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Materials and Methods 
 
All computational analysis was performed using R (24), unless otherwise indicated. 
 
Yeast chemical screening 

We designed a chemical screening protocol and, with few exceptions, used this protocol for 
each of the 3,356 genome-wide screens described in this study. Frozen aliquots of heterozygous 
pool (~1,095 strains) and homozygous pool (~4,810 unique strains) were thawed and separately 
diluted to an OD600 of 0.03125 in 700µL of screening media (YPD + 25mM HEPES, pH 6.8). 
Diluted pools were grown in 48-well plates for 4hrs at 30ºC in a Tecan Genios (Tecan Systems, 
Inc. San Jose, CA) spectrophotometer, at which point 7µL of a 100X concentrated stock of the 
screening compound (in DMSO, the diluent for the chemicals in this study) was added to the 
culture using a Packard Multiprobe (Perkin Elmer, Santa Clara, CA) liquid handler. 
Homozygous pool cultures were grown in duplicate wells on the same plate for 5 doublings, 
automatically collected and stored at 4ºC in a 48-well plate for no longer than 2 days. 
Heterozygous cultures were grown for 20 doublings and were maintained in logarithmic growth 
by automated dilution of the cultures every 5 generations into wells containing only media and 
compound.  After 20 doublings, the heterozygous samples were added to the collected 
homozygous pool samples and stored for no longer than 1 day at 4ºC. Combined pool samples 
were resuspended by manual pipetting and transferred from the 48-well plate to a microfuge 
tube, and pelleted at 14,000rpm for 3min. Supernatant was removed and the pellets stored at -
20ºC.  Cell pellets were thawed, resuspended in 100µL of cell digestion buffer (Zymo Research, 
Irvine, CA) and 5µLs of R-zymo (Zymo Research, Irvine, CA) and incubated at 37ºC for 1h. 
Genomic DNA was extracted from each sample using a Qiaxtractor (Qiagen). PCR amplification 
of molecular tags in 96-well format, followed by microarray hybridization, washing, and 
scanning were performed as previously described (25, 26). 

 
We define an ‘experimental group’ as a set of 96 or fewer samples whose tags were PCR 

amplified concurrently in the same plate. By design, each experimental group consists of 84 
chemical-treatment samples and 12 control samples (in which pools were treated with 1% 
DMSO). Efforts were made to minimize technical variability within an experimental group. In 
addition to concurrent PCR amplification of tags, experiments within a group were grown in 
media prepared on the same date and samples from the same group were hybridized to tag arrays 
in succession (typically 14 arrays per day over the course of ~10 days). Fitness defect (FD) 
scores for each deletion strain were derived from the ratio of a tag’s signal in the treatment 
samples and its signal in the control samples (see below for details). 

 
Mammalian viability assays 

For the TEX human leukemia cells (a gift from Dr. J. Dick, Toronto, Canada), AML2 acute 
myeloid leukemia line and LP1 myeloma cell line, growth and viability were measured with the 
CellTiter-Fluor assay (Promega, Madison, WI, USA) as per manufacturer’s instructions and by 
trypan blue staining. 

 
The HCT116 colorectal cell line was propagated in McCoy's media with 10% FBS, seeded 

at 2500 cells/well. 6h after seeding, compounds were added by diluting each compound in 
McCoy's media to a final concentration of 1mM and 1% DMSO was then added to cells such 
that the DMSO concentration was fixed at 0.5%. 72h post treatment, cells were fixed by addition 
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of formaldehyde directly to the culture media at a final concentration of 1%. Fixed cells were 
washed twice in PBS, and stained by addition of Hoechst 33342 dye (1µg/mL). Cells were 
imaged using a 4X objective and phase contrast, and nuclear fluorescence images were overlaid. 
At least 1000 cells of each well were counted manually in a blind manner. 

 
A549 cells (human lung adenocarinoma) were obtained from ATCC (http://www.atcc.org) 

and were seeded in 96-well plates at 2200 cells/well in 200μL of medium. Compounds were 
serially diluted first in DMSO then in RPMI, with the final DMSO concentration not exceeding 
1%. After 72h of incubation, cell viability was measured with a sulforhodamine B (SRB) 
viability assay (27) as described (28). 
 
Raw data normalization and removal of problematic tags 

Each probe on the Genflex tag16k array (Affymetrix, Santa Clara, CA), i.e. the Tag4 array, 
is represented by 5 replicate features. These replicates allow the removal of outliers that may for 
example, arise from small debris in the hybridization solution. To identify and remove probes 
defined as outliers, we used a previously described masking algorithm (29). We next defined the 
‘raw average’ of each tag as the average of all remaining probe replicates for a particular tag.  
We then removed all tags corresponding to the control strain. 

 
For each array, uptags and downtags were normalized separately, as were heterozygous and 

homozygous strains, creating 4 sets: uptag/het, uptag/hom, downtag/het, downtag/hom. For each 
set, logged raw average intensities were normalized across all arrays using a variation of median 
polish that incorporates batch effect correction. Briefly each iteration involves: 

 
i)    Array median: shifting intensities so that the median of each array matches the overall 

median 
ii)    Batch median: for each tag, shifting intensities so that the median of the tag, across a 

group batch, matches the median across all arrays 
iii) Batch MAD: for each tag, scaling intensities so that the median absolute deviation 

(MAD) of the tag, across a group batch, matches the MAD across all arrays 
iv) Date median: for each tag, shifting intensities so that median of the tag, across a 

hybridization date batch, matches the median across all arrays 
v)    Date MAD: for each tag, scaling intensities so that the MAD of the tag, across a date 

batch, matches the MAD across all arrays 
vi) Pool inhibition: for each tag, shifting intensities so that the trend line for the level of 

pool inhibition of each array sample (estimated from the doubling time of the sample), 
versus intensity, is a horizontal line  

 
We stop the iterative algorithm when the adjustment amount per iteration stops decreasing. 
 
For each array, we computed compound and control background thresholds (compound = 

<median signal>, control = <median signal> + 5 x <MAD of signal>) using the unnormalized 
intensity values of the unused features on the array, and then defined overall compound and 
control thresholds with the medians of these thresholds (across all arrays). A tag is excluded 
from further analysis if its median normalized intensity in the control arrays is less than the 
overall control threshold. Such low signal suggests that the tag is faulty, or that the 
corresponding strain has low abundance even when grown in the absence of a compound. We 
thus eliminated the tag to avoid inaccurate estimates of the fitness defects of strains. 

http://www.atcc.org/
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As each strain was constructed with two unique molecular tags (an ‘uptag’ and a 

‘downtag’), and because the performance of these two tags can vary significantly, we identified 
the ‘best tag’ of each strain. If only one tag is still available after the control-based background 
filter, it is the best tag by default. If both tags are available, we defined the best tag as the tag 
with lowest robust coefficient of variation (<MAD intensity> / <median intensity>) in the 
control arrays. We filtered out all non-best tags and for each remaining tag, we scaled the 
intensities so that the MAD across the control arrays matches the median of all such MADs. This 
step forces all tags to have the same variability and therefore compensates for variability due to 
properties of the tag (e.g. hybridization variability as opposed to biological variability). 
Furthermore, all intensity values below the overall compound background threshold were re-
assigned to the threshold value. Assuming that intensity measurements are less accurate below 
the threshold, this step avoids inaccurate estimates of the fitness defects of strains. 

 
To simplify our dataset, we removed strains where the deletions no longer correspond to 

valid genes according to the Saccharomyces Genome Database (SGD), and strains where the 
zygosity contradicts the viability of the strain as currently reported in SGD (e.g. a homozygous 
strain in our pool reported to be inviable).  These contradictions potentially arise due to 
secondary site mutations in the strains in the deletion collection. Furthermore, some genes have 
multiple deletion strains in our pools and we selected one strain for each gene. In some cases, a 
strain is deleted for a gene that has been merged with another gene, which already has its own 
deletion strain. In these cases, we selected the latter strain because the deleted region better 
matches the currently defined gene region. For each of the remaining genes with multiple strains, 
we selected the strain that better recapitulates known functional similarities between the deleted 
gene and all other genes. Specifically, we used the intensities to computed fitness defect (FD) 
scores (described below), and then computed the cofitness (described below) between each strain 
of interest and all other strains (resulting in ~6,000 values per strain). For the gene deleted from a 
strain of interest, we obtained measures of the semantic similarity between it and all other genes 
(resulting in ~6,000 values per gene), where the values are derived from biological process 
annotations from Gene Ontology (GO) and therefore reflect known functional similarities (30). 
Since cofitness is a measure of functional similarity based on our chemogenomic dataset, for 
each strain/gene of interest, we computed the correlation between the cofitness values and the 
semantic similarity values. For strains deleted for the same gene, we selected the strain with 
greater cofitness-semantic similarity correlation to represent the gene. The final list of 
strains/genes included in this study is given in table S9. 

 
After computing FD scores for the final strains, we filtered out data points that demonstrate 

lingering batch effects. Some date batches contained a small number of arrays and it was thus 
difficult to accurately estimate and correct the corresponding batch effects during normalization. 
We therefore estimated lingering batch effects by manually examining date batches with <14 
arrays (and ≥3 arrays since we cannot properly estimate with fewer). For each strain, we 
computed the median and MAD FD score across the arrays in each small batch. If the median is 
significantly positive/negative (standard normal distribution P < 0.01) and the MAD < 2, the 
strain consistently demonstrated altered fitness within the batch. Since we expect fitness defect 
scores to be centered at zero, we filtered out the data points corresponding to these aberrant 
strain-batch combinations (i.e. ~0.04% of the dataset). 

 



 
 

5 
 

In determining the best normalization approach, we tried existing approaches such as 
Supervised Normalization of Microarrays [SNM; (31)] and quantile normalization. While we 
found SNM to be promising due to its flexibility and ability to reduce batch effects in our dataset 
(fig. S19), the runtime slowed the process of optimizing the parameters for our dataset. 
Comparatively, quantile normalization is fast, yet it does not include explicit batch effect 
correction. We therefore incorporated batch effect correction by computing reference intensity 
distributions for each experimental group (from group averages), and quantile normalized 
profiles in each group to the reference distribution of the group. Moreover, ‘best tag’ selection 
was performed separately for each group, and FD scores were computed using group-matched 
controls, followed by an additional step where, within each group, all scores of a given strain are 
converted into robust Z scores. While this quantile normalization approach reduced batch effects, 
it did not reduce chip date batch effects as effectively as the median polish variant we ultimately 
chose to use (fig. S19). 
 
The fitness defect (FD) score 

We devised a fitness defect (FD) score that quantifies the sensitivity of each deletion strain 
to a chemical perturbation by comparing the signal of a strain following chemical treatment to 
the signal of the strain from control samples (i.e. DMSO-treated samples). Specifically, 
log2ratios were calculated for each strain as follows: 

 
log2ratio = log2[<median signal from control samples> /  
                          <signal from chemical sample>]  
 
To facilitate comparisons between chemical treatments, i.e. chemogenomic screens, we 

standardized the log2ratios (separately for heterozygous and homozygous strains). Specifically, 
the FD score of strain i in screen j was computed as follows: 

 
FDi,j = (log2ratioi,j - <median of log2ratios for screen j>) /<MAD of log2ratios for screen j> 
 
FD scores are essentially robust Z scores, and for each screen, the median FD score is 0 and 

the MAD is 1. The scores are used throughout the manuscript and are searchable on our webpage 
(http://chemogenomics.pharmacy.ubc.ca/ycs/). 

 
For a given screen, combining the FD scores of heterozygous strains (from HIP) with the 

scores of homozygous strains (from HOP) results in a HIPHOP profile of the chemical treatment. 
 

