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Supplemental Text & Figures



SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

Drosophila strains  

The existing strains used in the study were Canton-S, w1118, iav1 (Gong et al., 2004), 

iav3621 (Gong et al., 2004), iav1; P[iav+] (Gong et al., 2004), Df(1)BSC276 

/FM7h/Dp(2;Y)G, Y (Df1) (Bloomington Drosophila  Stock Center), Df(1)ED6878 /FM7h 

(Df2) (Bloomington Drosophila  Stock Center), Df(3L)Exel6120, P{XP-

U}Exel6120/TM6B, Tb1 (Dfnan) (Bloomington Drosophila  Stock Center), UAS-iav (Kwon 

et al., 2010), UAS-nan (kind gift from Dr. Craig Montell, UCSB), UAS-iavIR(JF01904) 

(Bloomington Drosophila  Stock Center), ok371-GAL4 (Brand and Perrimon, 1993; 

Meyer and Aberle, 2006), d42-GAL4 (Sweeney and Davis, 2002), n-syb-GAL4  (Pauli et 

al., 2008), mef2-GAL4 (Ranganayakulu et al., 1996), ato-GAL4  (Hassan et al., 2000), 

UAS-NaChBac (Luan et al., 2006), UAS-hTRPV1 (Marella et al., 2006), UAS-lysozyme-

KDEL::GFP  (Snapp et al., 2004), kum170 (Sanyal et al., 2005), UAS-sercaIR(JF01948) 

(Bloomington Drosophila  Stock Center), RyR16 (Sullivan et al., 2000), UAS-itprIR(JF01957) 

(Bloomington Drosophila  Stock Center), RyR24D03 (Gao et al., 2013), canA1KO2-2 

(canA1-/-, (Nakai et al., 2011)), UAS-canA1IR(JF01871) (Bloomington Drosophila  Stock 

Center), UAS-canA1FB5 (Dijkers and O'Farrell, 2007), UAS-canA1CA (Dijkers and 

O'Farrell, 2007), UAS-sggDN (Bourouis, 2002), nan36a (Kim et al., 2003), trp1 (Montell et 

al., 1985), trpγG4 (kind gift from Dr. Craig Montell, UCSB), trpL302 (Niemeyer et al., 

1996), painGAL4 (Tracey et al., 2003), pyx3 (Lee et al., 2005), trpA11 (Kwon et al., 2008), 

wtrw2 (Kwon et al., 2008), futschN94 (Roos et al., 2000).  

The iav1 allele was previously attributed to a premature STOP codon in the iav gene 

(C1363T leading to Q455X) (Gong et al., 2004). However, when we resequenced the 
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iav1 genomic DNA, we found that the actual mutation in the iav gene is C908T. We 

found that C1363 is not mutated in iav1. Nevertheless, the lack of Iav protein in the iav1 

chordotonal neurons (Figure S3A) indicates that this newly identified mutation also 

leads to the absence of Iav protein as described (Gong et al., 2004).  

 

Fly husbandry and chemical feeding 

All flies were reared at room temperature (~22°C). Except for the experiments with 

capsazepine feeding, all flies were raised in standard fly food (1 L of liquid fly food 

contained: 95 g agar, 275 g Brewer’s yeast, 520 g of cornmeal, 110 g of sugar, 45 g of 

propionic acid, and 36 g of Tegosept was dissolved in 92 ml of 95% ethanol). For the 

drug feeding experiments, 2.5 g of instant fly food (formula 4-24 plain, Carolina 

Biological Supply Company) with an additional 0.5 g of inactive yeast was suspended in 

6 mL water with capsazepine or the vehicle solvent (methanol (1% v/v)). 

 

Image quantification 

In some analyses, Z-series were exported as TIFF files into the Image-Pro Plus 

software (Media Cybernetics) for deconvolution and 3-dimensional reconstructions. 

Bouton volumes were determined after 3D reconstruction using available functions in 

Image-Pro Plus. For determining the area of the synaptic boutons, the total area stained 

by DLG was divided by the number of boutons at that NMJ. In the data shown in 

Figures 4G-4H, an “HRP-mask” was applied by isolating the signal of the relevant 

channel that overlapped with HRP using Image-Pro Plus. 
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NMJ Electrophysiology 

NMJ electrophysiology was performed as described previously (Yao et al., 2009). 

