
2592 Biophysical Journal Volume 107 December 2014 2592–2603
Article
Long-Range Force Transmission in Fibrous Matrices Enabled
by Tension-Driven Alignment of Fibers
Hailong Wang,1 A. S. Abhilash,1 Christopher S. Chen,2 Rebecca G. Wells,3 and Vivek B. Shenoy1,*
1Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania; 2Department of Biomedical
Engineering, Boston University, Boston, Massachusetts; and 3Departments of Medicine (GI) and Pathology and Laboratory Medicine,
University of Pennsylvania, Philadelphia, Pennsylvania
ABSTRACT Cells can sense and respond to mechanical signals over relatively long distances across fibrous extracellular
matrices. Recently proposed models suggest that long-range force transmission can be attributed to the nonlinear elasticity
or fibrous nature of collagen matrices, yet the mechanism whereby fibers align remains unknown. Moreover, cell shape and
anisotropy of cellular contraction are not considered in existing models, although recent experiments have shown that they
play crucial roles. Here, we explore all of the key factors that influence long-range force transmission in cell-populated collagen
matrices: alignment of collagen fibers, responses to applied force, strain stiffening properties of the aligned fibers, aspect ratios
of the cells, and the polarization of cellular contraction. A constitutive law accounting for mechanically driven collagen fiber re-
orientation is proposed. We systematically investigate the range of collagen-fiber alignment using both finite-element simula-
tions and analytical calculations. Our results show that tension-driven collagen-fiber alignment plays a crucial role in force
transmission. Small critical stretch for fiber alignment, large fiber stiffness and fiber strain-hardening behavior enable long-range
interaction. Furthermore, the range of collagen-fiber alignment for elliptical cells with polarized contraction is much larger than
that for spherical cells with diagonal contraction. A phase diagram showing the range of force transmission as a function of cell
shape and polarization and matrix properties is presented. Our results are in good agreement with recent experiments, and high-
light the factors that influence long-range force transmission, in particular tension-driven alignment of fibers. Our work has impor-
tant relevance to biological processes including development, cancer metastasis, and wound healing, suggesting conditions
whereby cells communicate over long distances.
INTRODUCTION
Cells in fibrous matrices sense and respond to mechanical
forces over distances many times their diameter. Although
cells cultured on polyacrylamide gels fail to sense substrate
stiffness or the presence of other cells beyond a distance of
~20–25 mm (1–3), long-range force sensing (250–1000 mm)
between cells in fibrous gels has been appreciated for de-
cades. Stopak and Harris and later Miron-Mendoza et al.
placed fibroblast explants into collagen gels and observed
collagen realignment parallel to the connecting axes be-
tween explants, with translocation of collagen fibrils toward
the explants, shortening of the axes, and fibroblast migration
across the newly aligned collagen-fibril bridges (4,5).
Others have shown that single cells, as well as cell colonies,
are able to align and compact collagen fibers over long dis-
tances (6,7) and that these aligned fibers are required for
long-range cell-cell interactions (7,8). More recently, Winer
et al. showed that single cells in fibrin gels were able to
stiffen the gels both locally and globally (9).

Long-range force transmission has significant relevance
in normal physiology and pathophysiology over a range of
length scales. At the level of single cells, mechanically
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based cell-cell communication over long distances regulates
patterning, including both tube formation and the detach-
ment of cells from multicellular aggregates (7,9,10). At
the tissue level, long-range force transmission may drive
the development of tendons, ligaments, and muscle (4); it
has the potential to mediate other large-scale architectural
rearrangements typical of developmental processes as well
(11). Long-distance force transmission between groups of
cells, or cells and the matrix, may also mediate tissue-scale
rearrangements in pathological settings such as pulmonary
fibrosis and liver cirrhosis (12,13). There are some experi-
mental data implicating it in cancer metastasis (7,14,15),
although other work suggests caveats to these findings (16).

Previous studies attempting to explain the mechanism of
long-range force transmission have implicated applied strain
and the presence of a fibrous network (6). Although some in-
vestigators suggest that the strain-hardening properties of
fibrous materials could explain long-range mechanical
communication (9,17), more recent evidence (8,18) suggests
that the fibrous nature of the extracellularmatrix (ECM), spe-
cifically the presence of cross-linked fibers (primarily
collagen), is critical for transmission of force over scales
that are 10–20 times the diameters of the cells. Ma et al.
used microscopy images to develop finite-element models
that included fibers that bridge pairs of interacting cells in a
http://dx.doi.org/10.1016/j.bpj.2014.09.044
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collagen matrix (8). They found that including discrete fibers
along with a nonlinear strain-hardening matrix leads to long-
range transmission of forces, with the fibers carrying most of
the loads and nonlinear and isotropic matrix mechanics play-
ing a relatively minor role. In other words, the fibrous nature
of the collagen matrix, rather than a nonlinear response to
force, determined the extent of force transmission. It should
be noted that since the fiber distribution in the model of Ma
et al. was obtained from experiments, the model cannot pre-
dict how an initially random fiber network under strain yields
reinforcing fibrous structures in response to forces from
contractile cells. Multiscale finite-element models, where
discrete fiber networks are employed to determine forces at
nodes, have also been used to study force transmission in
fibrous gels (18). It has also been observed that the shapes
of cells play a crucial role in the transmission of forces. Fabry
and co-workers reported that invasive tumor cells are elon-
gated and spindle-shaped compared to their noninvasive
counterparts and they observed, through displacements of
beads in the matrices, that force transmission is much
longer-ranged in the former than in the latter case (19). Elon-
gated cells have also been found to be polarized (i.e., the
forces they exert are aligned with their long axes). Although
these and other studies (20,21) have considered the role of in-
dividual-cell andmatrix elements in force transmission, none
have addressed in an integrated way the impact of fiber
realignment, the shape of cells, the anisotropy andmagnitude
of contractile forces, and themechanical properties of fibrous
gels on the long-range nature of force transmission.

In this work, we develop to our knowledge a new
nonlinear and anisotropic constitutive description of fibrous
materials that accounts for long-range force transmission.
We incorporate the fact that these fibrous materials stiffen
preferentially along the directions of tensile principal
stretches. We start from random and isotropic distributions
of fibers, and from there study how mechanical anisotropy
evolves as loads are applied. We have developed a finite-
element implementation of this constitutive law and have
used it to study interactions of cells in three-dimensional
(3D) matrices and on fibrous substrates. In the case of sim-
ple cell geometries (spheres, ellipsoids, polarized versus
nonpolarized), we solve for the stress fields by analytic
methods. Thus, we describe here an approach to systematic
determination of the role of fiber alignment, nonlinear elas-
ticity of fibers, cell shape, and polarization of contraction in
long-range force transmission. We show that collagen fiber
alignment is critical and that anisotropy in cell shape and
contraction result in significantly greater collagen alignment
and force transmission.
A NEW CONSTITUTIVE LAW FOR FIBROUS
MATRICES

We first developed a new constitutive law to explain the
behavior of fibrous matrices and to serve as the foundation
for further simulations examining the impact of cells and
their contractility on these matrices. To start, we carried
out discrete fiber simulations (see Section A in the Sup-
porting Material). We assume that when a fibrous matrix
undergoes stretch, there are two families of fibers: the
set of fibers that align with the direction of the maximum
principal stretch as the material is loaded (Fig. 1 b, red)
and the set of fibers that do not align with the applied
load and thus display an isotropic mechanical response.
When we plot stress versus strain for such collagen net-
works (Fig. 1 c), we find that there is a knee in the curve
representing strain stiffening. This knee, which according
to our simulations requires the presence of both families
of fibers, is in good accord with experimental data (22)
(Fig. 1 c). For strains below a typical threshold (typically
5–10%, depending on collagen concentration and cross-
linking), the network shows a nearly isotropic response,
without stiffening. Beyond this threshold, there is a transi-
tion to a stiffening response concomitant with the forma-
tion of aligned fibers in the direction of maximal tensile
stretch. With increased loading, the numbers of these
highly aligned fibers increase, leading to the observed
stiffening and to the alignment shown in the inset of
Fig. 1 b.

