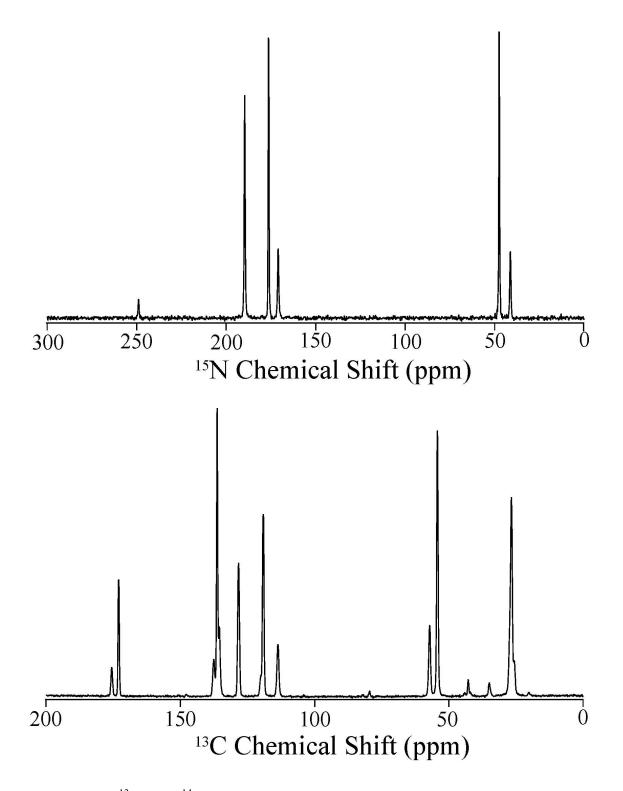
A Magic-Angle Spinning NMR Method for the Site-Specific Measurement of Proton Chemical-Shift Anisotropy in Biological and Organic Solids

Guangjin Hou,^{[a] [b]} *Ph.D.*, *NMR Spectroscopist; Rupal Gupta*,^[a] *Ph.D.*, *Postdoctoral Fellow;*

Tatyana Polenova, *^{[a] [b]} Ph.D., Professor, and Alexander J. Vega*,^[a] Ph.D., Research Scientist

[a] Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States


[b] Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States

Corresponding Authors:

lexvega@udel.edu; Phone +1-302-831-8624; Fax: +1-302-831-6335

tpolenov@udel.edu; Phone +1-302-831-1968; Fax: +1-302-831-6335

Dedicated to the 70th birthday of Professor Dr. Shimon Vega

Figure S1. ¹³C and ¹⁴N spectra of the mixture of cationic and neutral histidine crystallites.

	cationic histidine		neutral histidine	
	Li&Hong	present work	Li&Hong	present work
¹⁵ NH ₄	47.6	47.5	41.5	41.3
¹⁵ Nδ1	190.0	189.7	249.4	249.0
¹⁵ Νε2	176.3	176.3	171.1	171.0
¹³ C'	173.2	173	175.6	175.5
¹³ Ca	54.1	54.2	57.0	57.1
¹³ Cβ	26.0	25.5	27.0	26.7
¹³ Cγ	128.7	128.4	137.7	137.6
¹³ Cɛ1	136.3	136.3	135.3	135.4
¹³ Сб2	119.4	119.3	113.6	113.7

Table S1. ¹⁵N and ¹³C chemical shifts (ppm) of cationic and neutral histidine as reported by Li and Hong^[1] and as measured in the present work.

	Li&Hong	DFT
¹ H-Nδ1	16.8	15.8
¹ H-Nε2	12.6	11.7
¹ H-Cɛ1	9.3	7.8
¹ Η-Cδ2	8.0	7.4
¹ H-Ca	3.5	3.4

Table S2. ¹H isotropic chemical shifts (ppm) of cationic histidine as reported by Li and Hong^[1] and as presently calculated by DFT.

Reference

[1] S. Li, M. Hong, J. Am. Chem. Soc. 2011, 133, 1534–1544.