Briefly, wandering third instar larvae were dissected in ice-cold, zero calcium HL-3 (70 

mM NaCl, 5 mM KCl, 20 mM MgCl2, 10 mM NaHCO3, 115 mM sucrose, 5 mM 

trehalose, and 5 mM HEPES; pH 7.2.), and rinsed with HL-3 containing indicated Ca2+ 

concentration. The fillet was incubated in the latter solution for at least 3 minutes before 

recording. Recordings were made from body-wall muscles 6 (abdominal segment 3) 

with sharp electrodes filled with a 2:1 mixture of 2 M potassium acetate and 2 M 

potassium chloride. Data were collected only when resting membrane potential was 

below −60 mV. EJPs were evoked by directly stimulating the hemisegmental nerve 

through a glass capillary electrode (internal diameter, ~10 μm) at 0.2 Hz. Stimulus 

pulses were generated by pClamp 8 software (Axon Instruments Inc). The applied 

currents were 6 μA ± 3 with fixed stimulus duration at 0.3 ms. Twenty to thirty evoked 

EJPs were recorded for each muscle for analysis. Miniature EJP (mEJP) events were 

collected for 5 min. Both EJPs and mEJPs were amplified with an Axoclamp 2B 

amplifier (Axon Instruments, Foster City, CA) under bridge mode, filtered at 10 kHz and 

digitized at 10 kHz (for EJPs) and 40 kHz (mEJPs) respectively with pClamp 8.0. 

Experiments were performed at room temperature (20°C – 22°C). 

EJPs and paired-pulse stimulation were analyzed with pClamp 8.0 software (Axon 

Instruments). The mEJPs were analyzed using the Mini Analysis Program (Synaptosoft 

Inc., Decatur, GA). The EJPs amplitudes were corrected by nonlinear summation 

(Feeney et al., 1998). The quantal content of evoked release was calculated from 

individual muscles by the ratio of the average EJP amplitude over the average mEJP 
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amplitude. The Ca2+ cooperativity of neurotransmission was calculated as described 

(Jan and Jan, 1976; Littleton et al., 1994). 

 

Transmission electron microscopy  

NMJ ultrastructural imaging was done as described previously (Yao et al., 2009). 

Briefly, wandering third instar larvae were filleted at room temperature in Ca2+ free HL-3 

medium and subsequently fixed overnight in 2% paraformaldehyde/2.5% 

glutaraldehyde/0.1 M cacodylic acid (pH 7.2). The pre-fixed fillets were then processed 

inside a Ted Pella Bio Wave microwave with vacuum attachments.  Samples were fixed 

again, followed by 3x water rinses, post-fixed with 2% aqueous osmium tetroxide, and 3 

more rinses with Millipore water.  A graded series of ethanol concentrations from 30-

100% was incorporated as the initial dehydrant followed by propylene oxide as a final 

dehydrant.  Samples were gradually infiltrated with 3 increasing propylene oxide and 

Embed 812 ratios up to full resin under vacuum. Samples were allowed to infiltrate in 

pure resin overnight on a rotator.  The samples were embedded into flat silicone molds 

and cured in the oven at 62oC for three days. The polymerized samples were sectioned 

and stained with 1% uranyl acetate for 10 minutes followed by lead citrate for 1 minute 

before TEM examination.  TEM images were captured using a JEOL JEM 1010 

transmission electron microscope with an AMT XR-16 mid-mount 16 mega-pixel digital 

camera.   

 

Statistical analyses 
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Comparisons between pairs of datasets were made using Student’s t-test. Multiple 

datasets were first compared using One-way ANOVA. Pairwise comparisons were 

made within the ANOVA test by applying the Bonferroni post-hoc correction.  

 

STATISTICS (related to the data shown in all figures) 

All values represent mean ±SEM  

Figure 1G Bouton number: WT = 68.2±3, iav1 = 37.1±1.9; iav1/Df1 = 37.6±2, and 

iav1/Df2 = 37.7±3.3; iav3621 = 41±2.6; iav1/iav3621 = 45.2±2.2; iav1; P[iav+] = 61±2.3 ; 

UAS-iavIR = 58.3±3.9, ok371-GAL4 = 69.5±4.7, ok371>iavIR = 45.2±2.5 

Figure 1H  Bouton number: WT = 23.9±1.1, iav1 = 16.1±1, iav1;P[iav+] = 21.1±1.1  

Figure 1I Volume per bouton (m3): WT = 1±0.2, iav1 = 2.3±0.5, iav1; P[iav+] = 

0.6±0.2 

Figure 1J Bouton number: iav1; UAS-iav = 39.5±3.0, iav1; ok371-GAL4 = 44.3±2.9, 

iav1; ok371>iav = 58.1±2.5, iav1;;d42-GAL4 = 40.8±3.3, iav1; d42>iav = 64.9±4.1, iav1; 

ato-GAL4 = 37.8±3.4, iav1; ato>iav = 42.5±3.2, iav1, mef2>iav = 34.8±2.5  

 