To capture the presence of these two distinct families of
aligned and isotropic fibers when developing our constitu-
tive law, we assume that the overall energy density, W, of
the collagen network consists of two contributions (23):

W ¼ Wb þWf

Wb ¼ m

2

�
I1 � 3

�þ k

2
ðJ � 1Þ2

Wf ¼
X3

a¼ 1

f ðlaÞ:
(1)

Here, the first term, WbðI1; JÞ, captures the isotropic

response, which we describe using the neo-Hookean hy-
perelastic model, where k and m are the initial bulk and shear
moduli, respectively, and Wf is the contribution from the
aligned fibers. In the above equation, Fij ¼ vxi/vXj is the
deformation gradient tensor, where X and x represent
the reference and deformed coordinates, respectively, and
C ¼ FTF and B ¼ FFT are the right and left Cauchy-Green
deformation tensors, respectively. The invariants J, C, and B
can be defined as (23)

J ¼ detðFÞ C ¼
X3

a¼ 1

l2aNa5Na B ¼
X3

a¼ 1

l2ana5na;

(2)

where l1, l2, l3 are the principle stretches, I1 is the first

invariant of the deviatoric part of C, and Na and na are
the unit vectors in the principle stretch orientations in
the reference state and deformed state, respectively. The
Biophysical Journal 107(11) 2592–2603



FIGURE 1 (a and b) Discrete fiber simulations of a random fiber network before (a) and after (b) shear deformation (50% shear strain). Insets show that the

initial random distributions of fibers (a) develop a peak close to the 45� orientation (b), which coincides with the direction of maximum principle stretch.

Fibers (with axial strain >1%) that reorient along the tensile loading axis are colored red. The white arrow in b indicates the direction of principle tensile

stretch. (c) The stress-strain curves of collagen I under uniaxial deformation derived experimentally (from Roeder et al. (22)) (black) are in good accord with

those predicted from our constitutive law (red). The knee indicates strain stiffening at strains of ~10%. The material parameters that provide the best fit to the

experimental data are lc ¼ 1:1;c ¼ ð1þ nÞð1� 2nÞEf =ð1� nÞEb ¼ 8:5;m ¼ 10;Eb ¼ 2 kPa; n ¼ 0:3. (d) Stress-strain curves under uniaxial tension

(black) and shear (red) deformations from discrete fiber simulations and from our constitutive law. The material parameters that provide the best fit to

the discrete simulations are lc ¼ 1:05;c ¼ 0:17;m ¼ 1:4;Eb ¼ 10kPa; n ¼ 0:49: To see this figure in color, go online.
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functional form f(la) is chosen such that the system
stiffens only in the direction of tensile principal stretches
(beyond a critical value of tensile stretch, as observed in
experiments and discrete fiber simulations). This is
accomplished by decomposing the Cauchy stress (true
stress), s, into isotropic (sb) and fibrous contributions
(sf) (23):

s ¼ 2F , ðvW=vCÞ ,FT
�
J;

s ¼ sb þ sf

sb ¼ kðJ � 1ÞI þ mdev
�
B
��

J

sf ¼ 1

J

X3

a¼ 1

vf ðlaÞ
vla

laðna5naÞ;

(3)
where I is the identity tensor and B ¼ B=J2=3 is the left

modified Cauchy-Green tensor. The principal components
of the filamentous contribution can be obtained from
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chosen such that the principal stresses vanish below the critical
(tensile) principal stretch, lc, and show a stiffened response

characterized by the modulus Ef and a strain hardening expo-
nent,m. To ensure that the derivative of the stress-strain curve
is continuous near the transition point, a smooth interpolation
function is used between (lc� lt/2,lcþ lt/2), where the tran-
sitionwidth is lt¼ 0.25lc and the transition exponent is n¼ 5,
and we have defined l1¼ lc� lt/2, l2¼ lcþ lt/2. The func-
tional form f(la),which leads toEq. 4, is provided in SectionB
of the Supporting Material.



Long-Range Force Transmission 2595
Biophysical basis for the constitutive law

The strain energy function and the stresses we propose
depend on two parameters (the initial bulk and shear
moduli) for the isotropic response and three parameters
(the critical stretch, lc; the initial modulus of the fibrous
phase, Ef; and the strain-hardening exponent of the fibrous
phase, m) for the anisotropic response. We have determined
these parameters for collagen networks by comparing the
stress-strain curves for uniaxial and shear deformation
from discrete network simulations with our constitutive
model (Fig. 1 d). The biophysical basis underlying the
constitutive law postulated here is the presence of two fam-
ilies of fibers, clearly evident from the discrete fiber simula-
tions: the first family (Fig. 1 b, red) is aligned with the
principal axes (Fig. 1 b, white arrow) and the fibers are in
a state of tension, whereas the second family of fibers
(black, in compression) provide an isotropic background
stress that opposes alignment. The stress at any material
point is the sum of the stresses from these two components
(Eq. 3). The degree of the interaction between the two fam-
ilies of fibers is determined by the parameter Ef/Eb: when
this ratio is large, the isotropic part provides little resistance
to alignment. A systematic study of the range of force trans-
mission as a function of this parameter is given below. With
the two families of fibers, our model captures the key fea-
tures of the response of a collagen network to force, in
particular the knee and the subsequent hardening response.
RESULTS

Having developed a constitutive law, we use it in analytical
calculations and finite-element simulations to study the
impact of the material parameters of the isotropic and
fibrous components of the matrix, the shape of cells, and
the polarization of cell contractile forces on force transmis-
sion in fibrous matrices. We have simulated cells on fibrous
as well as linear and nonlinear substrates to identify the key
factors that allow for long-range force transmission in
fibrous matrices. All simulations were carried out using
the finite-element package Abaqus (24) by implementing
the material model of the new fibrous constitutive law in a
user material subroutine (details of the implementation are
given in Section B of the Supporting Material). The numer-
ical simulations were performed in a finite-deformation
setting (i.e., the effects of geometry changes on force bal-
ance and rigid-body rotations are explicitly taken into
account).
Force transmission in 3D matrices depends on
the fibrous components and the magnitude of the
contractile strains

To determine the impact of the fibrous component of the ma-
trix on force transmission, we consider matrices that are lin-
early elastic, hyperelastic (neo-Hookean), and fibrous
(characterized by the constitutive law (Eq. 4)). We consider
the case of a spherical cell or contractile explant of radius R
in a 3D matrix contracting isotropically and inwardly by an
amount u0 (contractile strain ¼ u0/R). In our calculations,
we apply the boundary condition on the radial displacement
(u0) at the cell-matrix interface and determine the elastic
fields in the matrix by applying both symmetry (or periodic)
and fixed (where all displacements and rotations vanish)
conditions at the top and bottom surfaces of the matrix
located at a distance L ~ 10R from the center of the cell.
In the case of the linearly elastic material, the scaled
displacement fields (u/u0) are independent of the magnitude
of the contractile strain, u0, whereas this is not the case for
nonlinear materials. For both the neo-Hookean and the
isotropic response of the fibrous material, the material pa-
rameters are chosen such that the Young’s moduli and
Poisson ratios are the same as that of the linear elastic ma-
terial at small strains.