Identification of significant chemical-genetic interactions 
We defined significant chemical-genetic interactions by identifying FD scores that deviated 

significantly from other FD scores in a given screen (heterozygous and homozygous strains were 
considered separately). This approach is based on the assumption that, at chemical 
concentrations that only minimally inhibit growth of the pool, most strains will not exhibit a 
fitness defect. As the FD scores in a screen generally follow a standard normal distribution, we 
obtained the probability that a given score is an outlier in this distribution (one-sided P). If a 
score has P < 0.001, we identify a significant chemical-genetic interaction between the screened 
chemical and the deleted gene associated with the score. This was the method used to define 
significant chemical-genetic interactions throughout this study; however, a strain-centric 
approach is also presented on the webpage. The P described above identifies outlier genes for a 
given chemical, whereas a strain-centric P identifies outlier chemicals for a given strain/gene. 

http://chemogenomics.pharmacy.ubc.ca/ycs/
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Thus, a strain-centric P allows users equipped with a gene of interest to identify chemicals 
exhibiting the strongest interactions with the gene, relative to all other chemicals.  Briefly, all FD 
scores of a given strain are converted into Z scores to obtain strain-centric P values from the 
standard normal distribution. 

 
Identification of HIP hits 

HIP exploits drug-induced haploinsufficiency, a phenotype whereby a growth inhibitory 
compound or drug induces a specific fitness defect in a heterozygous strain deleted for one copy 
of the drug’s target (8). We therefore identified ‘HIP hits’ as potential targets of profiled 
compounds. Because we are most interested in proteins that are targeted with high specificity, we 
first developed a measure of specificity called ‘clearance’, which identifies hits that are 
substantially more significant than all other hits. Furthermore, we are only interested in strains 
exhibiting fitness defects, so we only computed clearance for strains with FD score > 0 in a 
given HIP profile. Specifically, the clearance of the strain with the ith greatest FD score is 
defined as follows: 

 
clearance’ = FD(i) – FD(i+1) [Note: computed for all strains with FD > 0 before the next 

step.] 
and if FD(i) ≥ FDmax,, clearance = clearancemax 
otherwise, clearance = clearance’ 
where 

FD(i) is the ith greatest FD score in the profile, 
FDmax is the FD score of the strain with clearance’ = clearancemax, and 
clearancemax is the maximum clearance’ associated with the profile. 
 

The strain with clearance’ = clearancemax, strainmaxC, divides the heterozygous strains into 
two sets where one set (including strainmaxC) exhibits FD scores greater than the second set by at 
least clearancemax units. For example, strainmaxC  = ERG11 in one fluconazole HIP profile (Fig. 
1A), and it is the only member of the high-scoring set, which exhibits greater fitness defects than 
the lower-scoring set by ~15.38 units (out of a maximum of 22.16 units in this profile). If 
strainmaxC exhibits a significant FD score (standard normal distribution P < 0.001) and 
clearancemax ≥ 5.75, all genes associated with the high-scoring set are designated HIP hits. 

 
To optimize our threshold, we considered clearancemax thresholds from 2.25 to 15 (steps of 

0.25), and with each threshold, we identified compound-HIP hit interactions and estimated the 
significance with which these interactions are enriched with the benchmark compound-target 
interactions established in yeast (table S2). Specifically, 31 established interactions formed our 
positive gold standard set (involving 26 compounds), 500 randomly selected genes for each 
compound formed our negative gold standard set, and for each threshold, we counted the number 
of gold standard compounds where at least one of the associated genes (i.e. known targets for 
positives, random genes for negatives) was identified as a HIP hit. It should be noted that an 
established drug-target can be missed by HIP due to suboptimal inhibitory concentrations (e.g. 
SGTC_227/fluconazole) and/or concentration-dependence of the interaction (5). The 
hypergeometric test was then used to compute a P value for the significance with which 
compounds with HIP hits are enriched for compounds where the HIP hits include a known target. 
We repeated this computation 100 times with different random samples (re-samples) of the 
negative gold standards, and re-samples of representative profiles for positive gold standard 
compounds that were profiled more than once. We selected 5.75 as the clearance threshold 
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because it yielded the most significant enrichment, measured by the median P across the 
samples. We refer to the compounds in the resulting compound-HIP hit interactions as 
‘chemical-genetic probes’. 

 
Although the HIP assay, and by extension the HIP hit list, is restricted to essential genes, we 

note in the HOP profile of fluvastatin (SGTC_2753) that HMG1, one of the established non-
essential targets of this drug, is associated with highly significant and specific fitness defects. 
This result demonstrates that HOP profiles can also guide the identification of targets. 

 
Assessing the promiscuity of chemical-genetic probes 

To roughly assess the promiscuity of chemical-genetic probes, we extracted from PubChem 
(on December 15, 2013) the number of bioassays in which each probe was tested, and the 
number of bioassays in which the probe was found to be active. Of the 317 chemical-genetic 
probes, 175 have been tested in bioassays, and they tend to be active in relatively few bioassays 
(median = 1.4% of the bioassays in which the probe was tested). For those probes for which we 
have validation data beyond confirmation of drug-induced haploinsufficiency by individual 
strain analysis, only 3013-0144 appeared active for the majority of the bioassays in which it was 
tested (5 of 6 bioassays). Interestingly, the probe was active in a bioassay involving the 
mammalian polo-like kinase PLK-1 as a target, which co-localizes to the cytokinetic furrow, a 
structure that shares similarity with the yeast septin ring. This is consistent with data in this study 
supporting the inhibition of septin by 3013-0144. Taken together, these results suggest that the 
chemical-genetic probes are not promiscuous or broadly reactive. 

 
Gene Ontology (GO)-based enrichment analysis 

We obtained Gene Ontology (GO) annotations of yeast genes from SGD (downloaded on 
May 26, 2012), and additional protein complex annotations were obtained from Benschop et al. 
2010 (32). Unless otherwise indicated, GO biological processes that were too specific (contain 
less than five genes) or too general (contain greater than 300 genes) were excluded from the 
analysis. However, we allowed smaller GO categories for protein complexes (>2 genes) and 
larger categories for cellular components (>300 genes). 

 
Given a query set of genes (e.g. genes with significant FD scores in a HIPHOP profile), we 

used the hypergeometric test to obtain a P value estimating the significance with which the set is 
enriched with genes annotated to a given GO category. FDR values were obtained from the 
resulting P values using the Benjamini and Hochberg method of adjusting for multiple 
comparisons (33). 

 
For some query sets, the number of GO categories significantly enriched (FDR < 0.1) in the 

set is large yet many enriched categories are closely related. To facilitate interpretation of the 
results for a given query, we pruned the set of enriched categories using an adaptation of the GO-
Elite method (34). Briefly, for enriched categories in the same lineage in the GO hierarchy, we 
identified the most significantly enriched category and pruned the others. In addition, we 
assessed the genes that drove the enrichment of each remaining category, i.e. genes in the 
overlap of the query set and the category set. We clustered the remaining categories based on 
similarities in their overlap gene sets, measured by the Jaccard coefficient, using the Markov 
clustering algorithm (MCL, a network clustering algorithm, with inflation = 2). For each cluster, 
we identified the most significantly enriched category and pruned the others. Fig. S2 shows the 
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biological processes enriched among the genes with significantly positive FD scores (standard 
normal distribution P < 0.001) in a fluconazole HIPHOP profile (SGTC_1788), after pruning.  

 
We visualized most GO enrichment results with enrichment maps (fig. S2, all enrichment 

maps available on the website), generated using an approach similar to the Enrichment Map 
Cytoscape Plugin v1.1 (35, 36). In contrast to the plugin, the nodes in each map were clustered 
with MCL (inflation = 2), using the overlap coefficient computed by the plugin as the similarity 
metric (coefficients less than 0.5 were set to zero). Nodes in the same cluster were assigned the 
same node color. Moreover, the size of a node was made to be proportional to the significance 
with which the corresponding GO category is enriched [-log10(FDR)]. 

 
Identification of frequent flier genes and frequent GO terms 

If a strain has a significantly positive FD score (standard normal distribution P < 0.001) in 
many HIPHOP profiles, the deleted gene is potentially involved in multi-drug resistance (MDR). 
Therefore, for each strain, we counted the number of profiles in which the strain has a 
significantly positive FD score. We defined strains with count ≥ 90 as outliers (90 is the bend 
point in the positive count distribution, fig. S20). We also counted the number of profiles in 
which a strain has a significantly negative FD score (standard normal distribution P < 0.001), 
and defined outlier strains as those with count ≥ 50 (the bend point in the negative count 
distribution). There are 287 strains that are outliers in the positive count distribution but not in 
the negative count distribution and we refer to the genes deleted from these strains as ‘frequent 
flier’ or FF genes (table S9). These FF genes (~5% of the genome) are enriched for genes with 
human orthologs (hypergeometric test P < 10-4), and include genes involved in drug-related 
processes such as PDR1 and YRR1 encoding regulators of MDR transporters, and SNQ2 and 
PDR16 encoding an ATP-binding cassette (ABC) transporter and phosphatidylinositol transfer 
protein, respectively, neither of which have previously been identified as MDR genes in fitness 
assays (7, 9). FFs are enriched for genes involved in biological processes known to be associated 
with MDR, including vesicle-mediated transport and amino acid metabolism (hypergeometric 
test FDR < 0.1, (7)). 

   
In addition to individual FF genes, we identified ‘frequent terms’ (FTs; fig. S20), which 

represent biological processes, cellular components and protein complexes most frequently 
affected by compounds. FTs include many processes and components involving FF genes (table 
S9, fig. S20). For example, ‘protein localization’ was affected by most of the compounds 
screened (~77%) because it includes FF genes such as RCY1 and RHO1, and more specifically, 
the nuclear pore was perturbed by 27% of the compounds via GLE2, SAC3, and others. FTs 
uncovered in this study that were not previously associated with MDR include RNA processing 
(49% of the compounds, via e.g. HSH49, RPB7), and protein complex organization/biogenesis 
(66% of the compounds, via e.g. TUB3, ARP4). To identify FTs, we first performed GO 
enrichment analysis without pruning (see previous section) on the significantly scoring genes in 
each HIPHOP profile (standard normal distribution P < 0.001). For each category, we integrated 
the 3356 enrichment P values (one for each profile) using the weighted-Z method [equally 
weighting all P, (37)] to obtain a single Z score measuring the overall enrichment of the category 
in the dataset. For each category class, we identified the bend point in the Z distribution; i.e. -110 
for biological processes, -70 for cellular components and -260 for protein complexes (fig. S20). 
Categories with Z greater than the relevant bend point are considered outliers, and thus, more 
enriched than other categories in the same class. In a given class, we simplified the list of outlier 
categories by reducing it to the categories that are highest in the GO hierarchy, and therefore 
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cover redundant categories in the list. We refer to the remaining categories as frequent terms. 
The top 10 (i.e. by Z) frequent biological processes, cellular components and protein complexes 
are shown in (fig. S20), together with the top 10 processes, components and complexes most 
frequently identified by HIP hits (where the frequency is the number of compounds with a HIP 
hit annotated to the given gene category). Since some of the top 10 frequent processes are also in 
the top 10 processes most frequently hit by HIP hits, fig. S20 shows less than 10+10=20 
processes due to the overlap. The same is true for the top components and complexes. 

 
Identification of enriched chemical moieties 

Fragments were generated for all compounds screened using the ‘Generate Fragments’ 
component in Pipeline Pilot v8.0. Three different fragment types were generated for each 
compound. These were ‘Murko scaffolds’, [contiguous ring systems plus chains that link two or 
more rings (38)], ‘Ring Assemblies’ (contiguous ring systems), and ‘Rings’ (individual rings). 
The number of times each fragment (scaffold, ring or ring assembly) appeared in each category 
was counted and compared with how often it appeared in the entire dataset. The significance of 
the count was calculated using the hypergeometric test. FDR values were obtained from the 
resulting P values using the Benjamini and Hochberg method of adjusting for multiple 
comparisons (33). 