Figure 2J Bouton number: iav1; UAS-TRPV1 = 43.3±2.5, iav1; ok371>hTRPV1 = 

67.7±3.2, ok371>hTRPV1 = 67.2±6; iav1; ok371>hTRPV4 = 41.3±1.9; iav1; ok371>nan 

= 40.9±2.8 

Figure 2K Bouton number in iav1; ok371>hTRPV1: 0 M CPZ = 83.9±3.6, 100 M 

CPZ = 74.4±2.2, 300 M CPZ = 52.2±2.0 

Figure 2L Bouton number in iav1;P[iav+]: 0 M CPZ = 64.3±3.2, 300 M CPZ = 

71.5±4.7 
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Figure 2M Bouton number: UAS-NaChBac = 65.9±4.2, iav1; UAS-NaChBac = 

40.9±3.7, ok371>NaChBac = 69.0±2.2, iav1; ok371>NaChBac = 53.1±2.3 

 

Figure 3E Number of Futsch loops per NMJ: iav1; P[iav+] = 5.9±0.4, iav1 = 2.9±0.5 

 

Figure 4O Bouton numbers: UAS-canA1IR = 72.6±5.1, ok371>canA1IR = 47.7±2.2, 

iav1; ok371>canA1IR = 47.9±1.9 

Figure 4P Bouton numbers: iav1; UAS-canA1CA = 42.9±1.6, iav1; ok371>canA1CA = 

60.2±2.5, UAS-canA1CA = 59.2±2.6, ok371>canA1CA = 54.2±1.6 

Figure 4Q Number of Futsch loops per NMJ: iav1; UAS-canA1CA = 3.6±0.4, iav1; 

ok371>canA1CA = 7.4±0.5, UAS-canA1CA = 7.0±0.5, ok371>canA1CA = 6.2±0.6 

Figure 4R Bouton numbers: iav1; UAS-sggDN = 42.1±1.9, iav1; ok371>sggDN = 

65.6±3.8, UAS-sggDN = 68.4±3.6, ok371>sggDN = 75.6±3.5 

 

Figure 5J Bouton numbers: UAS-sercaIR = 66.1±1.9, ok371>sercaIR = 49.0±2.4, iav1; 

ok371>sercaIR = 41.6±2.7, Kum170/+ = 46.1±5.7; RyR16/+ = 47.3±2.8, iav1; RyR16/+ = 

41.4±1.9, UAS-itprIR = 66.8±2.7; elav>itprIR = 43.5±3.0, ok371>itprIR = 40.9±2.7, iav1; 

UAS-itprIR = 41.6±2.9, iav1; ok371>itprIR = 41.9±3.0 

Figure 5K Relative bouton area, UAS-sercaIR = 1±0.06, ok371>sercaIR = 1.7±0.1, +/+ 

= 1±0.03, RyR16/+ = 1.6±0.05 

Figure 5L Bouton numbers: iav1 = 37.1±1.9, iav1; RyR24D03/+ = 52.1±1.8, RyR24D03/+ 

= 46.5±2.1 
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Figure 5M Relative ER Ca2+ levels: Iav control = 0.97±0.06, Iav overexpressing = 

0.49±0.04; TRPV1 control = 1±0.07, TRPV1 overexpressing = 0.46±0.05; TRPV4 

control = 1±0.02, TRPV4 overexpressing = 0.88±0.06 

 

Figure 7C Intensity Ratios (GCAMP5G;tdTomoato): At [Ca2+]ext = 1.5 mM, WT = 

0.102±0.014, iav1 = 0.112±0.026; [Ca2+] = 0.5 mM, WT = 0.112±0.012, iav1 =  

0.070±0.015; [Ca2+] = 0 mM, WT = 0.101±0.013, iav1 = 0.059±0.009 

Figure 7E EJP amplitudes: iav1; [iav+] = 25.8±2.7, iav1 = 12.4±1.1, iav1/Df = 12.7±1.9, 

iav1; ok371>iav = 25.5±2.5, canA1-/+ = 24.1±4.6, canA1-/Df-canA1 = 22.3±3.1 

Figure 7F Quantal content: iav1; P[iav+] = 18.8±2.1, iav1 = 8.6±1.2, iav1/Df1 = 

8.8±1.1, iav1; ok371>iav = 20.5±2.5 

Figure 7G Relative quantal content: At [Ca2+]ext = 0.25 mM, iav1; P[iav+] = 1±0.1, iav1 

