Supporting Information

1,4-Disubstituted-[1,2,3]triazolyl-Containing Analogues of MT-II: Design, Synthesis, **Conformational Analysis, and Biological Activity**

Chiara Testa,^{†,#,¶} Mario Scrima,^{⊽,†} Manuela Grimaldi,[⊽] Anna M. D' Ursi,[⊽] Marvin L. Dirain,[∥] Nadège Lubin-Germain,[†] Anamika Singh,^{1,§} Carrie Haskell-Luevano,^{1,§} Michael Chorev,^{*,⊥,¥} Paolo Rovero,^{‡,¶} and Anna M. Papini.^{*,†,¶,#}

[†] Laboratoire SOSCO & PeptLab@UCP, EA4505, University of Cergy-Pontoise, 5 mail Gay-Lussac Neuville sur Oise, F-95031 Cergy-Pontoise CEDEX, France

[#] Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, I-50019 Sesto Fiorentino, Italy

[¶]Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, Via della Lastruccia 13, I-50019 Sesto Fiorentino, Italy

⁷ Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (Salerno), Italy

Departments of Pharmacodynamics, University of Florida, Gainesville, 1345 Center Drive, JHMHC Room P1-20 FL 32610, United States

[§] Medicinal Chemistry, University of Minnesota, Minneapolis, 8-101 Weaver Densford Hall, 308 Harvard Street SE MN 55455, United States

¹ Laboratory for Translational Research, Harvard Medical School, One Kendal Square, Building 600, Cambridge, MA 02139, United States

[¥]Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA

[‡] Department NeuroFarBa. Section of Pharmaceutical and Nutraceutical Sciences. University of Florence. Via Ugo Schiff 6, I-50019 Sesto Fiorentino, Italy

Synthesis of N^{α} -Fmoc- ω -azido- α -amino acids and N^{α} -Fmoc- ω -alkynyl- α -amino acids

 N^{α} -Fmoc- ω -azido- α -amino- and N^{α} -Fmoc- ω -ynoic- α -amino acids with different length of the side chain. were according to the procedure synthesized described in the literature. ^{1,2} Briefly, the N^{α} -Fmoc- ω -azido- α -amino acids (1-4) were synthesized by diazo-transfer reaction starting from the correspondent N^{α} -protected ω -amino- α -amino acids. The N^{α} -Fmoc- ω -alkynyl- α amino acids (5-7) were synthesized by alkylation of a Ni(II) complex of the Schiff base formed between glycine and (S)-2-(N-benzylprolyl)aminobenzophenone, as a chiral inducer, with alk- ω ynyl bromides. 2S-[[(9H-Fluoren-9-ylmethoxy)carbonyl]amino]-4-pentynoic acid and Fmoc-S-Pra-OH (8) were purchased from Iris Biotech GmbH.

6-Azido-28-[[(9H-fluoren-9-ylmethoxy)carbonyl]amino]hexanoic acid (6-Azido-Fmoc-Lnorleucine) (1)

Yield 70%. RP-UPLC: Rt 4.28 min (50-100% B in 5 min). IR (KBr): 2100 cm^{-1} (N₃). ESI-MS: m/z calcd for $C_{21}H_{22}N_4NaO_4$ [M + Na]⁺: 417.15; found 417.2. $[\alpha]_{D} = -2.5$ (*c* 1.0, MeOH). ¹H NMR (CDCl₃, 400 MHz,): δ 7.74 (d, 2H, Fmoc $J_{3,4} = J_{5,6} = 7.4$ Hz, fluorenyl 4-H and 5-H), 7.54 (d, 2H, $J_{1,2} = J_{7,8} = 7.4$ Hz, fluorenyl 1-H and 8-H), 7.37 (pseudo t, 2H, fluorenyl 3-H and 6-H), 7.28 (pseudo t, 2H, fluorenyl 2-H and 7-H), 6.19 (s broad, COOH), 5.46 (m, 1H, NH), 4.49–4.33 (m, 3H, CH₂–O and α -H), 4.18 (t, 1H, J = 6.4 Hz, fluorenyl 9-H), 3.24-3.21 (m, 2H, ϵ -H₂), 1.70-1.42 (m, $6H, 3 \times CH_2$). ¹³C NMR (CDCl₃, 100 MHz): § 176.97 (COOH), 156.35 (CONH), 143.75, 143.60, and 141.28 (fluorenyl C-4a, C-4b, C-8a, and C-9a), 127.74, 127.06, and 125.01 (fluorenyl C-2 and C-7), 120.00 (fluorenyl C-1 and C-8), 67.14 (CH₂–O), 53.90 (C-α), 51.02 (C-ε), 47.07 (fluorenyl C-9), 31.68 (CH₂), 28.31 (CH₂),