 
The definition of cationic amphiphilic drugs (CADs) in Halliwell 1997 (39) was used 

together with Open Babel software (40) to identify CADs profiled in our study.  
 

Cofitness and coinhibition 
Our chemogenomic dataset can be represented as a matrix D where columns are individual 

HIPHOP profiles and thus represent profiled compounds, and where rows represent deleted 
genes. By replacing insignificant FD scores (standard normal distribution P > 0.001) with 0, 
resulting in Dsig, we can focus on the most significant components of the cellular responses to 
chemical perturbations identified in this study. In particular, we compute coinhibition, defined as 
the Pearson correlation between two columns in Dsig, and a measure of the similarity in the 
cellular responses to the profiled compounds. We also compute cofitness, defined as the Pearson 
correlation between two rows in Dsig, and a measure of the similarity in the importance of the 
genes in the cellular responses to chemical perturbations. As a result, cofitness can also be 
considered a measure of functional similarity. We estimated the significance of each correlation 
using the Student’s t-distribution method. 

 
To help determine whether relationships between genes, and by extension, relationships 

between biological processes, supported by cofitness are supported by other types of interactions, 
we examined whether the genes involved in a significant cofitness interaction (Student’s t-
distribution P < 0.01) also exhibit genetic and/or physical interactions reported in BioGRID 
(version 3.1.91). Cofitness interactions that were not redundant with other types of gene 
interactions are more likely to be uncharacterized. 

 
Clustering HIPHOP profiles 

In identifying major, minor and unique response signatures, we first aimed to identify 
clusters of HIPHOP profiles that capture similar cellular responses, and we assume that more 
robust clusters lead to the identification of more robust response signatures. Towards identifying 
robust clusters, we clustered our HIPHOP profiles using the following methodologies with the 
indicated variations: 
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i) hierarchical clustering 
Profiles were hierarchically clustered using (1 – coinhibition) as the distance metric, and the 
Ward agglomeration method. Discrete clusters were derived from the resulting dendrogram 
using a dynamic branch cutting method (41) with the following non-default parameter 
settings: minimum cluster size = 3, deepSplit = 4, omission of the partitioning around 
medoids step. 
parameter variations: maximum joining height = 35.4 (default), 20, 10, 5, 1 
major variant: application of a FD score-based profile filter prior to clustering 
 
ii) Markov clustering [MCL; (42)] 
Profiles were clustered using coinhibition as the similarity metric, with the negative 
coinhibition values replaced with zero. (The default inflation value of 2 resulted in a single 
cluster consisting of all profiles, and thus was not useful for identifying groups of similar 
profiles.) 
parameter variations: inflation = 3, 4, 6, 8, 10 
 
iii) biclustering 
Profiles were biclustered with the iterative signature algorithm (43), setting the row and 
column directions to ‘upDown’ and ‘up’, respectively. We ran the algorithm using 1000 
random seeds generated with sparsity values of 2, 5, 10, and 100. For the normalization step, 
we computed robust Z scores (see The fitness defect (FD) score section). The results were 
filtered to identify unique and robust biclusters, based on 100 permutations (see the 
documentation of the isa2 package for R). 
parameter variations: standard deviation threshold = 2.3, 3.1  
 
We evaluated each set of clusters by computing silhouette widths, using (1 – coinhibition) 

as the dissimilarity metric, resulting in a value for each profile quantifying how well-clustered it 
was (where higher values indicate that profiles were clustered better). For biclusters, where a 
profile may be a member of multiple biclusters, we adapted the silhouette statistic; when 
computing the average dissimilarity of a given profile to profiles in other biclusters, we restricted 
the other biclusters to those that do not contain the given profile. In order to evaluate each 
individual cluster/bicluster, we computed the median silhouette width across the member profiles 
(e.g. table S10). To facilitate drawing statistically significant conclusions from clusters, we 
restricted focus to clusters with ≥3 profiles. To avoid drawing overly general conclusions, we 
also restricted focus to clusters with ≤300 profiles. For each set of clusters, we computed the 
median of the remaining cluster silhouette widths to serve as a summary statistic for the set (fig. 
S21). 

 
The number of profiles included in clusters varied substantially (from 378 to 3345 profiles), 

depending on the methodology and parameters used (fig. S21). An ideal clustering result strikes 
a balance between silhouette statistics and profile coverage and this was used to select the best 
set of clusters from each methodology. With this approach, the best clusters were generated with: 

 
i)   hierarchical clustering with dynamic branch cutting: maximum joining height = 35 (the 

default) 
ii)  MCL: inflation = 8 
iii) biclustering: standard deviation threshold = 2.3 
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Moreover, of these methodologies, hierarchical clustering generated the best clusters. Under 

the assumption that stronger signals may result in stronger clusters, we examined the maximum 
|FD|s of the profiles with silhouette width > 0 given the best hierarchically-derived clusters. 
Noting that the first quartile of these maximum |FD|s is 10.36, we identified profiles with 
maximum |FD| ≥ 10 and clustered them hierarchically, then identified discrete clusters using 
dynamic branch cutting with the default maximum joining height. That is, we applied a FD-
based profile filter prior to hierarchical clustering, and we used the resulting clusters in the 
following analysis. 

 
To assess whether certain clusters are identified by multiple methodologies, and are thus 

robust, we used the best clusters resulting from hierarchical clustering (without the profile filter) 
as a reference set. Specifically, we quantified the overlap between each reference cluster and 
each cluster resulting from a different methodology, using the following metrics (table S10): 

 
overlap coefficient = <size of cluster overlap> / 
                                  <size of the smaller of the two clusters> 
Jaccard coefficient = <size of cluster overlap> / 
                                  <size of the union of the two clusters> 
 
For example, when comparing the reference clustering result to that produced by the MCL 

method, if a reference cluster substantially overlaps with only one MCL cluster, this one-to-one 
mapping would suggest that the reference cluster is robust to choice of method (fig. S22). If 
instead, there is a one-to-many mapping between a reference cluster and several MCL clusters, 
the reference cluster was essentially identified by the alternative methodology, but in the form of 
subclusters; this type of mapping also supports the robustness of the reference cluster, though not 
as strongly as a one-to-one mapping (fig. S22). In addition to determining the mapping from 
reference clusters to MCL clusters, we also determined the mapping to biclusters, and to clusters 
resulting from hierarchical clustering with the profile filter. The greater the number of 
methodologies with a strong mapping (e.g. one-to-one) to a specific reference cluster, the greater 
the support for the robustness of that cluster. We subsequently assigned a confidence level for 
each reference cluster according to how strongly the mappings support its robustness, as follows: 

 
i)  very strong: one-to-one with Jaccard coefficient ≥ 0.5 for ≥2 methodologies 
ii)  strong: one-to-one/one-to-many/many-to-one with overlap coefficient ≥ 0.5 for ≥2 

methodologies 
iii) good: one-to-one/one-to-many/many-to-one with overlap coefficient ≥ 0.5 for ≥1 

methodologies 
iv) moderate: one-to-one/one-to-many/many-to-one/many-to-many overlap coefficient ≥ 

0.5 for ≥2 methodologies 
v)  other: for all other reference clusters 

 
Forty-eight (80%) of the clusters were assigned a level that is moderate or better, indicating 

that the majority of the clusters generated by the hierarchical clustering methodology appear 
robust. If we instead select the ‘best’ clusters based solely on silhouette statistics (i.e. MCL 
clusters with inflation = 3, biclusters with standard deviation threshold = 3.1), we find that they 
do not include ≥65% of the 48 high-confidence clusters (overlap coefficient ≥ 0.5), including 2/4 
= 50% of the clusters with strong confidence levels. For our chemogenomic dataset, selecting 
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clusters based on silhouette statistics alone therefore appears too restrictive, whereas finding 
clusters with relatively high silhouette statistics and profile coverage resulted in the identification 
of more robust clusters. As a final step towards identifying the most robust clusters, we focused 
on the 45 high-confidence clusters that each contain >4 profiles, and we refer to the response 
signatures derived from these clusters as ‘major’. 

 
In total, the 45 robust clusters cover 1198 profiles. Most (>99%) of the remaining profiles 

have ≥1 gene with a significant FD, although they tend to have fewer genes with significant FD, 
making it more difficult to cluster these profiles robustly (since our profile similarity metric 
favors profiles with multiple significant genes). However, our hierarchical clustering with 
maximum joining height = 1 revealed that 1334 of the remaining profiles organize into 334 
smaller clusters (median size = 4 profiles, 78% of the clusters include 4 profiles or less). Several 
of these smaller clusters are of biological interest (we highlight one example in the main text), 
even though they are of lower confidence statistically because they are supported by fewer 
profiles. Therefore, we refer to the signatures derived from these clusters as ‘minor’ (table S1). 
The remaining 824 profiles could not be incorporated into clusters with >2 profiles using our 
hierarchical clustering methodology. Therefore, we assume these profiles define unique 
signatures. 

 
Defining response signatures 

For each cluster, we computed a median profile, where for each deletion strain, we assigned 
the median FD score across the profiles in the cluster. Strains with significantly positive scores 
(standard normal distribution P < 0.001) in the median profile (i.e. by definition, exhibit 
significant fitness defects in at least 50% of the profiles in the cluster) identify genes that are 
particularly important to the responses captured by the profiles in the cluster, and we refer to this 
significant subset of the median profile as the response signature. We performed GO enrichment 
analysis on each response signature. 

 
Each response signature is associated with a set of HIPHOP profiles, and by extension, a set 

of compounds. We therefore tested for structural enrichment in each signature by testing its 
compound set for significant enrichment of chemical moieties, relative to all profiled 
compounds. Significantly enriched chemical moieties (hypergeometric test FDR < 0.1) that also 
comprise ≥20% of a compound set are shown in Fig. 2. 

 
The response signatures shown in Fig. 2 were manually named based on the functional or 

structural characteristics of the signatures. 
 

Identification of enriched bioactivity classes 
To determine whether the set of compounds associated with a given signature is 

significantly enriched for compounds known to have similar mechanisms, we used bioactivity 
classes obtained from PubChem (on August 15, 2013). These bioactivity classes specify 
compounds annotated to the same class by ChEBI, KEGG, MeSH, LIPID MAPS or the 
International Patent Classification 2013. Compounds annotated to the same class are typically 
known to have similar bioactivity (e.g. therapeutic use), and in some cases, similar mechanism. 
We restricted our focus to classes with >1 compound profiled in this study, and to signatures 
associated with >1 compound annotated to a bioactivity class. For each remaining set of 
signature compounds, we used the hypergeometric test to obtain a P value estimating the 
significance with which the set is enriched with compounds annotated to a given bioactivity 



 
 

13 
 

class. FDR values were obtained from the resulting P values using the Benjamini and Hochberg 
method of adjusting for multiple comparisons (33). See table S5. 

 
Identification of response signatures in genetic interaction profiles 

Using yeast large-scale genetic interaction profiles (18), we identified the set of genes that 
genetically interact with each genetic interaction screen query gene (using the intermediate 
cutoff). Each set of interaction partners was assessed for significant GO enrichment as described 
above (biological processes, molecular functions, protein complex). We found that 380 query 
genes do not have interaction partners that are significantly enriched for any GO category 
(hypergeometric test FDR < 0.1). For each of these query genes, we used the hypergeometric test 
to obtain a P value estimating the significance with which its negative interaction partners are 
enriched for each major response signature (with >2 genes). 