= 0.3±0.1; [Ca2+] = 0.4 mM, iav1; P[iav+] = 1±0.1, iav1 =  0.6±0.1; [Ca2+] = 0.75 mM, iav1; 

P[iav+] = 1±0.1, iav1 = 0.9±0.2 

Figure 7I Paired-pulse ratio normalized to the genomic rescue mean (%): iav1; 

P[iav+] = 95.0±7.8, iav1 = 134.7±10.5, iav1/Df1 = 142.9±12.5, iav1; ok371>iav = 

112.8±3.2 

Figure 7J EJP amplitudes: iav1; P[iav+] = 25.8±2.7, ok371>iav = 40±3.6 

Figure 7K Quantal content: iav1; P[iav+] = 18.8±1.9, ok371>iav = 30.9±2.0  

Figure 7L Paired-pulse ratio normalized to the genomic rescue mean (%): iav1; 

ok371>iav = 112.8±3.2, ok371>iav = 79.9±4.0 
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Figure S2G Bouton numbers: canA1-/+ = 67.9±4.9, canA1-/Df-canA1 = 45.2±3.4, UAS-

canA1FB5 = 82.6±2.9, ok371>UAS-canA1FB5 = 53.3±2.7  

Figure S2H Relative bouton areas: UAS-canA1IR = 1±0.05, ok371>canA1IR = 1.8±0.1, 

canA1-/+ = 1±0.07, canA1-/Df-canA1 = 2.0±0.3, iav1; ok371>canA1CA = 1±0.1, iav1; UAS-

canA1CA = 1.5±0.1 

 Figure S2I Bouton numbers: WT = 68.2±3.0, futschN94 = 49.4±1.8, futschN94; UAS-

canA1CA = 49.8±1.4; futschN94; d42>canA1CA = 47.9±2.1  

 

Figure S4A mEJP amplitudes: iav1; P[iav+] = 1.4±0.1, iav1 = 1.6±0.2, iav1/Df1 = 

1.4±0.1, iav1; ok371>iav = 1.3±0.1, ok371>iav = 1.4±0.2, canA1-/+ = 1.6±0.1, canA1-/Df-

canA1 = 1.55±0.05 

Figure S4B mEJP frequencies: iav1; P[iav+] = 1.9±0.3, iav1 = 2.4±0.3, iav1/Df1 = 

2.2±0.3, iav1; ok371>iav = 1.7±0.2, ok371>iav = 2.2±0.5 

Figures S4C Quantal content: At [Ca2+]ext = 0.25 mM, iav1; P[iav+] = 1.9±0. 2, iav1 = 

0.6±0.1; [Ca2+] = 0.4 mM, iav1; P[iav+] = 10.6±0.7, iav1 =  5.9±0.5; [Ca2+] = 0.5 mM, iav1; 

P[iav+] = 18.8±1.9, iav1 =  8.6±1.1; [Ca2+] = 0.75 mM, iav1; P[iav+] = 26.9±2.5, iav1 = 

24.3±3.8 

 

Figure S5D SV number/bouton area: iav1; P[iav+] = 8.5±2.8, iav1 = 8.8±1.2 

Figure S5E SV number/AZ length: iav1; P[iav+] = 9.3±1.1, iav1 = 9.5±1.9 

Figure S5F SV diameter: iav1; P[iav+] = 38.9±0.7, iav1 = 38.9±0.9 

Figure S5G Quantal content values from Figure S4C plotted in log10 scale.  

 

9



Figure S5H Bouton numbers: UAS-iav = 67.3±3.8, ok371>iav = 44.8±2.0, d42>iav = 

44.7±2.1 

Figure S5I Number of Brp punctae per NMJ: UAS-iav = 474.4±21.9, ok371>iav = 

513.6±33.0 
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SUPPLEMENTAL TABLE 1 (Related to Figure 1) 

NMJ bouton counts in TRP mutants at larval A3 segment, muscles 6/7.  

 Genotype Bouton Count (mean ± S.E.M) 