Ń3

22.55 (CH₂). Anal. Calcd for $C_{21}H_{22}N_4O_4$: C, 63.95; H, 5.62; N, 14.20. Found: C, 64.01; H, 5.58; N, 14.23.

5-Azido-2S-[[(9H-fluoren-9-ylmethoxy)carbonyl]amino] pentanoic acid (5-azido-Fmoc-L-Norvaline) (2)

Yield 83%. RP-UPLC: R_t 3.81 min (50-100% B in 5 min). IR (KBr): 2100 (N₃) cm⁻¹. ESI-MS:*m*/*z* calcd for C₂₀H₂₀N₄NaO₄ [M + Na]⁺ 403.14; found 403.3. [α]_D = -2.3 (*c* 1.0, MeOH). ¹H NMR (CDCl₃, 400 MHz,): δ 7.76 (d, 2H, $J_{3,4}$ = $J_{5,6}$ = 7.6 Hz, fluorenyl 4-H and 5-H), 7.61 (*pseudo* d, 2H, $J_{1,2}$ = $J_{7,8}$ = 7.6 Hz, fluorenyl 4-H and 5-H), 7.61 (*pseudo* d, 2H, $J_{1,2}$ = $J_{7,8}$ = 7.6 Hz, fluorenyl 1-H and 8-H), 7.40 (*pseudo* t, 2H, fluorenyl 3-H and 6-H), 7.31 (*pseudo* t, 2H, fluorenyl 2-H and 7-H), 6.16 (s broad, COOH), 5.34 (m, 1H,

NH), 4.45–4.40 (m, 3H, CH₂–O and α -H), 4.22 (t, 1H, J = 6.6 Hz, fluorenyl 9-H), 3.37–3.30 (m, 2H, δ -H₂), 2.01–1.46 (m, 4H, 2 × CH₂). ¹³C NMR (CDCl₃, 100 MHz): δ 175.72 (COOH), 156.72 (CONH), 143.75, 143.57, and 141.33 (fluorenyl C-4a, C-4b, C-8a, and C-9a), 127.76, 127.08, and 125.00 (fluorenyl C-2 and C-7), 120.02 (fluorenyl C-1 and C-8), 67.12 (CH₂–O), 53.16 (C- α), 50.76 (C- δ), 47.15 (fluorenyl C-9), 29.62 (CH₂), 24.81 (CH₂). Anal. Calcd for C₂₀H₂₀N₄O₄: C, 63.15; H, 5.30; N, 14.73. Found: C, 63.09; H, 5.25; N, 14.80.

4-Azido-2S-[[(9H-fluoren-9-ylmethoxy) carbonyl]amino] butanoic acid (Fmoc-Abu(γ-N₃)-OH) (3)

Yield 89%. RP-UPLC: R_t 3.34 min (50-100% B in 5 min). IR: 2100 cm⁻¹ (N₃). ESI-MS: m/z calcd for C₁₉H₁₈N₄NaO₄ [M + Na]⁺ 389.12; found 389.4. $[\alpha]_D = -11.5$ (*c* 1.0, MeOH). ¹H NMR (CDCl₃, 400 MHz,): δ 7.75 (*pseudo* d, 2H, J = 7.6 Hz, fluorenyl 4-H and 5-H), 7.54 (*pseudo* d, 2H, J = 7.4 Hz, fluorenyl 1-H and 8-H), 7.39 (*pseudo* t, 2H, fluorenyl 3-H and 6-H), 7.31 (*pseudo* t, 2H, fluorenyl 2-H and 7-H), 6.14 (s broad, COOH), 5.63 (m, 1H,