We find that the displacement fields decay rapidly within
a distance on the order of the cell diameter in nonfibrous ma-
terials (Fig. 2 a, black, blue, and green curves), whereas the
displacement fields are long-range in the fibrous matrix
(Fig. 2 a, red and orange curves). The range of interaction
in the fibrous matrix is >20 times the radius of the cell, as
demonstrated by the fact that the boundary condition (peri-
odic versus fixed) has an impact on the displacement fields;
the cells in this case are able to feel its periodic image, since
the displacement field does not completely vanish at the
boundaries.

To gain further insight into the range of elastic fields, we
plotted the total force, F(X) ¼ s(X)4pX2, normalized by the
force at the cell-matrix interface (Fig. 2 b). We find that the
decay of the total force in strain-hardening hyperelastic
matrices is more rapid than in the case of the linearly elastic
material, whereas the transmission of force is very long-
range in fibrous matrices. In Section C of the Supporting
Material, we have derived a closed-form expression for
the decay of force distribution as a function of the material
parameters of the fibrous phase. These analytical calcula-
tions and the simulations in Fig. 2, c–f, clearly show that
the fibrous components, and not the isotropic strain-hard-
ening response, lead to long-range force transmission.
Force transmission in 3D matrices depends on
the shape of cells or explants and cell polarization

Next, we consider the effect of shape and contraction anisot-
ropy on force transmission in elastic and fibrous matrices.
Unlike prior work that focused on the role of shape and
cell polarization in linear elastic materials (25,26), here
we consider fibrous materials described by the constitutive
laws derived above (A New Constitutive Law for Fibrous
Matrices). We model elongated cells as prolate spheroids
described by the shape (x/a)2 þ (y/a)2 þ (z/b)2 ¼ 1. Here,
Biophysical Journal 107(11) 2592–2603



FIGURE 2 Displacement and force profiles in 3D linearly elastic, neo-Hookean, and fibrous matrices with a spherical and isotropically contracting cell of

radius R. (a and b) Normalized radial displacement u(X)/u(R) and force F(X)/F(R) as functions of the normalized distance X/R (the boundaries are located at a

distance L¼ 100R) from the center. We have chosen the critical stretch, lc ¼ 1, fibrous modulus c¼ 50, and strain-stiffening parameterm¼ 0 for the fibrous

matrix. (c–f) Contour plots of normalized radial displacement u(X)/u(R) for fibrous matrices with c¼ 50 and m¼ 30, Eb ¼ 2 kPa, and Poisson’s ratio n¼ 0.3

(where the latter two parameters are the same as Eb and n for linear matrices). For neo-Hookean matrices, m/Eb ¼ 1/2(1þ n), k/Eb ¼ 1/3(1� 2n). To see this

figure in color, go online.
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a and b represent the length of the semiminor and semimajor
axes, respectively, of the prolate spheroid. The polarization
of active forces is modeled by assuming that the contractile
strains (determined by molecular motors and regulation of
adhesion sites) along the long axis of the spheroid, εb, are
greater than the strain along the short axis, εa. To compare
shapes with different aspect ratios, a ¼ 1 � a/b, and strain
polarizations, b ¼ ð1� ð1� εbÞ=ð1� εaÞÞ=ð1� V1=V0Þ,
we assume that the volume of the cells before
ðV0 ¼ 4pa2b=3 ¼ 4pR3=3Þ and after contraction
(V1 ¼ 4pð1� εaÞ2ð1� εbÞR3) is the same in all cases.
Note that a ¼ 0 corresponds to a sphere, whereas a ~ 1 is
a highly elongated prolate spheroid. In a similar way, b ¼
0 corresponds to isotropic contraction, whereas b ¼ 1 repre-
sents a fully polarized cell (Fig. 3, a–d)). Here, R is the
radius of the sphere as a¼ 0. The above definitions also pro-
vide a definition for the size of a cell, R ¼ a2/3b1/3, which is
the geometric mean of the lengths of the semimajor and
semiminor axes of the elongated cell (which can be consid-
erably shorter than the length of the semimajor axis for a
highly elongated cell).

The effect of shape and contraction and shape anisot-
ropies on the range of force transmission in fibrous matrices
is shown in Fig. 3, a–d. Here, the colored regions represent
Biophysical Journal 107(11) 2592–2603
the extent of the aligned fibrous region, where the fibers are
aligned with the tensile principal axis of strain tensor. We
find that whereas shape and contraction anisotropies lead
to an increase in the extent of the fibrous region, the effect
is significantly amplified when both these factors are present
simultaneously. We can understand this by noting that both
shape and contraction anisotropies lead to concentration of
tensile strains along the long axes of the cells. However,
this effect is considerably magnified when the shape is elon-
gated and the cell is polarized; significant concentration of
tensile stresses in this case (Fig. 3 d) leads to formation of
extended regions where fibers are aligned. A heat map
of the range of force transmission as a function of these pa-
rameters is given in Fig. 3 e for the case where the volume
contraction is 1 � V1/V0 ¼ 55%. We find that the extent of
the fibrous region can be as high as 20 times the character-
istic size of the fully polarized cells for a ¼ 2/3, as has been
observed in several studies (8,18). The influence of the
magnitude of volume contraction of the cell on the range
of force transmission is plotted in Fig. 3 f: our simulations
show that the range of force transmission generally in-
creases with an increase in overall contractile strain,
although the effect is much more pronounced in elongated
and polarized cells on account of the stress concentration



FIGURE 3 Influence of shape and contraction anisotropies (a and b, respectively) of contractile cells on distance Xt/R over which forces are transmitted

(measured by the extent of aligned fibrous regions in the matrices). (a–d) Contour plots of aligned (colored) and isotropic (white) regions for the four cases

with a ¼ 1, 2/3, and b ¼ 0, 1. Colors (blue to red) represent maximum principle stretches (1.04–1.1). (e) Contour plots of Xt/R as a function of shape anisot-

ropy, a, and contraction anisotropy, b. Colors (blue to red) represent Xt/R(4–20). (f) Normalized transmission distance Xt/R versus volume contraction for the

four cases in a–d. Yellow ellipsoids with red arrows represent contractile cells with different values of a and b. Material parameters for the fibrous matrix are

lc ¼ 1.04, c ¼ 50, and m ¼ 30. The volume contraction is 55% for all the cases (a–d). The matrix size is 20 � the contractile cell radius (L/R ¼ 20) and the

symmetry boundary conditions are applied at all boundaries. To see this figure in color, go online.
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effects discussed above. Thus, our analytical calculations
and simulations collectively show that in addition to the
fibrous components of the matrix, elongated cells and polar-
ized contraction lead to long-range force transmission.
Long-range transmission in 3D matrices varies
with the stiffness and strain-hardening exponent
of the fibrous component and the critical strain
for fiber formation