 
Detection of response signatures in another chemogenomic dataset 

To determine whether the major response signatures are similar to signatures obtainable 
from the Hillenmeyer et al. 2008 (7) dataset using the same approach, we restricted our focus to 
compounds that were profiled by both HIP and HOP in that study. Since some compounds were 
profiled at different concentrations, we randomly sampled one concentration profile for each 
compound and clustered the resulting set of profiles using hierarchical clustering as was done to 
define the major response signatures, and repeated 50,000 times. To define an overall set of 
clusters from the sample-based clusters, we did the following: 

 
i) for each pair of compounds, compute the percentage of samples where the compounds 

ended up in the same cluster 
ii) use (1 – <same cluster percentage>) as a distance metric to cluster the compounds with 

hierarchical clustering as before 
 

To identify the robust clusters in this set, we applied the FD-based profile filtered described 
above, and defined another overall set of clusters given the restricted set of profiles for sampling. 
Performing the overlap-based mapping described above with these two sets of clusters (derived 
with and without the profile filter), we identified 26 robust clusters. With these clusters, we 
defined Hillenmeyer response signatures. The similarity between signatures from this study and 
Hillenmeyer signatures was measured using the overlap coefficient (<size of overlap between 
signature gene sets> / <size of the smaller of the two signature gene sets>). If a signature from 
this study has overlap ≥ 0.5 with some Hillenmeyer signature, we claim that the signature from 
this study was detected in another chemogenomic dataset. 

 
Identification of response signatures using subsets of HIPHOP profiles (saturation analysis) 

To determine whether the major response signatures can be derived from subsets of the 
HIPHOP profiles, we repeatedly sampled random subsets (of increasing size) of our HIPHOP 
profiles, hierarchically clustered them as was done to define the major response signatures, and 
defined new signatures from these clusters. The similarity between major signatures and 
signatures derived from subsets was measuring using the overlap coefficient (<size of overlap 
between signature gene sets>/<size of the smaller of the two signature gene sets>). If a major 
signature has overlap ≥ 0.5 with some subset-derived signature, we claim that the major 
signature was identified by the subset of profiles. This process was repeated for 100 samples for 
each subset size. 
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Drug-induced Phospholipidosis (DIPL) prediction 
A naïve Bayes structure model using ECFP_4 fingerprints (44) was created to predict 

whether or not a given compound induces the NEO1 or NEO1-PIK1 response signature. NEO1 
and NEO1-PIK1 compounds were considered active, while all other compounds screened were 
considered inactive. The charge and stereo form of each compound was standardized, and salts 
were removed using Pipeline Pilot version 6.1 (Scitegic Inc. Accelyrs, San Diego, CA, USA). 
The robustness of the model was tested using a five-fold cross validation procedure, which was 
repeated five times. In each cross-validation cycle, 4/5th of the data are used to build the model 
(i.e. the training set), and then the performance of the model is benchmarked on the remaining 
fifth (i.e. the test set). This procedure is repeated five times so that all molecules are in the test 
set once and in the training set four times in one cross-validation procedure. The performance of 
the model is then reported as the average enrichment factor (i.e. <the number of the actives 
found> / <number of expected actives found by random sampling>) from all of the cross-
validation runs for the top 5%, top 10%, top 20% and top 50% after ranking compounds by the 
model score (fig. S16).  

 
The performance of this model in predicting DIPL was tested by ranking a set of 519 

compounds experimentally tested for DIPL, i.e. annotated to the target ‘Phospholipidosis’ 
(CHEMBL1626541) in the ChEMBL database (45). Of those compounds, 111 were active 
(shown to result in DIPL in at least one publication in ChEMBL). Fifty-five compounds were 
removed from the initial set obtained from ChEMBL to avoid potential bias, as they were 
screened in this study. 

 
Pma1: membrane ATPase assay and media acidification assay 

Plasma membranes were prepared as described (46) from Saccharomyces cerevisiae Σ 
1278b strain. ATPase assays were performed in a 96-well microplate at 30ºC in reaction medium 
(4mM MgATP, 1mM free Mg2+ (MgCl2), 50mM Mes (pH 6.5), 20mM KNO3, 0.2mM NaMoO4, 
0.05% Brij, and 10 mM sodium azide). The reaction was started by adding 10µL of 4.34mM 
ATP (the total amounts of ATP and Mg2+ to be added to the reaction mixture at the indicated pH 
were calculated in order to obtain 4 mM MgATP with 1mM free Mg2+) to 40µL of reaction 
medium containing 1.5µg of protein in the presence or absence of 0.2mM orthovanadate. After 
9min, 60µL of 1% SDS was added to stop the reaction, and 30µL of 50% (w/v) (NH4)6Mo7O24, 4 
N H2SO4 and 30 µL of 1% 4-methylaminophenol sulfate, 3% NaHSO3 were added successively. 
The OD was finally measured at 700ƞm. 

 
For the whole-cell media acidification assay, a saturated yeast culture (BY4743) was diluted 

to 0.25OD/mL in 40mL of YPD. The culture was grown for 3h at 30ºC and then 10mL aliquots 
were pelleted at 3000rpm for 5 minutes, washed twice with 40mL of water, resuspended in 
40mL water, and incubated on ice for 2h. Cells were then collected at 3000rpm for 5 minutes. 
The supernatant was removed and the cell pellet was resuspended in 15mL of 25mM KCl. 
DMSO or chemical inhibitor was added to the cell suspension and the pH of the solution was 
monitored with a pH probe (Beckman), while mixing using a magnetic stir bar. The pH was 
allowed to stabilize for ~5 minutes and then 750µL of 40% glucose was added and the pH was 
recorded every 30 seconds for 10 minutes. 

 
Sec14: phosphatidylinositol (PtdIns) transfer assays 

Recombinant His8-Sec14 protein was expressed in E.coli (BL21 DE3; Novagen), purified 
by TALON metal affinity resin chromatography (Clontech), and stored in 300mM NaCl, 25mM 
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Na2HPO4 (pH=7.5), 5mM 2-mercapthoethanol (47, 48).  Protein concentration was determined 
by Coomassie Brilliant Blue staining after SDS-PAGE and comparison to BSA standards. The 
purity of Sec14 protein was typically >95%. 

 
PtdIns transfer assays measured the mobilization of radiolabeled phospholipid from rat liver 

microsomes to liposomes, and from liposomes to bovine heart mitochondria as described 
previously (49, 50). In experiments involving chemical inhibitors, purified recombinant Sec14 
was pre-incubated in the presence of acceptor membranes and compound for 30 minutes at 37ºC 
prior to initiation of assay by addition of radiolabeled donor membranes. 

 
Tubulin polymerization, binding-site and imaging assays 

Tubulin polymerization was assessed using a fluorescence-based assay according to the 
manufacturer’s instructions (Cytoskeleton, Inc.). Briefly, purified porcine neuronal tubulin was 
incubated with DMSO (negative control, in duplicate), with 5µM nocodazole (positive control), 
or with increasing concentrations (5µM, 10µM, and 20µM) of 1327-0036. Polymerization was 
measured by excitation at 360µm and emission at 420µm in a 96-well plate using a Tecan 
Genios plate reader. 

 
The tubulin-binding site was determined, as previously described (51). Briefly, purified 

bovine tubulin (5µM) was incubated with 1327-0036 (100µM), vinblastine (100µM) or DMSO 
at 37°C for 30 minutes. Colchicine (10µM) was added and incubated for an additional 60 
minutes and the fluorescence of the colchicine-tubulin complex was then measured at excitation 
and emission wavelengths of 360nm and 430nm, respectively. 

 
Yeast microtubules were imaged using the diploid S. cerevisiae strain (NTY5) with the 

following genotype: mat a/α, ura3-52::GFP-TUB1-URA3/ura3Δ0, leu2Δ0/leu2-801, his3 
Δ1/his3-200, in which a tagged copy of alpha tubulin is integrated at the deleted URA3 locus. 
Cells were grown in YPD until they reached an OD600 of 0.5, compound or vehicle control 
(DMSO) was added and cells were incubated for 2h at 30ºC prior to fixation by addition of 
methanol-free formaldehyde to 1% final concentration. Fixed cells were adhered to poly-lysine 
coated coverslips, assembled as wet mounts on a microscope slide and imaged on a Ziess 
Axiovert 200 using a 40X objective. Phenotypes were assessed as normal or abnormal for 100 
cells in each condition at the following stages of the cell cycle: unbudded (G1), small bud (S), 
medium bud (metaphase), large bud (anaphase).  

 
HeLa cells containing an integrated copy of GFP-labelled alpha tubulin under the control of 

the constitutive CMV promoter (52), were plated onto glass coverslips and grown in Dulbecco’s 
Modified Eagle Medium containing 10% fetal calf serum at 37ºC in a 5% CO2 atmosphere. Cells 
were treated with DMSO (0.05% final concentration) and nocodazole or 1327-0036 and returned 
to the incubator for 120 minutes. After additional staining with Hoechst 33342 dye for 30 
minutes, cells on coverslips were inverted onto a microscope slide and sealed with VALAP 
(vaseline, paraffin and lanolin at 1:1:1 ratio) leaving 2mm openings on each side of the coverslip 
to permit media exchange. Cells were imaged on a Quorum WaveFX spinning disc confocal 
microscope system using a 40X objective. All images were collected at the same exposure times. 

 
Actin polymerization and imaging assays 

Polymerization of pyrene-conjugated rabbit skeletal muscle actin was measured using the 
Actin polymerization Biochem Kit (Cytoskeleton, Inc.). Briefly, G-Actin was centrifuged at 
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40,000xg for 2h and the supernatant was carefully transferred to a new tube without touching the 
pellet. 1.8mL of the solution containing G-actin monomers were mixed with 3.6µL ATP. 200µL 
of this mixture were added to the wells of a microtiter plate and polymerization of the filaments 
was followed (in the presence or absence of chemical inhibitor) by measuring fluorescence at 
415ηm in a Sunrise plate reader (Tecan). Arp2/3-dependent actin polymerization was performed 
essentially as above, only purified Arp2/3 complex and the VCA domain of WASP was included 
in the reaction (Cytoskeleton, Inc.). 

 
Actin labelling of yeast cells with fluorescent phalloidin was performed essentially as 

described previously (53). Briefly, cells were grown to early log phase and fixed by the direct 
addition of formaldehyde (3.7% final) to the medium buffered at pH 6.8. After a 2h fixation, the 
fixative was removed by washing two times with water and two times with PBS set to pH 7.4. 
The cells were permeabilized for 10 minutes using 0.2% Triton X-100 in PBS. After two washes 
in PBS, the cells were incubated for 2h with 1.4µM (final concentration) Acti-stain 488 
Fluorescent Phalloidin (Cytoskeleton, Inc.) in the dark at 25°C. After two washes in PBS, the 
cell pellet was resuspended in 20µL of PBS and then applied to poly-lysine coated coverslips. 
For differential interference contrast (DIC) and fluorescence microscopy, a system with the 
following components was used: Axiovert 40 CFL (microscope from Zeiss), AxioCam MRm 
(camera from Zeiss), LD A-Plan 40x, 1006-595 (Ph2) (objective from Zeiss), Axiovision Rel. 
4.5 (software from Zeiss), X-Cite Series 120 (lamp from EXFO). To visualize the polymerized 
actin filaments (i.e. the products of the in vitro reaction), a fresh dilution of Acti-stain 488 
Fluorescent Phalloidin was prepared by diluting 2µL in 98µL water (1.4µM final concentration). 
The staining solution was mixed 1:1 with the polymerized actin filament samples, applied to a 
poly-lysine coated coverslips, and imaged as above. 

