Supporting Information

F6 Binding to the Complexes Formed with L-Trp. The (Na⁺)E(Ain) complex gives a mixture of covalent intermediates when reacted with L-Trp. This mixture is dominated by the external aldimine and quinonoid species, (Na⁺)E(Aex₂) and (Na⁺)E(Q₃).¹⁻⁵ Tryptophan synthase cleavage of L-Trp to give indole and the (Na⁺)E(A-A) is an extremely slow process and is insignificant on the time scale of these experiments.⁶ Titration of the F6 complex of (Na⁺)E(Ain) with L-Trp (Figure S1a) shows that at low L-Trp concentrations, the spectrum consists of peaks for free (- 57.00 ± 0.01 ppm) and bound F6 (- 56.52 ± 0.01 ppm). As the concentration of L-Trp increases, the - 56.52 ± 0.01 ppm peak decreases in area and a new bound peak with chemical shift -55.45 ± 0.01 ppm appears. The area of this peak increases and then saturates at high L-Trp concentrations. The UV/Vis absorption spectrum of an NMR sample measured at the highest L-Trp concentration (Figure S1b), shows the sample is comprised of (F6)(Na⁺)E(Aex₂) with $\lambda_{max} = 418$ nm, together with a trace of (F6)(Na⁺)E(Q)_{L-Trp} ($\lambda_{max} = 418$ nm and 476 nm, respectively).^{2,4,5,7-9}

Monovalent Cation Effects on the Reaction of L-His with the (F6)E(Ain) Complex. The substitution of Cs^+ for Na^+ in all of the systems under investigation herein, alters the redistribution of β -site chemical intermediates and the distribution of open and closed conformational states. Thus the distribution of chemical species (i.e., external aldimine vs. α -aminoacrylate vs. quinonoid species) is changed, but the chemical shifts observed for the bound forms of F6 and F9 are unchanged. For example, the observed chemical shift of (F6)(Na⁺)E(Ain) is identical to that of (F6)(Cs⁺)E(Ain), and the chemical shifts of F6 bound to E(A-A) species and to E(Q) species are unperturbed by substitution of Na⁺ by Cs⁺.

The L-Trp analogue, L-His, reacts with the Na⁺ and Cs⁺ forms of the (F6)E(Ain) complex to give equilibrating mixtures dominated by the external aldimine and guinonoid complexes.⁵ The distribution of external aldimine and quinonoid species at equilibrium is dependent on the particular monovalent cation bound to the MVC site of the β -subunit.^{3,10-15} The ¹⁹F NMR spectra presented in Figure S2a establish that the distribution of bound intermediates is sensitive to the particular MVC, with Cs^+ favoring the complex with chemical shift -55.45 \pm 0.01 ppm, whereas, Na⁺ gives bound species with chemical shifts of -55.45 ± 0.01 ppm and -56.57 ± 0.01 ppm. The UV/Vis absorbance spectra presented in Figure S2b show that the Cs^+ complex (a) favors the $(F6)(Cs^+)E(Q)_{L-His}$ species ($\lambda_{max} = 466$ nm), while the Na⁺ complex gives a mixture of species with $\lambda_{max} = 466$ nm, corresponding to the quinonoid species, and a broad envelope with $\lambda_{max} \sim$ 423 nm corresponding to the (F6)(Cs^+)E(Aex)_{L-His} species. The UV/Vis spectra in Figure S2c show the spectral changes resulting from the titration of the (F6)(Na^+)E(Ain) complex with L-His. These spectra establish that the spectrum of the internal aldimine ($\lambda_{max} = 412 \text{ nm}$) disappears as L-His reacts to form the (F6)(Cs⁺)E(Aex)_{L-His} and (F6)(Cs⁺)E(Q)_{L-His} species (Figure S2c). The plot of ΔAbs_{466nm} vs. [L-His] taken from the data in Figure S2c is shown in Figure S2d.

Supplemental References

(1) Dunn, M. F., Aguilar, V., Brzovic, P., Drewe, Jr., W. F., Houben, K.F., Leja, C.A. & Roy, M. (1990). The tryptophan synthase bienzyme complex transfers indole between the α - and β -sites via a 25-30 Å long tunnel. *Biochemistry 29*, 8598-8607.

(2) Drewe Jr, W. F. & Dunn, M. F. (1986). Characterization of the reaction of L-serine and indole with Escherichia coli tryptophan synthase via rapid-scanning ultraviolet-visible spectroscopy. *Biochemistry 25*, 2494-2501.

(3) Woehl, E. U. & Dunn, M. F. (1999b). Mechanisms of monovalent cation action in enzyme catalysis: the tryptophan synthase α -, β -, and $\alpha\beta$ -reactions. *Biochemistry 38*, 7131-7141.

(4) K. Kirschner, W.O. Weischet, R.L. Wiskocil, Ligand binding to enzyme complexes, in: H.
Sund, H.G. Blaver (Eds.) *Protein-Ligand Interactions*, Walter de Gruyter, Berlin (1975) pp. 27-44.

