} of the single-FF system with field magnitudes E = 10, 20, 40, 60, 80, 100 kcal/(mol Å e). **Figure S4.** RMSDs with respect to the average position of the non-hydrogen atoms in each case for the charged-termini single-FF system with applied electric field magnitudes 10, 20, 40, 60, 80, 100 kcal/(mol Å e). **Figure S5.** Dipole magnitude for the charged-termini single-FF system for each applied field magnitude E = 10, 20, 40, 60, 80, 100 kcal/(mol Å e).