 
Mammalian cell actin morphology assays were performed as follows; A549 cells were 

grown in RPMI with 10% serum to 80% confluency on acid washed coverslips and fixed by the 
direct addition of formaldehyde (1.0% final concentration) to the medium. After 2h, the fixative 
was removed by washing two times with PBS. Fixed cells were permeabilized for 10 minutes 
using 0.02% Triton X-100 in PBS. After two washes in PBS, cells were incubated for 2h with 
1.4µM (final concentration) Acti-stain 488 Fluorescent Phalloidin (Cytoskeleton, Inc.) in the 
dark at 25°C. After two washes in PBS, coverslips were mounted in media containing Hoechst 
33342 dye and imaged on a Quorum WaveFX spinning disc confocal microscope system using a 
40X objective. All images were collected at the same exposure times. 

 
Cdc12: Golgi re-orientation assay 

HeLa cells where treated with either DMSO, 3013-0144 or 1-(2-chloropyridin-4-yl)-3-
phenylurea (forchlorfenuron or FCF). Confluent monolayers of cells were serum starved for 18h 
and pre-treated with compounds for 1h before a “scratch wound” was introduced. Serum was 
then added to 10% and the cells were fixed 45 minutes later. Cells were then stained with DAPI 
to visualize nuclei and anti-GM130 to determine whether the cells had successfully reoriented 
their Golgi complex towards the wound edge (shown as a white line Fig. 1B). The Golgi 
complex reoriented to the leading quadrant in control cells treated with the DMSO vehicle but, in 
contrast, treatment with 3013-0144 inhibited Golgi reorientation as effectively as FCF. 
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Trichlorophene assays 
Cell culture. TEX human leukemia cells (a gift from Dr. J. Dick, Toronto, Canada) were 

maintained in IMDM (Iscove’s modified Dulbecco’s medium), 15% FBS, 100µg/mL penicillin, 
100µg/mL streptomycin, 20ng/mL SCF, 2ng/mL IL-3 and 2mM L-glutamine. OCI-AML2 cells 
were grown in IMDM medium with 10% FCS, 100µg/mL penicillin and 100µg/mL streptomycin 
(all from Hyclone, Logan, UT). Cells were incubated at 37oC in a humidified air atmosphere 
supplemented with 5% CO2.  

 
Cell growth and viability assay. Cell growth and viability were measured with the 

CellTiter-Fluor assay (Promega, Madison, WI, USA) as per manufacturer’s instructions and by 
trypan blue staining. 

 
Enzymatic activity of the respiratory chain complexes. Complex activity was analyzed 

from mitochondria–enriched pellet, prepared by cell lysis and centrifugation, followed by 
freezing at –80°C for 7 days. Frozen mitochondrial pellets isolated from treated cells were re-
suspended in 10mM Tris, 250nM sucrose, 1mM EGTA containing protease inhibitors and 
Dodecyl–D–maltoside, and analyzed for protein concentration and citrate synthase activity.  
Complex I activity was detected by monitoring rotenone-sensitive 2,6-dichloroindophenol 
reduction by electrons accepted from decylubiquinol reduced after oxidation of NADH by 
complex I (54). Complex III activity was assessed with a modified method described by (55) and 
(56). Complex III-specific activity was measured by following the increase in absorbance due to 
the reduction of ferrocytochrome c at 550nm, with 580nm as the reference wavelength. Complex 
IV activity was measured by KCN-sensitive oxidation of ferrocytochrome c at 550nm, with 
540nm as the reference wavelength (57).  Ferrocytochrome c was prepared by reducing 
cytochrome c with sodium ascorbate followed by dialysis for 24h (58). Citrate synthase activity 
was measured based on the chemical coupling of CoASH, released from acetyl-CoA during the 
enzymatic synthesis of citrate to DTNB [Ellman’s reagent, 5,5’-dithiobis(2-nitrobenzoic acid)], 
and the release of the absorbing mercaptide ion was monitored at 412 nm (59).  The enzyme 
activity of Complexes I, III, and IV was normalized to citrate synthase activity.  

 
Oxygen consumption and reserve capacity. The rate of oxygen consumption was measured 

using a Seahorse XF96 analyzer as per manufacturer’s instructions (Seahorse Bioscience, North 
Billerica, MA, USA).  After a 72h treatment, cells were washed, re-suspended with un-buffered 
medium αMEM medium containing 2% FCS for 45min at 37oC in a CO2-free incubator, and 
seeded at 120 000 cells/well in XF96 plates. The rate of oxygen consumption (OCR) was 
measured over time.  Spare reserve capacity of the mitochondrial respiratory chain was measured 
by treating cells in succession with 2µM oligomycin, and 1µM and 1.5µM FCCP (carbonyl 
cyanide p-trifluoromethoxyphenylhydrazone) for TEX and OCI-AML2, respectively.  Oxygen 
consumption was measured as described above. After the assay, the cell number was quantified 
with the CyQUANT Cell Proliferation Assay Kit (Molecular Probes, Eugene, OR, USA). 

 
Reactive oxygen species. Mitochondrial reactive oxygen species (ROS) were detected by 

staining cells with MitoSOX Red (Molecular Probes, Invitrogen, Eugene, OR, USA) (final 
concentration 5 μM) and flow cytometric analysis as per manufacturer’s instructions. Data were 
analyzed with FlowJo version 7.7.1 (TreeStar). 

 
All experiments were performed in triplicate. 
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Sec13: CPY processing, Gap1 Activity and localization 
Sec13-dependent protein trafficking was assessed by carboxypeptidase Y (CPY) processing. 

Wild-type cells (ESY360) were grown in synthetic medium lacking methionine, treated with 
DMSO or 0.5mM (4065-0411 or 4544-0069) for 30 minutes at 24oC, and then pulse-labeled for 
10 minutes with 35S-methionine/cysteine. A chase was initiated by addition of cold methionine 
and cysteine (2mM final), and aliquots were removed at 15, 30 and 60 minutes and added 
directly to trichloroacetic acid (10% final).  CPY was immunoprecipitated and processed as 
described (60). 

 
Wild-type cells (ESY360) were grown in synthetic dextrose (SD) ammonium medium at 

24oC, treated with DMSO, 4065-0411 or 4544-0069 for 30 minutes, and then Gap1 activity was 
assessed by measuring the rate of uptake of [14C]-citrulline as described (61). Data shown 
summarize three independent experiments. Gap1-GFP expressing cells (CKY834) were grown in 
SD ammonium, labeled with 3µM FM4-64 for 1h, collected by centrifugation and resuspended 
in fresh SD ammonium medium for 45 minutes to allow FM4-64 to reach the endosome and 
vacuole membranes.  Cells were then treated with DMSO, 4065-0411 or 4544-0069 for 30 
minutes prior to Gap1-GFP visualization as described (62). 

 
Erg7: LC/MS/MS analysis of 2,3-oxidosqualene and ergosterol content 

Wild-type BY4743 yeast cells were grown for 80 generations (via serial dilution every five 
generations) in YPD 20mM HEPES pH7 with 2% DMSO, or with 60µM 4296-0685 (i.e. IC50 
based on growth in YPD). 25 OD600 units (~5 x 108  cells) were harvested by centrifugation, 
washed 2X in cold PBS, re-adjusted to exactly 20 OD600 units (~4 x108  cells) and pelleted in a 
microfuge. The cell pellets were drop-frozen in liquid nitrogen. Compound treatment was 
performed in technical triplicate, using three independent biological replicates. 

 
For lipid extraction, the cell pellets were resuspended in 300µL PBS and added to a glass 

tube containing 3mL of a 1:1 dichloromethane-methanol (DCM-MeOH) (v/v) mixture spiked 
with 0.1µg of the internal standard cholesterol-d7 (C/D/N isotopes, Pointe-Claire, QC, Canada). 
The samples were vortexed and centrifuged at 3500rpm for 5 minutes at 22°C. The supernatant 
was transferred to a new glass tube and the pellet was re-extracted with 3mL of DCM-MeOH. 
The two extracts were pooled and phase separation was initiated by adding 3mL PBS, after 
which the samples were vortexed and centrifuged. The lower organic phase was transferred to a 
new glass tube and the remaining aqueous phase was re-extracted with 3mL of dichloromethane. 
Both organic phases were pooled and subsequently dried under N2. These lipid extracts were 
dissolved in 400µL methanol and analyzed using a 1200 series HPLC coupled to a 6410 Triple 
Quad LC/MS mass spectrometer (Agilent Technologies) with the ESI source in positive ion 
mode. Samples were loaded onto a Zorbax XDB-C18 column (4.6 x 50mm, 3.5µm) equipped 
with a C18 guard column at 40°C using a flow rate of 0.4mL/min. The mobile phase consisted of 
HPLC grade water (A) and methanol (B) both supplemented with 5mM ammonium acetate. 
Lipids were resolved using the following gradient: 0-1min, 96% B; 1-3.3min, 96% to 100% B; 
3.3-14.8min 100% B; followed by a 5min re-equilibration time. The MS was operated in 
multiple reaction monitoring (MRM) mode. The ESI source conditions were as follows: gas 
temperature 175°C, nebulizer pressure 35psi, drying gas (nitrogen) 10L/min, capillary voltage 
6000V. Purified calibration standards ergosterol and 2,3-oxidosqualene were purchased from 
Sigma Aldrich. 
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Fig. S1 
Molecular categories and sources of compounds screened in HIPHOP. The largest category 
of molecules came from two diverse synthetic libraries (red) that were selected for maximal 
structural diversity, from Chembridge (http://www.chembridge.com) and ChemDiv 
(http://us.chemdiv.com/) commercially available collections. Selected compounds were further 
filtered by the vendors to avoid highly reactive and unstable compounds (63). The Chembridge 
fragment library (green) comprises low molecular weight compounds (MW ≤ 300, H-bond 
donors ≤ 3, H-bond acceptors ≤ 3, cLogP ≤ 3). Several small natural product libraries (blue) were 
obtained from TimTec, e.g. (http://www.timtec.net/Natural-Compound-Library.html), in addition 
to a collection from Microsource (http://www.msdiscovery.com/natprod.html). FDA-approved 
drugs (purple) were obtained at the highest purity available from commercial sources. The NIH 
clinical collection (http://www.nihclinicalcollection.com/) is made up of small molecules that 
have a history of use in human clinical trials. Similarly, The ICCB bioactive library 
(http://www.enzolifesciences.com/BML-2840/iccb-known-bioactives-library/) contains 480 
biologically active molecules assembled from a variety of sources (yellow). The miscellaneous 
compounds include well-characterized chemical probes/perturbants ordered from a variety of 
chemical suppliers (light blue). Because the commercial libraries that we screened use different 
criteria for ‘rapid elimination of swill’ (REOS) filters (i.e. elimination of reactive 
compounds)(63), we caution that, as a first pass screen, it must be recognized that the majority of 
our compounds would require medicinal chemistry and far more characterization to qualify as 
chemical probes. 

http://www.chembridge.com/
http://us.chemdiv.com/
http://www.timtec.net/Natural-Compound-Library.html
http://www.msdiscovery.com/natprod.html
http://www.nihclinicalcollection.com/
http://www.enzolifesciences.com/BML-2840/iccb-known-bioactives-library/
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Fig. S2 
Gene Ontology (GO) enrichment map for fluconazole. The map indicates GO biological 
processes enriched in the fluconazole HIPHOP profile shown in Fig. 1A. Nodes: enriched 
biological processes (hypergeometric test FDR ≤ 0.1); size is proportional to the degree of 
enrichment [-log10(FDR)]. Node color indicates processes that share genes. Edges indicate ≥ 
50% gene overlap between processes; width is proportional to degree of overlap.
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Fig. S3 (previous page) 
Fitness defect scores of HIP hits. Genes identified as HIP hits, by the criteria described (10), 
are indicated by name (y-axis) followed by the number of times they were identified across all 
HIP profiles (value following the gene name). For each gene, we plotted its significant fitness 
defect scores (x-axis, standard normal distribution P < 0.001) from profiles where the gene was 
identified as a HIP hit; thus, each point represents a putative compound-target interaction 
between the profiled compound and the gene’s protein product. Established compound-target 
interactions are indicated in blue and uncharacterized interactions, supported by results from 
additional in vivo and/or in vitro assays, are labeled in red. HIP hit genes are plotted in 
descending order by maximum fitness defect score. 
 