We show in this section that in the material model we have
developed, the relative contributions of the fibrous and
isotropic strain-hardening components to the overall me-
chanical response depends on three parameters: the ratio
of the initial elastic moduli of the two components, Ef/Eb,
the strain-hardening exponent of the fibrous phase, m, and
the critical strain for the onset of the fibrous response. A
more pronounced fibrous response is obtained when Ef/Eb

and m are large and when the critical stretch, lc, is small
(leading to an early transition to the aligned fiber phase).
The extent of the aligned fibrous region that surrounds an
elongated (a¼ 2/3) and fully polarized (b¼ 1) cell is shown
in Fig. 4, a–d, as a function of the material parameters that
characterize the fibrous phase. The simulations show that
the range of force transmission increases with increasing
modulus and the strain-hardening exponent of the fibrous
phase and with decreasing values of the critical strain for
transitioning to the fibrous phase. These parameters are
determined by the density of fibers, the numbers of cross-
linkers per fiber, and the porosity of the fibrous gels, as dis-
cussed above.
Cells sense farther into fibrous substrates than
into linear and strain-hardening substrates

Recent work has demonstrated that fibroblasts sense deeper
into collagen and fibrin gels (typically >65 mm) than they
do into polyacrylamide gels (characteristically <5 mm)
(18). To determine the characteristics of these gels respon-
sible for characteristic sensing distances, we carried out cal-
culations to determine cell sensing distance as a function of
the thickness of gels constrained on one of the sides by a
rigid (glass) substrate. Following methods used in an earlier
work (1), we assume that the cell is circular and that it con-
tracts radially inward by pulling on the cell-substrate bound-
ary. We apply displacement boundary conditions to this
boundary (radial displacement of u(R)/R ¼ 0.2) and the bot-
tom surface is clamped to the underlying glass substrate. All
Biophysical Journal 107(11) 2592–2603



FIGURE 4 Influence of material parameters of fibrous matrices on the transmission distance Xt/R. (a–d) Contour plots of aligned (colored) and isotropic

(gray) regions for the four cases with lc ¼ 1.02� 1.04, c¼ 10� 50, and m¼ 0� 30. Colors represent maximum principle stretch (1.04� 1.1) (blue to red).

(e) Normalized transmission distance, Xt/R, versus volume contraction for the four cases in a–d. Shape and contraction anisotropies are a ¼ 2/3 and b ¼ 1,

and the volume contraction is 55% for all the cases. The matrix size is 20 � the contractile cell radius (L/R ¼ 20) and the symmetry boundary conditions are

applied at all boundaries. To see this figure in color, go online.
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other surfaces are free of any traction. As in earlier work (1),
we find that in both linear elastic and nonlinear strain-hard-
ening materials, the sensing distance is close to the radius of
the cell, R. Increasing the gel thickness, H, by a factor of 5,
from 2R/3 to 10R/3, has very little impact on the spatial pro-
files of the displacement fields. On the other hand, cells are
able to sense much deeper into fibrous gels, as evidenced by
the slower decay of the displacement fields of cells on
thicker substrates. Our results for the sensing distances
(Fig. 5 g) show that cells can sense up to 8 times their radii
on fibrous gels compared to 1.8 times their radii on strain-
hardening substrates.
Cells sense other cells located at distances ~20
times their size in fibrous 3D matrices

Interactions between pairs of cells play a key role in cell
clustering during morphogenesis, as well as in pathological
processes such as fibrosis, wound healing, and metastasis.
Based on our results (presented above) regarding the elastic
fields of cells in different types of matrices, it is reasonable
to guess that cell-cell interactions are significant when their
separations are of the order of twice the sensing distance of a
single cell. We verified this hypothesis by explicitly simu-
lating the interactions between two cells in 3D fibrous and
nonfibrous matrices, as well as on substrates. The clear
role of fibrous matrices in mediating cell-cell interactions
is shown in Fig. 6, where significant overlap and alignment
Biophysical Journal 107(11) 2592–2603
of strain fields are observed for pairs of cells located in
fibrous matrices at a distance of 10 times their size. There
is no overlap of strain fields for cells on nonfibrous sub-
strates. Using these simulations, we confirm that cell-cell in-
teractions become significant when cell spacing is twice the
sensing distance, which is in agreement with the results
shown in Fig. 6. Color represents the normalized radial
displacement (0 � 1) (increasing from blue to red). The ge-
ometry and boundary conditions in Fig. 6, b and e, are the
same as those in Figs. 2 f and 5 f, respectively. Our simula-
tions also clearly show the formation of collagen lines
observed experimentally between pairs of cells (4,5); we
find that that the alignment of fibers coincides with the
line that connects the centers of the two contractile cells
both in 3D matrices and on substrates (Fig. 6, c and e).
Thus, we find that fibrous, but not neo-Hookean, matrices
enable cells to form collagen lines and interact mechanically
with other cells at long range.
SUMMARY AND DISCUSSION

In summary, we have developed a new constitutive law for
fibrous matrices that predicts several key cell behaviors.

1. Both shape and contraction anisotropy are important for
long-range force transmission. These features of cells
lead to stress concentration at the poles, which in turn
leads to fiber alignment. Elongated prolate spheroidal



FIGURE 5 Mechanosensing distances for contractile cells on linear, neo-Hookean, and fibrous substrates with thickness H ¼ 2R/3–10R/3, where R is the

radius of the cell: (a–f) Contour plots of the normalized radial displacement, u(X)/u0 (u0¼ u (R)), with normalized thicknessH/R¼ 2/3 (a–c) and H/R¼ 10/3

(d–f). (g) Normalized radial displacement, u(X)/u0, on the substrate surface as a function of the normalized distance X/R. (h) Normalized force-transmission

distance Xc/R as a function of the normalized-thickness, H/R (chosen with the criterion that the displacement fields decay by 90%, or u(Xc)/u0 ¼ 0.1). Circles

(black line), squares (blue line), and triangles (red line) indicate linear, neo-Hookean, and fibrous substrates, respectively. Material parameters for the fibrous

matrix are lc ¼ 1.02, c ¼ 50, and m ¼ 30. The substrate radius is 10 � the cell radius (L/R ¼ 10) and the bottom boundary is clamped. To see this figure in

color, go online.
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cells with polarized contraction are able to sense the me-
chanical environment over much larger distances than
spherical cells exhibiting diagonal contraction.

2. Tension-driven fiber alignment plays a crucial role in me-
chanosensing: small critical stretch for fiber alignment
(lc), large fiber stiffness (c), and fiber strain-hardening
behavior (m) enable long-range interactions.

3. Cells in 3D fibrous matrices and cells on 2D fibrous sub-
strates sense rigid boundaries and other cells over rela-
tively long distances compared to cells in and on linear
and strain-hardening isotropic materials. The range of
force transmission increases with increasing contractility
for cells in fibrous matrices, whereas increasing contrac-
tility of cells cannot lead to enhancement of mechano-
sensing distances in linear and strain-hardeningmaterials.

4. Cells in 3D fibrous matrices sense rigid boundaries over
10 times their diameters and other cells over 20 times
their diameters. Cells on 2D fibrous substrates sense
radial rigid boundaries up to 8 times their radii and thick-
nesses up to 3.5 times their radii. Sensing distances can
be further enhanced by increasing cell elongation, polar-
ization, and contractility.