 WT (Canton-S) 68.2±3.0 

TRPC 

trp1 68±3.2 

trpG4 67.4±3.9 

trpL302 71.4±4.8 

TRPA 

painGAL4 64.4±3.2 

pyx3 71.8±5.0 

trpA11 68.4±4.5 

wtrw2 63.9±4.5 

TRPV 

nan36a/Dfnan 73.8±5.7 

iav1 37.1±1.9 
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Figure S1 (related to Figure 2)
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FIGURE S1. Alignment of the primary amino acid sequences of human TRPV1, human TRPV4, and 
Drosophila Iav. The numerical values on the right indicate the positions of the amino acids in the 3 proteins. 
Black shaded boxes indicate residues that are conserved in at least 2 of the 3 proteins being aligned.
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Figure S2 (related to Figure 4)
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FIGURE S2. Calcineurin regulates NMJ bouton numbers and morphology via Futsch
(A-F) Representative confocal image of 3rd instar larval NMJs from larvae of the indicated genotypes stained 
with antibodies against the presynaptic marker, HRP (green) and the postsynaptic marker, DLG (magenta). 
Scale bar shown in (A) also applies to (B-F).
(G) Quantification of the NMJ bouton numbers in larvae of the indicated genotypes. *, p = 5.4x10-4, #, p = 
4.7x10-6, unpaired Student’s t-tests, n = 7-21 NMJs per genotype.
(H) Quantification of the relative bouton area in larvae of the indicated genotypes. *, p = 1.7x10-4; #, p = 0.02; 
¶ = 3.4x10-5; unpaired Student’s t-tests, n =7-16 NMJs per genotype.
(I) Quantification of the NMJ bouton numbers in larvae of the indicated genotypes. *, p = 9.3x10-9, one-way
ANOVA (comparing all the data sets), n = 16-30 NMJs per genotype. 
All values represent mean ±SEM. Please consult the Supplementary Files for all values. 
Abbreviations: WT, wild-type; MN, motor neuron.
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Figure S3 (related to Figure 6)
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FIGURE S3. Iav expression in larval chordotonal neurons and muscle
(A) Representative confocal images of larval chordotonal neurons in larvae of the indicated genotypes stained 
with DAPI (blue), the neuronal marker, anti-HRP (purple), anti-Iav (green). Dashed ovals indicate chordotonal 
dendrites exhibiting Iav expression. Scale bar shown in the panel on the top-left applies to all panels.
(B)  Representative confocal images of larval muscle of the indicated genotypes stained anti-Iav (magenta) and
KDEL-GFP (green). Arrows indicate colocalization at the nuclear envelope. Scale bar shown in the panel on the
left applies to all panels.
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Figure S4 (related to Figure 7)
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FIGURE S4. Alterations in evoked neurotransmission at the iav1 NMJs 
(A) Quantification of the amplitude of the mEJPs obtained from recordings performed at 0.5 mM Ca2+ on larvae of
the indicated genotypes.
(B) Quantification of the frequency of the mEJPs obtained from recordings performed at 0.5 mM Ca2+ on larvae of 
the indicated genotypes.
(C) Quantification of the quantal content obtained from recordings performed on larvae of the indicated 
genotypes at the indicated extracellular Ca2+ concentrations ([Ca2+]ext). The blue and red curves were obtained by 
fitting the respective mean values to sigmoidal functions using Origin6 (OriginLab corporation).
All values represent mean ±SEM. Please consult the Supplementary Files for all values and information on 
statistical tests employed. Abbreviations: n.s., not significant.
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Figure S5 (related to Figure 7)
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FIGURE S5. The iav1 synaptic boutons do not exhibit ultrastructural alterations in SV release machinery
(A-C) Transmission electron micrographs of boutons from muscle 6 of 3rd instar larvae of the indicated 
genotypes. Scale bar shown in (A) apply to (A-C). 
(D-F) Quantification of then indicated parameters in the indicated genotypes.
(G) Quantification of the Ca2+ cooperativity of SV release in larvae of the indicated genotypes at the indicated 
extracellular Ca2+ concentrations ([Ca2+]ext). Both axes are in the log10 scale. The blue and red lines were 
obtained by linear fitting of the respective mean values using Origin6 (OriginLab corporation). “n” refers to the 
slope of the lines.
(H) Quantification of the bouton numbers in the indicated genotypes. *, p = 1.01x10-7, one-way ANOVA, 
n = 15-19 NMJs per genotype. 
(I) Quantification of the number of Brp punctae per NMJ in larvae of the indicated genotypes. 
All values represent mean ±SEM. Please consult the Supplementary Files for all values and information on 
statistical tests employed. Abbreviations: n.s., not significant.

0.1 1
[Ca2+]ext (mM)

qu
an

ta
l c

on
te

nt

1

10

iav1
iav1; P[iav+]

G

n = 3.4

n = 3.5

U
A

S
-ia

v

ok
37

1>
ia

v 
(o

ve
re

xp
)

nu
m

be
r o

f B
rp

 p
un

ct
ae

 p
er

 N
M

J 
(x

10
0)

0

3

4

5

1

2

6

H
n.s.

0

20

40

60

80

bo
ut

on
 n

um
be

r

ok
37

1>
ia

v
d4

2>
ia

v

U
A

S
-ia

v

*
I

20