 



 
 

23 
 

 



 
 

24 
 

 



 
 

25 
 

 



 
 

26 
 

 



 
 

27 
 

 



 
 

28 
 

 



 
 

29 
 

 



 
 

30 
 

 



 
 

31 
 

 



 
 

32 
 

 



 
 

33 
 

 



 
 

34 
 

 



 
 

35 
 

 

 

Fig. S4 
Dose-response curves of yeast (BY4743) versus mammalian cells. Each plot shows the dose-
response curves of yeast (blue) and mammalian cells (red) treated with one compound (indicated 
above the plot), where the response is growth fitness expressed as a percentage of the fitness of 
DMSO-treated cells (i.e. mock-treated cells). Growth of the wildtype BY4743 hoΔ/HO control 
strain was monitored (OD600) every 15 minutes, allowing estimates of the doubling time under 
different conditions. Mammalian viability assays are described in (10). Fitness of the yeast cells 
was estimated as <doubling time of DMSO-treated cells> / <doubling time of compound-treated 
cells> x 100%. Fitness of mammalian cells was estimated as <# of compound-treated cells> / <# 
of DMSO-treated cells> x100%. Where replicates are available, data are mean +/- SD (N ≥ 3). 
For each curve, a fitted line is also shown (sigmoid in most cases, linear in cases where sigmoid 
fits are poor). Dose-response curves are shown for a total of 152 compounds. 
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Fig. S5 (previous page) 
Summary of validated inhibitors. (A) Validation assays of chemical-genetic probes. Points 
indicate assays performed (y-axis) for putative compound targets (x-axis); size proportional to 
number of compounds validated. Compounds with established targets are indicated above the 
plot. Validation assays are provided for actin and TUB2 (fig. S10), CDC12 (Fig. 1B), ERG genes 
(fig. S12), FAS1 (fig. S9), PMA1 (fig. S23), SEC13 (fig. S24) and SEC14 (Figs. 1C, S7). (B) 
Chemical structures of the chemical-genetic probes that were validated as protein inhibitors, with 
the assays indicated in panel A. Inhibitors with the same putative target are shown together in the 
same box, with the target indicated above the box. *, compounds with established targets. (C) 
Chemical structure of trichlorophene, the putative inhibitor of mitochondrial processes, predicted 
by its response signature, and validated as shown in fig. S13. 
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Fig. S6 
Validation of drug-induced haploinsuffiency for 51 compound-strain pairs by individual 
strain analysis. Significantly scoring heterozygous deletion strains, 44 of which were designated 
as HIP hits, in individual screens were validated by confirming the expected drug-induced 
haploinsufficiency phenotype of heterozygous deletion strains grown individually in the presence 
of compound. Results for each compound-strain pair are presented in three plots. The growth of 
the heterozygous deletion strain (OD600) (middle plot, strain name indicated above) and that of 
the hoΔ/HO control strain (left plot) were monitored in various concentrations of the compound 
(see legend). Dose-response curves summarizing these data are shown in the right plots. Relative 
growth rates (y-axis) of the heterozygous strain (red) and the control strain (black) at increasing 
concentrations of compound (x-axis) are shown. Relative growth rate was calculated as the 
average doubling time in DMSO (vehicle) divided by that of the compound-treated culture. 
Validation of drug-induced haploinsufficiency for an additional three SEC14, eight NEO1 and 
one FAS1 compound-strain pairs are included as parts of figs. S7, S8 and S9, respectively. 
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Fig. S7 
Genetic validation of Sec14 inhibitors. Results shown demonstrate increased sensitivity to a 
Sec14 knockdown mutant (SEC14P-136) and increased resistance to Sec14 bypass mutants (cki1Δ 
and kes1Δ). Growth rate relative to the no-compound control (y-axis) was measured at increasing 
concentrations of 9131112, 9097855, 9053361 and 9045654 (an inactive analog) (x-axis). 

http://chemogenomics.pharmacy.ubc.ca/internal/ycs/index.php?f=fixed&q=SGTC_3219&d=0&pv=
http://chemogenomics.pharmacy.ubc.ca/internal/ycs/index.php?f=fixed&q=SGTC_3149&d=0&pv=
http://chemogenomics.pharmacy.ubc.ca/internal/ycs/index.php?f=fixed&q=SGTC_2363&d=0&pv=
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Results for wild-type (CTY182; top panel), a SEC14 promoter mutant (CTY374; SEC14P-136) in 
which steady-state Sec14 protein levels are reduced ~7-fold relative to wild-type (second panel), 
the SEC14 bypass mutants, cki1Δ (CTY303; third panel) and kes1Δ (CTY159; bottom panel) are 
shown. Data are mean +/- SEM (N = 3). IC50s, i.e. 50% inhibitory concentrations, represent the 
95% confidence interval. Chemical structures are shown on the right. 
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Fig. S8 (previous page) 
Bafilomycin A rescues the drug-induced NEO1 haploinsufficiency of compounds with 
NEO1 as a HIP hit. Growth of the neo1∆/NEO1 strain was monitored by measuring the OD600 
(y-axis) every 15 minutes for 24h (x-axis). In each plot, the growth of neo1∆/NEO1 under four 
conditions is presented: DMSO (black), 1.25µM bafilomycin A (red), a NEO1 compound 
(yellow, the name of the compound is above the plot), and a NEO1 compound + 1.25µM 
bafilomycin A (blue). Each NEO1 compound induces the NEO1 or NEO1-PIK1 signature except 
alverine citrate, compounds that are also cationic amphiphilic drugs (CADs) are indicated in 
green, and the concentration used in the experiment is shown in square brackets above the 
corresponding plot. The molecular structure of each NEO1 compound is illustrated beside each 
plot. 



 
 

46 
 

 

Fig. S9 
Validation of Fas1 inhibitors cerulenin and 1,3 diallylurea. (A) Growth curves of FAS1 
mutant strains in the presence of 1,3-diallylurea (1,3-DAU). FAS1 heteroyzygous, FAS1 DAmP, 
and BY4743 background strains were grown in YPD media, in the presence of 6.25mM 1,3-
DAU or 2% DMSO (vehicle). The FAS1 overexpression strain and BY4743 background strain 

http://chemogenomics.pharmacy.ubc.ca/internal/ycs/index.php?f=fixed&q=SGTC_2417&d=0&pv=
http://chemogenomics.pharmacy.ubc.ca/internal/ycs/index.php?q=1%2C3-diallylurea&f=fixed&fr=0&restr=
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were grown in synthetic media containing galactose (Gal; to induce overexpression), glucose 
(Glu; to repress overexpression), or raffinose (Raf; neutral carbon source) in the presence of 
100mM 1,3-DAU. (B) Fatty acids rescue. The FAS1 heterozygote strain was grown in the 
presence of 7.5mM 1,3-DAU and 177μM oleic acid, or 195μM palmitic acid, or a 50:50 mixture 
of oleic and palmitic acid (186 μM), or 0.005% (w/v) Brij-35 (diluent). The fatty acid rescue 
experiment was also performed in the presence of the fatty acid biosynthesis inhibitor cerulenin 
(45μM) or 2% DMSO (vehicle). (C) 1,3-DAU leads to decreased lipid droplet formation. Wild-
type BY4743 cells were grown in the presence of 100mM 1,3-DAU, 45μM cerulenin, or 2% 
DMSO for 6h. Cells were stained with Nile Red to visualize lipid droplets. Briefly cells were 
resuspended in IM sorbitol, fixed in 1% formaldehyde for 5min, washed in 50mM Tris-HCl 
ph7.5 and stained with 2ug/mL Nile Red for 10min before imaging. 
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Fig. S10 
Confirmation assays of actin and tubulin inhibitors. (A) Chemical structures of inhibitors that 
were HIPHOP profiled and tested for their ability to inhibit actin/tubulin. *, TUB2 is one of 
established targets of nocodazole. (B) In vitro confirmation assay of the 0136-0228 actin 
inhibitor at 25µM and 100µM. In this assay, actin monomer is conjugated to pyrene and the 
monomeric pyrene G actin allowed  to polymerize. The resulting pyrene f-actin manifests a 
greatly increased fluorescent yield. The course of polymerization is monitored in a fluorescent 
spectrophotometer to compare the relative fluorescent yield over time in the presence of 0136-

http://chemogenomics.pharmacy.ubc.ca/internal/ycs/index.php?f=&q=SGTC_748&d=&pv=
http://chemogenomics.pharmacy.ubc.ca/internal/ycs/index.php?f=&q=SGTC_748&d=&pv=
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0228, DMSO as a negative control, or with swinholide and latrunculin A as positive controls. 
These exact same polymerization reactions were observed microscopically and are shown as a 
series of four images. In DMSO, a dense network of actin filaments is observed, while in 
latrunculin A (lat A) very short actin seeds are observed. In 0136-0228, short, aborted actin 
filament fragments are observed, consistent with a partial inhibition of polymerization. In 
swinholide (swin), no evidence of filaments is observed. (C) Yeast F-actin images show 
wildtype haploid yeast cells treated with DMSO (top) or 100µM of the actin inhibitor (bottom) 
(0136-0228) stained with fluorescent phalloidin. DMSO-treated cells show bright actin patches 
at bud tips and septa whereas actin inhibitor-treated cells lack actin foci and show diffuse 
cytoplasmic staining. (D) Mammalian cells (A549) stained with phalloidin show a robust 
network of actin filaments and an accumulation of filamentous actin at the leading edges in 
DMSO controls (top). 0136-0228-treated cells (25µM) show diffuse actin staining and collapsed 
morphology (bottom). (E) Microtubule polymerization assay confirming 1327-0036 as a tubulin 
inhibitor. In this assay purified porcine tubulin is incubated at a high concentration and allowed 
to polymerize over time in the presence of either the negative control DMSO or varying 
concentrations of the 1327-0036 inhibitor, using nocodazole as a positive control. 
Polymerization reactions are monitored as an increase in light scattering over time. DMSO has 
no inhibitory effect on the polymerization reaction whereas the 1327-0036 inhibitor shows a 
dose-dependent inhibition of polymerization and potency of near equivalence to 5µM 
nocodazole. (F) Quantitation of the effects of 1327-0036 on yeast cells. Cells were incubated in 
the presence of compound as described above. One hundred cells for each treatment were 
visually inspected and scored for three interphase phenotypes (depolymerized, partially 
depolymerized, normal) and two mitotic phenotypes (normal and abnormal). (G) HeLa cells 
treated with DMSO, nocodazole or 1327-0036 (10). DMSO-treated cells (top) show a normal 
microtubule organizing center (visualized in green via GFP-tubulin) that is abolished in 12.9nM 
nocodazole (middle) and 30nM 1327-0036 (bottom). Nuclei and chromosomes are stained blue. 
Mitotic cells show normal metaphase spindles which are, in contrast, fragmented in both 
nocodazole and 1327-0036 (scale bar = 25µm). (H) A fluorescent colchicine binding 
displacement assay shows that 1327-0036 binds to the same site on the tubulin heterodimer as 
colchicine. This assay is performed using purified colchicine-tubulin complexes (which are 
inherently fluorescent) and then measuring the loss of fluorescence in either DMSO (100µM; 
100±0.7%) or vinblastine (a vinca alkaloid microtubule depolymerizer that binds to a distinct site 
on the tubulin heterodimer; 100µM; 93.6±1.3%). The fluorescence is unaffected with either 
DMSO or vinblastine confirming that vinblastine does not bind to the same site as colchicine. In 
contrast, competition with the 1327-0036 (100µM; 45.9±1.2%) compound decreases the 
colchicine tubulin fluorescence by half, presumably by displacing the tubulin-colchicine binding. 
Data are mean +/- SD (N = 3). 