These findings are highly relevant biologically. They sug-
gest that the presence of a fibrous matrix, as well as the ma-
terial properties of that matrix, determine the nature of the
mechanical interactions between groups of cells and be-
tween cells and boundaries in a range of settings including
development, cancer metastases, and wound healing and
fibrosis. This is consistent with the experimental observation
that increased collagen cross-linking is associated with
many of these processes, and it suggests that studying the
impact of other matrix proteins on fibrous collagen matrices
may yield important insights into normal biology and
Biophysical Journal 107(11) 2592–2603



FIGURE 6 Interactions of pairs of contractile cells in neo-Hookean and fibrous matrices: (a and b) Contour plots of maximum principle strain in 3D

matrices. (c) Vector plots of maximum principle strain (which coincides with the orientation of the collagen lines) in a 3D fibrous matrix. (d and e) Contour

plots of maximum principle strain on 2D substrates. Colors (blue to red) represent maximum principle strain (0.04–0.1). Lengths of red lines represent the

magnitude of the maximum principle strain (0.04–1) and their orientations show the directions of fiber alignment. For the fibrous matrices, colored and gray

regions represent aligned fibrous and isotropic regions, respectively. We have chosen lc¼ 1.04, c¼ 50, andm¼ 30 for the fibrous material. To see this figure

in color, go online.
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pathology. In a similar way, elongated cell shape and polar-
ized cell contractility enhance long-range mechanical inter-
actions; our results are consistent with experimental
observations that cells involved in many of these processes
are elongated and contractile (and may have undergone an
epithelial to mesenchymal transition).
Derivation of the constitutive law

The constitutive law for fibrous matrices we have proposed
is nonlinear with respect to the orientation and magnitudes
of the principal strains. The direction of the stiffened fibrous
response coincides with the principal orientations whose
principal strains are above a critical threshold. As we
show below, these two features are critical for capturing
the key features of long-range force transmission observed
in experiments. In this regard, the detailed form of the
constitutive law of the matrix is not crucial as along as it
captures the orientational anisotropy and stiffening that
Biophysical Journal 107(11) 2592–2603
naturally arises along the principal directions upon loading.
We have verified this idea by studying force transmission in
matrices (Fig. 7) with other functional forms of response
(see Section D in the Supporting Material), but those retain
the general features of anisotropic stiffening that coincides
with the principal strain orientations. In particular, our
constitutive law shares some common features with modi-
fied Cauchy-Green deformation tensors (23,27), but there
are some crucial differences that are essential to obtaining
long-range force transmission. In the previously published
works, the collagen network is modeled as a hyperelastic
material reinforced by two families of fibers whose orienta-
tions depend on the directions of principal stress (see Sec-
tion D of the Supporting Material). Note, however, that
unlike our formulation, their constitutive laws are based
on the invariants of the modified Cauchy-Green deformation
tensor. As we show in Section E of the Supporting Material,
long-range force transmission cannot be observed when
modified Cauchy-Green deformation tensors are used. We



FIGURE 7 Force transmission for the material with strain energy function similar to that given in works by Holzapfel and colleagues (23,27).

(Eb; n ¼ 0:3;c ¼ 0:2;Ck2 ¼ 500). (a) Blue and red curves represent bulk and fibrous contributions, respectively, to the stress. (b) Contour plot of normalized

radial displacement u(X)/u(R) in fibrous matrices (which is similar to the result in Fig. 2 f). (c) Contour plot of normalized radial displacement u(X)/u(R) on a

fibrous substrate, which is similar to the result in Fig. 5 f. Colors (blue to red) represent the normalized radial displacement (0–1). The geometry and boundary

conditions for b and c are the same as in Figs. 2 f and 5 f, respectively. To see this figure in color, go online.
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have therefore modified the constitutive law such that we
use the principal stretches, which are the eigenvalues of
the Cauchy-Green deformation. However, we have retained
the condition that collagen fibers form only along those di-
rections where the stretches are tensile. In essence, the law
previously proposed relies on the deviatoric components of
the dyadic ni5ni (ni being the principal stretch), which, as
we show in Section E of the Supporting Material, cannot
give long-range force transmission, since an incompressible
material is similar to an isotropic material without tension-
driven alignment of collagen fibers (Eq. C10 in the Support-
ing Material).
Sensing of thickness and lateral boundaries
by cells on substrates

Our results are consistent with published experimental data
on cell sensing distances. Both computational modeling
(1,2) and experimental observations (3,28,29) suggest that
cells cultured on polyacrylamide gels (linear elasticity)
cannot sense nearby cells beyond one cell length apart
(<40 mm) (1) and substrate thickness beyond half a cell
length away (<20 mm) (2). In contrast to cells on polyacryl-
amide gels, human mesenchymal stem cells and 3T3 fibro-
blasts on fibrin gels were shown to sense and respond to
mechanical signals up to five cell lengths away (9), consis-
tent with the results shown in Fig. 5 g. Leong et al. (17) stud-
ied the role of collagen I gel thickness on the fate of human
mesenchymal stem cells and found that the mechanosensing
distance for these cells is ~130 mm, which corresponds to
~4.3 times cell radii, also in agreement with our work.
Recently, Rudnicki et al. designed sloped collagen and fibrin
gel cultures to investigate thickness sensing. They found
that human lung fibroblast and 3T3 fibroblast cell areas
gradually decrease as gel thickness increases from 0 to
150 mm, with spreading affected on gels as thick as
150 mm (18). Since the spreading radius in the case of the
150-mm-thick gel is 20 mm, the mechanosensing distance
for substrate thickness is 7.5 times cell radii (18). Although
these multiscale simulations suggest sensing distances of
3.7 times cell radii (sensing distance of 50 mm for a cell
radius of 13.4 mm), our results show that cells sense bound-
aries up to 3.5 times their radii on fibrous substrates
compared to 1.8 times their radii on strain-hardening sub-
strates (Fig. 5 h). Thus, our work provides a good estimate
for sensing distances on fibrous substrates. Although most
of the experimental work has focused on thickness sensing,
recently Mohammadi et al. developed a model system to
examine sensing of lateral boundaries in floating thin
collagen gels populated with 3T3 fibroblasts (30). They
found that cell-induced deformation fields extended to,
and were resisted by, the grid boundaries 250 mm away
(30), suggesting a sensing distance for lateral rigid bound-
aries of ~8 times cell radii. These results are consistent
with our calculations in Fig. 5, g–h, that show that lateral
and thickness sensing distances are similar in magnitude.
Mechanosensing in 3D gels

Our results are consistent with published experimental work
on the importance of cell shape, cell contractility, contractile
strains, and local fiber alignment on long-range force trans-
mission. Gjorevsk and Nelson examined the strain fields
around engineered 3D epithelial tissues in collagen I gels.
They found that linear elasticity cannot explain the long-
range nature of the strain fields but reported that mechanical
heterogeneities caused by stiffening near the poles of elon-
gated contractile epithelial tissues can explain the decay of
strain fields (31). Our results clearly show that long-range
displacement fields within matrices can be captured by ten-
sion-driven local fiber alignment, and that heterogeneities
result from the anisotropic shape of the cell domain and
Biophysical Journal 107(11) 2592–2603
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the anisotropic contraction of cells (Fig. 3). Cell contractility
results in reorganization of the ECM to provide contact guid-
ance that facilitates 3D migration and invasion (4,5,32). The
fiber alignments observed between nearby cells in 3D
matrices (4,5,32) are clearly shown in our FEM simulations
(Fig. 6 c). Experimental work has shown that treatment of
cells to abolish actomyosin contractility leads to dissolution
of the collagen lines, in agreement with our results that show
that the magnitude of contractile strains plays an important
role in determining the range of force transmission. Recent
experiments on mammary acini in collagen gels show that
they can interconnect by forming long collagen lines up to
~10 times acini size (7). Guo et al. find that these lines and
interactions are initiated by traction forces created by the
cells and not by diffusive factors (10). They also found
collagen-density-dependent transmission of force up to
10 times cell radii for interacting acini. Our results show
that cells in 3D fibrous matrices can sense the radial rigid
boundaries up to 10 times their diameters and other cells up
to 20 times their diameters (Fig. 3 and Fig. 6, a–c), in very
good agreementwith results from the experimentsmentioned
here. Furthermore,Ma et al. suggest that the fibrous nature of
the ECM leads to reorganization of the collagen fibers,
leading to areas of higher fiber density near the cells over
relatively long distances (10 cell diameters) (8). The mecha-
nism by which this reorganization proceeds (starting from a
random network) is discussed in our work.