(5) Houben, K. F., Kadima, W., Roy, M. & M.F. Dunn, M. F. (1989). L-serine analogues form Schiff base and quinonoidal intermediates with Escherichia coli tryptophan synthase. *Biochemistry 28*, 4140-4147.

(6) Miles, E. W.; Phillips, R. S.; Yeh, H. J. C.; Cohen, L. A. (1986). Isomerization of (3S)-2,3dihydro-5-fluoro-L-tryptophan and of 5-fluoro-L-tryptophan catalyzed by tryptophan synthase: studies using fluorine-19 nuclear magnetic resonance and difference spectroscopy

Biochemistry 25, 4240-4249.

(7) Ngo, H., Harris, R., Kimmich, N., Casino, P., Niks, D., Blumenstein, L., Barends, T. R.,
Kulik, V., Weyand, M., Schlichting, I. & Dunn, M. F. (2007). Synthesis and characterization of allosteric probes of substrate channeling in the tryptophan synthase bienzyme complex. *Biochemistry* 46, 7713-7727.

(8) Ngo, H., Kimmich, N., Harris, R., Niks, D., Blumenstein, L., Kulik, V., Barends, T. R.,Schlichting, I. & Dunn, M. F. (2007b) Allosteric regulation of substrate channeling in tryptophan

synthase: Modulation of the L-serine reaction in stage I of the β -reaction by α -site ligands. Biochemistry 46, 7740-7753.

(9) Houben, K.F. & Dunn, M. F. (1990). Allosteric effects acting over a distance of 20-25 Å in the Escherichia coli tryptophan synthase bienzyme complex increase ligand affinity and cause redistribution of covalent intermediates. *Biochemistry 29*, 2421-2429.

(10) Peracchi, A., Mozzarelli, A. & Rossi, G. L. (1995). Monovalent cations affect dynamic and functional properties of the tryptophan synthase $\alpha_2\beta_2$ complex. *Biochemistry 34*, 9459-9465. (11) Woehl, E. U. & Dunn, M. F. (1995a). Monovalent metal ions play an essential role in catalysis and intersubunit communication in the tryptophan synthase bienzyme complex. *Biochemistry 34*, 9466-9476.

(12) Woehl, E. U. & Dunn, M. F. (1995b). The roles of Na⁺ and K⁺ in pyridoxal phosphate enzyme catalysis. *Coord. Chem. Rev. 144*, 147-197.

(13) Woehl, E. U. & Dunn, M. F. (1999a). Mechanisms of monovalent cation action in enzyme catalysis: the first stage of the tryptophan synthase β -reaction. *Biochemistry* 38, 7118-7130.

(14) Weber-Ban, E., Hur, O., Bagwell, C., Banik, U., Yang, L.-H., Miles, E. W., & M.F. Dunn (2001) Investigation of allosteric linkages in the regulation of tryptophan synthase: The roles of salt bridges and monovalent cations probed by site-directed mutation, optical spectroscopy, and kinetics. *Biochemistry 40*, 3497-3511.

(15) Dierkers, A. T., Niks, D., Schlichting, I. & Dunn, M. F. (2009). Trptophan synthase: structure and function of the monovalent cation site. *Biochemistry* 48, 10997–11010.

Figure Captions: Supporting Information

Figure S1a: Titration of the (F6)(Na⁺)E(Ain) complex with L-Trp. Concentrations: $\alpha\beta$, 0.800 mM; L-Trp (increasing from bottom to top): 0.00, 53 μ M, 122 μ M, 254 μ M, 382 μ M, 793 μ M 1.25 mM, 2.03 mM. **Figure S1b**: UV/Vis absorption spectra of the NMR samples in Figure S1a corresponding to the (F6)(Na⁺)E(Ain) complex (black) and of the species formed when a saturating concentration of L-Trp is reacted with the (Na⁺)E(Ain) complex (red).

Figure S2a: Comparison of the effects of 20 mM Na⁺ (red) and 200 mM Cs⁺ (black) on the ¹⁹F NMR spectra resulting from reaction of 100 mM L-His with (F6)E(Ain). $[\alpha\beta] = 1.40$ mM; [F6] = 2.8 mM. **Figure S2b**: UV/Vis absorbance spectra for NMR samples presented in 7a. Na⁺ complex, red, Cs⁺ complex, black. **Figure S2c**: The UV/Vis spectra for the titration of the (F6)(Na⁺)E(Ain) complex with L-His. $[\alpha\beta] = 10$ mM; [F6] = 2.8 mM; $[\alpha\beta] = XX$; $[Na^+] = 100$ mM; L-His concentrations: 1.59 mM, 3.92 mM, 11.32 mM, 21.42 mM, 43.75 mM, 100.00 mM. **Figure S2d**: Plot of Δ Abs_{466nm} vs. [L-His]. Data taken from Figure S2c.

Figure S1