http://chemogenomics.pharmacy.ubc.ca/internal/ycs/index.php?f=&q=SGTC_748&d=&pv=
http://chemogenomics.pharmacy.ubc.ca/internal/ycs/index.php?f=&q=SGTC_748&d=&pv=
http://chemogenomics.pharmacy.ubc.ca/internal/ycs/index.php?q=0136-0228&f=fixed&fr=0&restr=&hetimg-rad=fixed&homimg-rad=fixed
http://chemogenomics.pharmacy.ubc.ca/internal/ycs/index.php?q=0136-0228&f=fixed&fr=0&restr=&hetimg-rad=fixed&homimg-rad=fixed
http://chemogenomics.pharmacy.ubc.ca/internal/ycs/index.php?f=fixed&q=SGTC_2651&d=0&pv=
http://chemogenomics.pharmacy.ubc.ca/internal/ycs/index.php?f=fixed&q=SGTC_2651&d=0&pv=
http://chemogenomics.pharmacy.ubc.ca/internal/ycs/index.php?f=fixed&q=SGTC_2651&d=0&pv=
http://chemogenomics.pharmacy.ubc.ca/internal/ycs/index.php?f=fixed&q=SGTC_2651&d=0&pv=
http://chemogenomics.med.utoronto.ca/internal/ycs/index.php?q=nocodazole&f=fixed&fr=0&restr=&hetimg-rad=fixed&homimg-rad=fixed
http://chemogenomics.med.utoronto.ca/internal/ycs/index.php?f=fixed&q=SGTC_2651&d=0&pv=
http://chemogenomics.med.utoronto.ca/internal/ycs/index.php?f=fixed&q=SGTC_2651&d=0&pv=
http://chemogenomics.med.utoronto.ca/internal/ycs/index.php?f=fixed&q=SGTC_2651&d=0&pv=
http://chemogenomics.pharmacy.ubc.ca/internal/ycs/index.php?f=fixed&q=SGTC_2651&d=0&pv=
http://chemogenomics.pharmacy.ubc.ca/internal/ycs/index.php?f=fixed&q=SGTC_2651&d=0&pv=
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Fig. S11 
Definition of response signatures. The steps involved in defining the DNA damage response 
signature, as an example. First, all HIPHOP profiles are hierarchically clustered. Dynamic 
branch cutting is then used to identify discrete clusters (10). For a given cluster, a median profile 
is computed. Genes with significant FD scores (standard normal distribution P < 0.001) in the 
median profile define a signature. Therefore, each signature is a set of genes, and is associated 
with a set of profiles, and by extension, the set of profiled compounds. 
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Fig. S12 
Validation of Erg13, Erg29, Erg25 and Erg7 inhibitors by ergosterol rescue and 
LC/MS/MS (Erg7 only). (A) Chemical structures of four compounds predicted by HIP to inhibit 
proteins in the ergosterol biosynthesis pathway (indicate below the structure). We also show the 
Screen ID, name, screening concentration of the compounds. (B) Validation of Erg13, Erg29 and 
Erg25 inhibitors by ergosterol rescue. The strain WPY361 (upc2-1), which allows efficient 
uptake of ergosterol from the culture medium under aerobic conditions (64), was grown under 
four conditions: DMSO (black), DMSO + ergosterol (red), chemical (gold), and chemical + 
ergosterol (blue). Each plot represents a unique chemical inhibitor (indicated above each plot, 
with the concentration used in squared brackets). Ergosterol stock (5mM in Tween:ethanol [1:1]) 
was added for a final concentration of 50µM. Equal volume of Tween:ethanol was added to 
samples without ergosterol as a control. Methyl methanesulfonate (MMS), a DNA damaging 
agent, served as a negative control. Top panel: ergosterol rescues the growth inhibition induced 
by fluconazole and terbinafine, established inhibitors of the ergosterol biosynthesis pathway, but 
has no effect on the growth inhibition by MMS, a DNA alkylating agent. Bottom panel: 
ergosterol rescues the growth inhibition of the putative ergosterol biosynthesis inhibitors 0kpi-
0099, 5228213 and 1181-0519. Note: ERG29 did not pass the HIP hit criteria but nonetheless 
validated. (C) Confirmation of a Erg7 inhibitor by liquid chromatography tandem mass 
spectrometry (LC/MS/MS). Quantification of 2,3-oxidosqualene, the precursor of the lanosterol 
synthase Erg7, and ergosterol (y-axis) in DMSO- (black) and in 4296-0685-treated (grey) cells as 
measured by LC/MS. Experiments were performed in triplicate; shown is a representative graph 
of one of three biological replicate experiments, with 2-3 technical replicates for each 
experiment; data are mean +/- SD across the technical replicates. These results show that 4296-
0685 induced increased oxidosqualine and decreased ergosterol content in cells, consistent with 
inhibition of Erg7 (10). 

http://chemogenomics.pharmacy.ubc.ca/internal/ycs/index.php?q=0kpi-0099+&f=fixed&fr=0&restr=&hetimg-rad=fixed&homimg-rad=fixed
http://chemogenomics.pharmacy.ubc.ca/internal/ycs/index.php?q=0kpi-0099+&f=fixed&fr=0&restr=&hetimg-rad=fixed&homimg-rad=fixed
http://chemogenomics.pharmacy.ubc.ca/internal/ycs/index.php?q=5228213&f=fixed&fr=0&restr=&hetimg-rad=fixed&homimg-rad=fixed
http://chemogenomics.pharmacy.ubc.ca/internal/ycs/index.php?q=1181-0519&f=fixed&fr=0&restr=&hetimg-rad=fixed&homimg-rad=fixed
http://chemogenomics.pharmacy.ubc.ca/internal/ycs/index.php?q=4296-0685&f=fixed&fr=0&restr=&hetimg-rad=fixed&homimg-rad=fixed
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Fig. S13 
Mitochondrial activity of trichlorophene in mammalian cells (OCI-AML2 and TEX 
leukemia cells). (A) Chemical structure of trichlorophene. (B-G) Cells were treated with 
increasing concentrations of trichlorophene for 72h. The data are mean +/- SD (N = 3). (B) Cell 
growth and viability were measured by CellTiter-Fluor assay. (C) Mitochondrial reactive oxygen 
species (MitoROS) production was measured using MitoSOX Red staining and flow cytometry. 
(D) 120,000 trypan-blue negative viable cells/well were seeded into 96-well plates and basal 
oxygen consumption rate (OCR) was measured with the Seahorse Metabolic Flux Analyzer as 
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described in (10). (E) Reserve capacity was measured in cells treated as in panel D along with 
the addition of 1µM of Carbonyl cyanide p-[trifluoromethoxy]-phenyl-hydrazone (FCCP) in 
TEX cells and 1.5µM FCCP in OCI-AML2 cells.  Reserve capacity represents the difference 
between the minimal and maximal respiratory rates. (F) Mitochondrial mass was evaluated by 
measuring citrate synthase activity. (G) Respiratory chain complex I, III, and IV enzyme activity 
relative to citrate synthase activity was measured as described in (10). 
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Fig. S14 
Response signatures identify relationships between biological processes. (A) Protein 
complexes and biological processes enriched in the exosome signature (visualization as in fig. 
S2). Relationships between biological processes identified by the (B) ubiquinone biosynthesis & 
proteasome and (C) NEO1-PIK1 signatures. Each box contains a cofitness network specific to a 
single signature, where nodes represent processes enriched in the signature (hypergeometric test 
FDR ≤ 0.1), and edges indicate cofitness [i.e. gene correlation (10)] across the HIPHOP profiles 
associated with the signature. Solid edges indicate that ≥5% of the gene pairs bridging the 
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processes exhibit significant cofitness (Student’s t-distribution method P ≤ 0.01); width is 
proportional to the percentage. Dotted edges indicate that ≥1 bridging gene pairs exhibits very 
strong cofitness (≥ 0.8). Red edges highlight relationships discussed in the text. Node size is 
proportional to the significance of enrichment; shared color indicates processes with many 
shared genes. 
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Fig. S15 
Coinhibition network of compounds inducing a NEO1 or NEO1-PIK1 signature. Nodes 
represent NEO1 or NEO1-PIK1 compounds that exhibit strong coinhibition (i.e. profile 
correlation (10); coinhibition ≥ 0.5, Student’s t-distribution method P ≤ 0.01); border color 
indicates signature. Edge width is proportional to the degree of coinhibition. Compounds that are 
cationic amphiphilic drugs (CADs) and/or FDA-approved are indicated with green and red 
squares, respectively. 
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Fig. S16 
Cross validation of the NEO1-based structural model. We generated a structural model 
predictive of compounds that induce the NEO1 or NEO1-PIK1 signature (i.e. actives), and 
therefore, top-scoring compounds (determined by the model) are likely to induce a NEO1-based 
response. The bar plot shows the mean +/- SD of the enrichment factor (<number of actives in 
compound set> / <expected number of actives by random sampling>) for top scoring compounds 
(e.g. top 5%), obtained by five-fold cross-validation of the model. If we predict that the top 10% 
are actives, the model performed ~7-fold better than random, and the mean percentage of correct 
predictions across the cross-validation runs is ~99%. 
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Fig. S17 
Major response signatures that are similar to signatures derived from an earlier 
chemogenomic dataset. The percentage of major response signatures that overlap any signature 
derived from the Hillenmeyer et al. 2008 (7) dataset (y-axis), at different overlap thresholds 
(<size of overlap between signature gene sets> / <size of the smaller of the two signature gene 
sets>; x-axis). If we require overlap ≥ 0.5, 60% of the signatures derived from the current dataset 
are similar to a Hillenmeyer signature (table S4). 
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Fig. S18 
Percentages of response signatures identified using subsets of HIPHOP profiles. We 
repeatedly sampled random subsets (of increasing size) of our HIPHOP profiles, clustered them, 
defined new signatures from these clusters, and determined the percentage of the 45 major 
signatures recovered by the new signatures (10). For example, we sampled 30% of the profiles 
100 times, and for each sample, we defined new signatures. The median percentage of major 
signatures recovered by each set of new signatures is ~82% (see solid line). For each percentage 
of profiles used, 50% of the recovery percentages fall within the interval specified by the first 
and third quartiles (dashed lines below and above the solid line, respectively). 
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Fig. S19 
Detection of batch effects. Each plot show the distributions of profile correlations 
corresponding to profiles generated in the same chip date batch (i.e. hybridized on the same day; 
dashed line) or in different batches (solid line), given FD scores computed from unnormalized 
intensities (top-left), quantile normalized intensities (top-right) and intensities normalized with 
Supervised Normalization of Microarrays (bottom-left) or the median polish variant (bottom-
right) (10). For the unnormalized intensities, FD scores were computed from the unnormalized 
‘best tag’ intensities, excluding tags with intensities at background level, and using experimental 
group-matched controls. In the absence of batch effects, we expect the distribution of 
correlations (Pearson’s correlation coefficient) between profiles in the same batch to be similar 
to the distribution of correlations between profiles from different batches. The vertical lines 
indicate the medians of the distributions. For the unnormalized and quantile normalized 
intensities, profiles in the same batch tend to be more highly correlated than experiments from 
different batches, thus illustrating batch effects. These batch effects are greatly reduced when 
using intensities normalized with the median polish variant. 
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Fig. S20 
Genes, biological processes, cellular components and protein complexes frequently affected 
by compounds. (A) Thresholds used to identify genes, processes, components and complexes 
frequently affected by compounds. A gene is defined as a frequent flier (FF) if it satisfies two 
conditions (10), one of which requires that the number of profiles in which the gene has a 
significant positive FD score is greater than or equal to the selected threshold. The top plot 
shows the number-of-profiles distribution across all genes, and the selected threshold at the bend 
point (red line). A process/component/complex is defined as a frequent term if its overall Z 
score, measuring the significance with which it is enriched across all profiles, is greater than or 
equal to the selected threshold. The last three plots show the Z distribution of each term class, 
and the selected thresholds at the bend points (red lines).  (B) Blue bars indicate the percentage 
of screened compounds (total = 3,250) that exhibit a chemical-genetic interaction with a FF gene 
annotated to a given process, component or complex. For example, 77% of screened compounds 
interact with a FF gene involved in protein localization. Red bars indicate the percentage of 
compounds with HIP hits (total = 317 compounds) where a HIP hit is annotated to the given 
gene category. For example, 10% of the compounds have a HIP hit in the vesicle coat (10). 
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Fig. S21 
Evaluation of profile clusters by profile coverage and silhouette statistics. Each point 
represents a set of HIPHOP profile clusters resulting from a distinct methodology, and distinct 
parameter settings are indicated. The x-axis indicates the number of profiles included in each set 
of clusters, i.e. profile coverage. The y-axis indicates the median cluster silhouette width for each 
set of clusters (10), where higher values indicate that profiles were clustered better (i.e. on 
average, a profile is more similar to profiles in the same cluster, than to profiles in other 
clusters). Abbreviations: FD – fitness defect score; h – maximum joining height; I – inflation; 
MCL – Markov clustering; SD – standard deviation threshold. 
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Fig. S22 
Mappings between sets of clusters resulting from distinct methodologies that confer 
confidence in the robustness of clusters. Clusters that are identified by multiple clustering 
methodologies are robust to the methodology. To identify robust clusters, we designated one set 
of clusters as the reference, and quantified the overlap between reference clusters (blue nodes) 
and clusters resulting from a different methodology (pink nodes). Substantial overlaps (i.e. 
overlap coefficient = <size of cluster overlap> / <size of the smaller of the two clusters> ≥ 0.5) 
enabled a mapping between sets of clusters form distinct methodologies, and a one-to-one 
mapping shows that a reference cluster was identified by both methodologies, thereby providing 
evidence for the robustness of that cluster. The other types of mappings shown also indicate that 
a reference cluster was identified by both methodologies, although the cluster is represented in a 
different way, and thus the evidence for robustness is weaker. We used these different types of 
mappings to assign a level of confidence in the robustness of a given cluster (10). 
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Fig. S23 
Validation of the Pma1 inhibitor by in vitro assays. (A) Chemical structures of four 
thiazolidinediones, one of which, 1543-0184, designated PMA1 as a HIP hit. We also show the 
Screen ID, name, screening concentration, PMA1 clearance score (CS) and PubChem CID of the 
compounds. (B) Media acidification by 1543-0184. Glucose-induced media acidification (65) 
was monitored by measuring pH changes (y-axis) over time (x-axis) in the presence of 100µM, 
50µM, 25µM, 12.5µM, 6.25µM 1543-0184 or DMSO (control) as indicated.  DMSO data are 
mean +/- SD (N = 3). (C) ATPase activity in the presence of 1543-0184. Vanadate-sensitive, 
ATPase-specific activity was measured from purified yeast plasma membranes in the presence of 
increasing concentrations of 1543-0184. Percentage of the no-compound control’s ATPase 
activity is indicated for each sample, and data are mean +/- SD (N = 3). 