Koch et al. studied the effect of anisotropic cell shape and
contractility on the range of force transmission in invasive
and noninvasive cancer cells (19). They found that both
lung and breast carcinoma cells were significantly elongated
compared to the noninvasive cells, which were observed to
have rounder shapes. Cell shape anisotropy was accompa-
nied by a larger sensing distance, suggesting that direction-
ality of traction forces is important for cancer cell invasion,
consistent with our results (Fig. 3).

In sum, we present a new constitutive law that describes
the behavior of cells in matrices. All of the parameters for
our constitutive law can be obtained either from experi-
ments or from fiber simulations, as shown in Fig. 1, c and
d. Our findings are relevant to a variety of normal and path-
ological processes and, it is important to note, are consistent
with an extensive body of experimental work, as highlighted
in detail above. We hope that this work will inspire further
experiments where the mechanical properties of the ECM
are tuned by varying the fiber density and degree of cross-
linking to validate our predictions.
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A:  Discrete fiber simulations 

We developed a finite element based 2D discrete fiber model that captures all aspects of network 
mechanics including non-affine stiffening, fiber alignment and bending-stretching transitions 
following our earlier work on crosslinked biopolymer networks (1). The 2D random fiber 
networks representing collagen gels are created with linear elastic fibers and rigid crosslinks (Fig. 
1a). Fibers are uniformly distributed in the computational domain and a crosslink is formed when 
two fibers intersect. Collagen fibers have diameter in the range of few 100 nanometers to few 
microns and moduli of few 100 kPa (2–4). As the persistence length of collagen fibers is in the 
range of few microns, these fibers are typically modeled as linear elastic. Fibers are modeled 
using shear flexible Timoshenko beam elements in the finite element package, ABAQUS (5). 
Collagen gel considered in experiments is converted into a computational network (with 
equivalent fiber density) using the approach of Stein, Andrew M., et al (6). For the given 
concentration and volume of the gel, fiber radius is given by 

𝑟 = �
𝑉𝑔𝜌𝑐𝑣𝑐
𝜋𝐿𝑇𝑇𝑇

                                                                                                                                            (𝐴1) 

where 𝑉𝑔 (𝜇𝑚3)is the volume of the gel, 𝜌𝑐(= 1 − 5 𝑚𝑚/𝑚𝑚) is the mass density of collagen, 
𝑣𝑐 = 0.73 𝑚𝑚/𝑚  is the specific volume of collagen, 𝑟 (𝜇𝑚) is the radius of the fibers and 
𝐿𝑇𝑇𝑇 (𝜇𝑚) is the total length of collagen in the gel. The 3D variables converted into equivalent 
the 2D ones by transforming quantities per unit volume to quantities per unit area. Fiber radius is 
assumed to be 250 𝑛𝑚  and from the above relation, the total length of fiber in the gel is 
calculated for varying collagen concentrations. The fibers have both flexural and stretching 
rigidities and the crosslinks are assumed to be rigid (7). A parametric study for various collagen 
concentrations ( 2, 3, 4 𝑎𝑛𝑎 5 𝑚𝑚/𝑚𝑚) , simulating simple shear deformation shows good 
agreement with the experimentally observed strain sweep results (8). Increasing gel 
concentration reduces the collagen mesh size (distance between two crosslinks) leading to a 
stiffer response. The reduction in the length of the fiber between the crosslinks affects the 
bending characteristics and leads to an increase in the initial stiffness and a decrease the knee 
strain.   
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B: Finite element implementation of the fibrous constitutive law 

All simulations were performed in a finite deformation setting. The matrices are modeled using 
4-node bilinear axisymmetric quadrilateral elements. The axisymmetric constitutive law, the 
equilibrium condition, 𝜕𝜎𝑖𝑖/𝜕𝑎𝑥𝑖 =  0 , and the boundary conditions constitute a well-posed 
boundary value problem. We implemented the constitutive equation in a user material model in 
the finite element package ABAQUS (5). The tangent modulus tensor in the material description 
𝑪𝑺𝑪, the tangent modulus tensor for the convected rate of the Kirchhoff stress 𝑪𝝉𝑪, the tangent 
modulus tensor for the Jaumann rate of the Kirchhoff stress 𝑪𝝉𝝉, and the material Jacobin 𝑪𝑴𝝉 
(needed for the user material model) can be expressed as (9, 10) 

𝐶𝑚𝑚𝑚𝑚𝑆𝑆 = 4
𝜕2𝑊

𝜕𝐶𝑚𝑚𝜕𝐶𝑚𝑚
 

𝐶𝑖𝑖𝑖𝑖𝜏𝑆 = 𝐹𝑖𝑚𝐹𝑖𝑚𝐹𝑖𝑚𝐹𝑖𝑚𝐶𝑚𝑚𝑚𝑚𝑆𝑆                                                                                                                      (B1) 

𝐶𝑖𝑖𝑖𝑖
𝜏𝜏 = 𝐶𝑖𝑖𝑖𝑖𝜏𝑆 + 𝛿𝑖𝑖𝜏𝑖𝑖 + 𝜏𝑖𝑖𝛿𝑖𝑖 

𝐶𝑖𝑖𝑖𝑖
𝑀𝜏 = 𝐶𝑖𝑖𝑖𝑖

𝜏𝜏 /𝐽  

Here the second Piola–Kirchhoff stress 𝝉 = 𝝈/𝐽,  

𝐶𝑖𝑖𝑖𝑖
𝑀𝜏 = 𝐶𝑖𝑖𝑖𝑖𝑏 + 𝐶𝑖𝑖𝑖𝑖

𝑓                                                                                                                                                      
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Here we have adopted the abbreviations (𝐴⨂𝐵)𝑖𝑖𝑖𝑖 = 𝐴𝑖𝑖𝐵𝑖𝑖  and  (𝐴⨂�𝐵)𝑖𝑖𝑖𝑖 = 𝐴𝑖𝑖𝐵𝑖𝑖 . We 
define 

𝜎𝑎 =
1
𝐽
𝜕𝜕(𝜆𝑎)
𝜕𝜆𝑎

𝜆𝑎                                                                                                                                      (B3) 

If λb → λa, σbλa
2−σaλb

2

λb
2−λa

2  gives us 0/0 and must be determined using the limiting conditions (9),  
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Integrating Eq. 4, the energy function 𝜕(𝜆𝑎) can be expressed as, 

𝜕(𝜆𝑎)

=

⎩
⎪⎪
⎨

⎪⎪
⎧

0,                                                                                                                                            𝜆𝑎 < 𝜆1  (B5) 

𝐸𝑓 �
𝜆𝑎 − 𝜆1
𝜆2 − 𝜆1

�
𝑚

(𝜆𝑎 − 𝜆1)2

(𝑛 + 1)(𝑛 + 2) ,                                                                                               𝜆1 ≤ 𝜆𝑎 < 𝜆2  

𝐸𝑓 �
(1 + 𝜆𝑎 − 𝜆2)𝑚+2 − 1

(𝑚 + 1)(𝑚 + 2) +
𝜆2 − 𝜆𝑎
𝑚 + 1

+
(𝜆𝑎 − 𝜆2)(𝜆2 − 𝜆1)

𝑛 + 1
+

(𝜆2 − 𝜆1)2

(𝑛 + 1)(𝑛 + 2)� ,         𝜆𝑎 ≥ 𝜆2   

    

The second derivative of Eq. 4 can be expressed as, 

𝜕2𝜕(𝜆𝑎)
𝜕𝜆𝑎

2 =

⎩
⎪
⎨

⎪
⎧0,                                                      𝜆𝑎 < 𝜆1

𝐸𝑓 �
𝜆𝑎 − 𝜆1
𝜆2 − 𝜆1

�
𝑚

,                    𝜆1 ≤ 𝜆𝑎 < 𝜆2

𝐸𝑓(1 + 𝜆𝑎 − 𝜆2)𝑚,                        𝜆𝑎 ≥ 𝜆2

                                                                   (B6) 

Here 𝜆1 = 𝜆𝑐 − 𝜆𝑇/2, 𝜆2 = 𝜆𝑐 + 𝜆𝑇/2. 

 

C: Analytical linear solution for the spherically symmetric case  

We further introduce Green-Lagrange strain tensor 𝜺 = (𝑪 − 𝑰)/2.  For infinitesimal strains 𝜺 
with |𝜀𝒊𝒊| ≪ 1,  

𝐽 = 1 + tr(𝜺)  

𝑩� = 𝑰 + 2𝜺                                                                                                                                                  (C1) 

𝜆𝑎 = (1 + 2𝜀𝑎)1/2 = 1 + 𝜀𝑎 

Substituting Eq. C1 into Eq. 2 

𝜺 = �𝜀𝑎𝒏𝐚⨂𝒏𝐚

3

𝑎=1

                                                                                                                                     (C2) 

The fiber energy function in Eq. 1 can also be expressed as 𝜕(𝜆𝑎) = 𝑈(𝜀𝑎),  

𝜕𝜕(𝜆𝑎)
𝜕𝜆𝑎

=
𝜕𝑈(𝜀𝑎)
𝜕𝜀𝑎

𝜕𝜀𝑎
𝜆𝑎

=
𝜕𝑈(𝜀𝑎)
𝜕𝜀𝑎

                                                                                                         (C3) 

Substituting Eq. C3 into Eq.3, we get 

𝜎 = 𝜎𝑏 + 𝜎𝑓 ,                       

𝛔𝒃 = 𝜅 tr(𝜺)𝑰 + 2𝜇 dev(𝜺),                                                                                                                    (C4) 



                                                                                                    
𝝈𝒇 = �
𝜕𝑈(𝜀𝑎)
𝜕𝜀𝑎

𝒏𝒂⨂𝒏𝒂

3

𝑎=1

 

For linear bulk and fibrous response (λc = 1 and m = 0 in Eq. 4), Eq. C4 can be rewritten as, 

𝜎 = 𝜎𝑏 + 𝜎𝑓                        

𝛔𝒃 =
𝐸𝑏

3(1 − 2𝜈)
 tr(𝜺)𝑰 +

𝐸𝑏
1 + 𝜈

 dev(𝜺)                                                                                              (C5) 

𝛔𝐟 = �𝐸𝑓

3

𝑎=1

𝒏𝒂⨂𝒏𝒂. 

For infinitesimal strains, we have the geometric relations, 

𝜀𝑟 =
𝑎𝑑
𝑎𝑟

,                        𝜀𝜃 = 𝜀𝜑 =  
𝑑
𝑟

,                         𝐽 = 1,                                                             (C6) 

Here 𝑑 is the radial displacement and the constitutive law Eq. C5 can be rewritten as, 

𝜎𝑟 =
𝐸𝑏

(1 − 2𝜈)(1 + 𝜈) �
(1 − 𝜈)

𝑎𝑑
𝑎𝑟

+ 2𝜈
𝑑
𝑟
� + 𝐸𝑓

𝑎𝑑
𝑎𝑟

                                                                       (C7) 

𝜎𝜃 = 𝜎𝜑 =
𝐸𝑏

(1 − 2𝜈)(1 + 𝜈) (
𝑑
𝑟

+ 𝜈
𝑎𝑑
𝑎𝑟

)    

The condition for mechanical equilibrium 𝑑𝜎𝑟
𝑑𝑟

+ 2
𝑟

(𝜎𝑟 − 𝜎𝜃) = 0 can then be written as,  

�1 +
(1 + 𝜈)(1 − 2𝜈)

(1 − 𝜈)
𝐸𝑓
𝐸𝑏
� �
𝑎2𝑑
𝑎𝑟2 +

2
𝑟
𝑎𝑑
𝑎𝑟� − 2

𝑑
𝑟2

= 0                                                                                  (C8) 

The boundary condition is  

𝑑(𝑟0) = 𝑑0, 𝑑(∞) = 0                                                                                                                            (C9)     

The solution is     

𝑑(𝑟)/𝑑0 = (𝑟0/𝑟)𝑚                                                                                                                                 (C10)   

𝜎𝑟(𝑟)/𝜎𝑟(𝑟0) = (𝑟0/𝑟)𝑚+1 

Here  𝑛 = 1
2

(�9+𝜒
1+𝜒

+ 1)  and   𝜒 = (1+𝜈)(1−2𝜈)
(1−𝜈)

𝐸𝑓
𝐸𝑏

     

The strains and stresses can then be expressed as                                                                                   

𝜀𝑟 = −𝑛
𝑑0
𝑟0

(
𝑟0
𝑟

)𝑚+1                                                                                                                                 (C11) 

http://en.wikipedia.org/wiki/Infinitesimal_strain_theory


          
𝜀𝜃 = 𝜀𝜑(𝑟) =
𝑑0
𝑟0

(
𝑟0
𝑟

)𝑚+1 

𝜎𝑟 = −�
𝐸𝑏

(1 + 𝜈)(1− 2𝜈) [(1 − 𝜈)𝑛 − 2𝜈] + 𝑛𝐸𝑓�
𝑑0
𝑟0

(
𝑟0
𝑟

)𝑚+1 

𝜎𝜃 = 𝜎𝜑 =
𝐸𝑏

(1 + 𝜈)(1− 2𝜈)
[1 − 𝜈𝑛]

𝑑0
𝑟0

(
𝑟0
𝑟

)𝑚+1  

In the limit of strong fibrous response, 𝐸𝑓/𝐸𝑏 ≫ 1, we find that the exponent 𝑛 → 1, whereas for 
an isotropic material for which 𝐸𝑓/𝐸𝑏 ≪ 1,  we find that 𝑛 → 2 . Thus, stresses decay less 
precipitously, leading to an increased zone of influence in fibrous materials. This result is also 
consistent with theoretical estimates by Sander (11), who considered a less general case, 
𝐸𝑓/𝐸𝑏 ≫ 1,  without including the effect of the Poisson’s ratio, 𝜈.  