http://chemogenomics.pharmacy.ubc.ca/internal/ycs/index.php?q=1543-0184+&f=fixed&fr=0&restr=&hetimg-rad=fixed&homimg-rad=fixed
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Fig. S24 
In vivo validation of Sec13 inhibitors. (A) 4065-0411 and 4544-0069 inhibit carboxypeptidase 
Y (CPY) processing. Wild-type cells (ESY360) were grown in synthetic medium lacking 
methionine, treated with DMSO or 0.5mM of compound (labels above image), and then pulse-
labeled with 35S-methionine/cysteine. A chase was initiated by addition of cold methionine and 
cysteine, and aliquots were removed at 15, 30 and 60 minutes (labels below image). 35S-labelled 
CPY was immunoprecipitated (IP) and then size-fractionated by SDS-PAGE.  Endoplasmic 
reticulum (ER), Golgi and vacuole isoforms of CPY are indicated on the left. (B) Gap1 activity is 
drastically reduced in cells treated with 4065-0411 or 4544-0069, indicative of a block in 
transport to the plasma membrane due to inhibition of Sec13. Gap1 activity was assessed by 
measuring the rate of uptake of [14C]-citrulline (61). Data are mean +/- SD (N = 3). (C) Gap1-
GFP localization is perturbed in cells treated with 4065-0411 or 4544-0069. Gap1-GFP 
expressing cells were grown in SD ammonium and labeled with FM4-64 (which labels 
endosomes and vacuoles). Cells were treated with DMSO, 4065-0411, or 4544-0069 (indicated 
on the left), fixed, and imaged with a fluorescent microscope. DIC: differential interference 
contrast. Note: Though SEC13 was not a designated HIP hit in the 4065-0411 screen, it 
nonetheless was confirmed as a likely target in the assays described above. 

http://chemogenomics.pharmacy.ubc.ca/internal/ycs/index.php?q=4065-0411+&f=fixed&fr=0&restr=&hetimg-rad=auto&homimg-rad=fixed
http://chemogenomics.pharmacy.ubc.ca/internal/ycs/index.php?q=4544-0069&f=fixed&fr=0&restr=&hetimg-rad=fixed&homimg-rad=fixed
http://chemogenomics.pharmacy.ubc.ca/internal/ycs/index.php?q=4065-0411+&f=fixed&fr=0&restr=&hetimg-rad=auto&homimg-rad=fixed
http://chemogenomics.pharmacy.ubc.ca/internal/ycs/index.php?q=4544-0069&f=fixed&fr=0&restr=&hetimg-rad=fixed&homimg-rad=fixed
http://chemogenomics.pharmacy.ubc.ca/internal/ycs/index.php?q=4065-0411+&f=fixed&fr=0&restr=&hetimg-rad=auto&homimg-rad=fixed
http://chemogenomics.pharmacy.ubc.ca/internal/ycs/index.php?q=4544-0069&f=fixed&fr=0&restr=&hetimg-rad=fixed&homimg-rad=fixed
http://chemogenomics.pharmacy.ubc.ca/internal/ycs/index.php?q=4065-0411+&f=fixed&fr=0&restr=&hetimg-rad=auto&homimg-rad=fixed
http://chemogenomics.pharmacy.ubc.ca/internal/ycs/index.php?q=4544-0069&f=fixed&fr=0&restr=&hetimg-rad=fixed&homimg-rad=fixed
http://chemogenomics.pharmacy.ubc.ca/internal/ycs/index.php?q=4065-0411+&f=fixed&fr=0&restr=&hetimg-rad=auto&homimg-rad=fixed
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Additional Data table S1 (separate file) 
Compound library. A list of screens, with information on the compounds screened. See 
ReadMe sheet for details. 

Additional Data table S2 (separate file) 
HIP hits. A list of HIP hits (10), additional compound-gene interactions supported by follow-up 
experiments, and established compound-target interactions. See ReadMe sheet for details. 

Additional Data table S3 (separate file) 
Inhibitory concentrations of 152 compounds for yeast versus mammalian cells. The curves 
fitted to the dose-response data in fig. S4 were used to estimate the compound concentrations 
required to inhibit growth of yeast and mammalian cells by 20% and 50% (i.e. IC20 and IC50). 
The yeast ICs are based on the growth of the wildtype BY4743 strain. The mammalian ICs are 
based on the growth of one or more of five cell lines (A549, AML2, HCT116, LP1, TEX). All 
ICs are expressed in µM. See ReadMe sheet for details. 

Additional Data table S4 (separate file) 
Response signatures. The genes defining major and minor response signatures. An indication of 
whether or not each major signature was detected in our prior chemogenomic dataset (10) is also 
provided. See ReadMe sheet for details. 

Additional Data table S5 (separate file) 
Enrichment of signature compounds with compounds known to have similar bioactivity. 
Various chemical ontologies were used to identify classes of compounds known to have similar 
bioactivity, where some classes indicate shared general bioactivity (e.g. antifungal activity) and 
others indicate shared mechanism of action. In addition to links between major response 
signatures and bioactivities identified by enrichment (hypergeometric text FDR < 0.1), the 
bioactivities of uncharacterized compounds inferred by guilt-by-signature-association are 
provided. Specifically, for each of the 11 signatures associated with ≥2 compounds known to 
have similar mechanism, we list the uncharacterized compounds associated with those signatures 
and infer that their bioactivities are similar to those of the characterized compounds associated 
with the same signature. Five of those signatures are linked to bioactivities by enrichment, and 
thus, the bioactivity inferences involving these signatures have more supporting evidence. See 
ReadMe sheet for details. 

Additional Data table S6 (separate file) 
Enrichment of genetic interaction profiles with response signatures. Of the genetic 
interaction profiles that are not significantly enriched for any Gene Ontology (GO) category, the 
genetic profiles that are significantly enriched for major signatures are provided. Specifically, we 
used each genetic profile to identify the set of genes that negatively genetically interact with the 
associated query gene (10). The resulting gene set was then tested for enrichment with major 
response signatures, and significant enrichment (hypergeometric test FDR < 0.1) is reported 
here. See ReadMe sheet for details. 
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Additional Data table S7 (separate file) 
Process relationships. Relationships between biological processes, shown in red in fig. S14B,C, 
are supported by cofitness interactions between genes, where one gene belongs to one process 
and the second gene to the second process. Moreover, these cofitness interactions were identified 
in specific major response signatures. Where applicable, the table also includes genetic and 
physical interactions (obtained from BioGRID) supporting the listed relationships. See ReadMe 
sheet for details. 

Additional Data table S8 (separate file) 
Enrichment of signature compounds with chemical moieties. Major signatures representing 
compounds enriched for specific chemical moieties are provided. Briefly, structural 
moieties/fragments were identified in the compounds screened. For each major signature, we 
assessed whether the associated compounds are enriched for specific fragments. Here we show 
the signatures that are significantly enriched for some fragment (hypergeometric test FDR < 0.1), 
where the fraction of signature compounds containing the fragment is greater than > 0.2. See 
ReadMe sheet for details. 

Additional Data table S9 (separate file) 
Strain list. A list of deletion strains used in this study. Fitness defects were measured for each 
strain. See ReadMe sheet for details. 

Additional Data table S10 (separate file) 
Robustness of the HIPHOP profile clusters. The HIPHOP profile clusters used to define the 
major response signatures and the levels of confidence in their robustness. Briefly, hierarchical 
clusters (no profile filter) were used as a reference set of clusters, and each of these clusters was 
tested for overlap with clusters generated by three other methodologies. The identification of 
reference clusters by other methodologies gives confidence in the robustness of those clusters 
(10). See ReadMe sheet for details. 
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