 

D:  Strain energy function with the modified right Cauchy–Green tensor 

Holzapfel et al. (9, 12) developed a constitutive law to describe the mechanical response of 
arterial tissue with a strain energy function 

𝑊𝑓 = 𝑊𝑏(𝐼1̅, 𝐽) + 𝑊𝑓����(𝑪�) = 𝑊𝑏(𝐼1̅, 𝐽) + � 𝜕𝑖(𝐼�̅�)
𝑖=4,6

                                                                          (D1) 

𝜕 = �
0, 𝐼�̅� < 1

𝑖1
2𝑖2

{exp[𝑘2(𝐼�̅� − 1)2] − 1}, 𝐼�̅� ≥ 1,                                                                                               

where the first term 𝑊𝑏 represents the isotropic bulk response of the matrix (same as our model) 
and the second term 𝑊𝑓���� represents anisotropic stiffening due to two families of reinforcing 
collagen fibers that evolve during loading. The modified right Cauchy–Green tensor is 𝑪� =
𝑪/𝐽2/3. 𝐼1̅, 𝐼4̅ and 𝐼6̅  are the modified invariants of 𝑪�, which represent the squares of the 
stretches along the two families of fibers, 
 
𝐼1̅ = tr(𝑪�)                                𝐼4̅ = 𝑵𝟒𝑪�𝑵𝟒                                      𝐼6̅  = 𝑵𝟔𝑪�𝑵𝟔                              (D2) 

where 𝑵𝟒 and 𝑵𝟔 are the unit vectors along the fibers in the reference configuration. Then, the 
Cauchy stress has the form, 

𝝈 = 𝝈𝒃 + 𝝈𝒇 = 𝝈𝒃 + � 2
𝜕𝜕𝑖(𝐼�̅�)
𝜕𝐼�̅�

dev(𝒏𝒊⨂𝒏𝒊
𝑖=4,6

)                                                                              (D3) 

where 𝒏𝟒 = 𝑭𝑵𝟒 and 𝒏𝟔 = 𝑭𝑵𝟔 are the fiber vectors in the current configuration: 

𝒏𝟒 = 𝑭𝑵𝟒,                              𝒏𝟔 = 𝑭𝑵𝟔                                                                                                  (D4)  



An iterative procedure starting with an arbitrary configuration of the fibers is implemented to 
find the fiber vectors in the reference and current configurations, 𝑵𝟒 and 𝒏𝟒. By considering this 
constitutive law for the case of spherically-symmetric contractile strain, we show in Appendix E 
that this constitutive law cannot show long-range transmission of forces. 

To enable the long range formation in fibrous media, the above strain energy function for 
collagen fiber alignment can be modified by using a Cauchy-Green deformation tensor instead of 
a modified Cauchy-Green deformation tensor. Denoting the principal stretches by 𝜆𝑎, we retain 
the functional form of the function, 𝜕(𝜆𝑎) , such that it vanishes when the principal stretches are 
negative to get 

𝜕(𝜆𝑎) = �
0, 𝜆𝑎 < 1

𝐶𝑖1
2𝐶𝑖2

[exp(𝐶𝑖2(𝜆𝑎
2 − 1)2) − 1], 𝜆𝑎 ≥ 1                                                                          (D5) 

𝜕𝜕(𝜆𝑎)
𝜕𝜆𝑎

= �
0, 𝜆𝑎 < 1

2𝐶𝑖1exp(𝐶𝑖2(𝜆𝑎
2 − 1)2)(𝜆𝑎

2 − 1)𝜆𝑎,𝜆𝑎 ≥ 1
                                                             (D6) 

𝜕2𝜕(𝜆𝑖)
𝜕𝜆𝑎

2 = �
0, 𝜆𝑎 < 1

2𝐶𝑖1exp(𝐶𝑖2(𝜆𝑎
2 − 1)2)[4𝐶𝑖2𝜆𝑎

6 − 8𝐶𝑖2𝜆𝑎
4 + (3 + 4𝐶𝑖2)𝜆𝑎

2 − 1], 𝜆𝑎 ≥ 1
  (D7) 

Here 𝐶𝑖1 and 𝐶𝑖1 are the parameters for initial stiffness and strain-hardening. Note that 𝐼�̅�  in the 
original form is replaced with 𝐼𝑖. We set χ = (1 + 𝜈)(1 − 2𝜈)𝐶𝑖1/(1− 𝜈)𝐸𝑏 = 0.2 and 𝐶𝑖2 =
500 in our numerical simulations (Fig. 7).  

 

E:  Analytical solution for the constitutive law with the modified right Cauchy–Green 
tensor 

Consider the special case of a spherical cell with isotropic contraction embedded in a fibrous 
matrix. As in the case of linear analysis in Appendix B, the deviatoric constitutive law in Eq. D3 
can be rewritten for infinitesimal strains, 

𝛔 = 𝜅 tr(𝜺) 𝑰 + 2𝜇𝐞 + �
𝜕𝑈(𝑒𝑖)
𝜕𝑒𝑖

dev(𝒏𝒊⨂𝒏𝒊
𝑖=4,6

)                                                                            (E1) 

Here the fiber energy function can be express as 𝜕�𝐼𝑖� = 𝑈(𝑒𝑖) with 𝐼𝑖 = 1 + 2𝑒𝑖. For spherical 
symmetry, the deviatoric strain  𝑒𝑟 = 2

3
(𝜀𝑟 − 𝜀𝜃) ≥ 0 and 𝑒𝜃 = 𝑒𝜑 = 1

3
(𝜀𝜃 − 𝜀𝑟) ≤ 0, so Eq. E1 

can be rewritten as, 

𝜎𝑟 =
𝐸𝑏

3(1 − 2𝜈)
(𝜀𝑟 + 2𝜀𝜃)  +

2
3

[
𝐸𝑏

(1 + 𝜈) + 𝐸𝑓](𝜀𝑟 − 𝜀𝜃)                                                              (E2)  

σ𝜃 =
𝐸𝑏

3(1 − 2𝜈)
(𝜀𝑟 + 2𝜀𝜃)  −

1
3

[
𝐸𝑏

(1 + 𝜈)
+ 𝐸𝑓](𝜀𝑟 − 𝜀𝜃) 

Using the relations 𝜀𝑟 = 𝑑𝑑
𝑑𝑟

, 𝜀𝜃 = 𝜀𝜑 = 𝑑
𝑟

                                                                                            (E3) 



and the condition for mechanical equilibrium, 

𝑑𝜎𝑟
𝑑𝑟

+ 2
𝑟

(𝜎𝑟 − 𝜎𝜃) = 0                                                                                                                               (E4)  

we get     

𝑎2𝑑
𝑎𝑟2

+
2
𝑟
𝑎𝑑
𝑎𝑟

− 2
𝑑
𝑟2

= 0                                                                                                                            (E5) 

From boundary conditions: 𝑑(𝑟0) = 𝑑0,𝑑(∞) = 0, the solution of Eq. E5 is  

𝑑(𝑟)/𝑑0 = (𝑟0/ 𝑟)2                                                                                                                                  (E6) 

𝜎𝑟(𝑟)/ 𝜎𝑟(𝑟0) =  (𝑟0/ 𝑟)3 

Comparing this with Eq. C 10, we find that the constitutive law of Holzapfel et al. (9, 12) does 
not show long range force transmission.  
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