NH), 4.53–4.41 (m, 3H, CH₂–O and α -H), 4.21 (t, 1H, J = 6.8 Hz, fluorenyl 9-H), 3.42–3.39 (m, 2H, γ -H₂), 2.19–1.96 (m, 6H, 3 × CH₂). ¹³C NMR (CDCl₃, 100 MHz): δ 172.71 (COOH), 156.26 (CONH), 143.53 and 141.29 (fluorenyl C-4a, C-4b, C-8a, and C-9a), 127.76, 127.08, 125.04, 124.99 (fluorenyl C-2, C-7), 120.00 (fluorenyl C-1, C-8), 67.17 (CH₂-O), 51.70 (C- α), 47.68 (C- γ), 47.09 (fluorenyl C-9), 31.21 (CH₂). Anal. Calcd for C₁₉H₁₈N₄O₄: C, 62.29; H, 4.95; N, 15.29. Found: C, 62.36; H, 4.99; N, 15.24.

3-Azido-2S-[[(9H-fluoren-9-ylmethoxy)carbonyl]amino] propanoic acid (3-Azido-Fmoc-L-Alanine) (4)

Yield 75 %. RP-UPLC: R_t 4.02 min (50-100% B in 5 min). IR: 2100 cm⁻¹ (N₃). ESI-MS: m/z calcd for C₁₈H₁₆N₄NaO₄₄ [M + Na]⁺ 375.12; found 375.4. ¹H NMR (CDCl₃, 400 MHz,): d 7.70 (*pseudo* d, 2H, J = 7.4 Hz, fluorenyl 4-H and 5-H), 7.48 (*pseudo* d, 2H, J = 7.6 Hz, fluorenyl 1-H and 8-H), 7.40 (*pseudo* t, 2H, fluorenyl 3-H and 6-H), 7.28 (*pseudo* t, 2H, fluorenyl 2-H and 7-H), 6.3 (s broad, COOH), 5.78 (m, 1H, NH), 4.57–4.45 (m, 3H, CH₂–O and α -H), 4.32 (t, 1H, J = 6.8 Hz, fluorenyl 9-H), 3.52–3.35 (m, 2H, γ -H2). Anal. Calcd for C₁₈H₁₆N₄O₄: C, 61.36; H, 4.58; N, 15.90. Found: C, 61.46; H, 4.98; N, 15.68.

2S-[[(9H-Fluoren-9-ylmethoxy)carbonyl]amino]-7-octynoic acid (5)

Yield 38%. TLC: Rf 0.5 (DCM/MeOH 10:1). RP-UPLC: R_t 4.12 min (50– 100% B in 5 min). ESI-MS: m/z calcd for C₂₃H₂₃NNaO₄ [M + Na]⁺ 400.15; found 400.3. [α]_D = -3.1 (*c* 1.0, MeOH). ¹H NMR (CDCl₃, 400 MHz): δ 7.75 (*pseudo* d, 2H, J = 7.6 Hz, fluorenyl 4-H and 5-H), 7.59 (*pseudo* d, 2H, J = 7.6 Hz, fluorenyl 1-H and 8-H), 7.37 (*pseudo* t, 2H, fluorenyl 3-H and 6-H), 7.28 (*pseudo* t, 2H, fluorenyl 3-H and 6-H), 5.79 (broad s, COOH), 5.48 (m, 1H, NH), 4.44–4.38 (m, 3H, CH₂–O and α-H), 4.21 (t, 1H, J = 6.8 Hz, fluorenyl 9-H), 2.08–1.99 (m, 3H), 1.94 (t, 1H, J = 2.4 Hz, HC=C), 1.80–1.75 (m, 1H), 1.58–1.42 (m, 4H, 2 × CH₂). ¹³C NMR (CDCl₃,

Fmoc N OH

100 MHz): δ 176.63 (COOH), 156.17 (CONH), 143.83, 143.67 and 141.29 (fluorenyl C-4a, C-4b, C-8a, and C-9a), 127.71, 127.06, 125.04 (fluorenyl C-2 to C-7), 119.98 (fluorenyl C-1 and C-8), 83.97 (HC=C), 68.69 (CH₂-O), 67.06 (HC=C), 53.83 (C- α), 47.15 (fluorenyl C-9), 31.73 and 27.81 (C- β and δ), 24.31 (C- γ), 18.15 (C- ϵ).

2S-[[(9H-Fluoren-9-ylmethoxy)carbonyl]amino]-6-heptynoic acid (6)

Yield 28%. TLC: Rf 0.47 (DCM/MeOH 9:1). RP-UPLC: R_t 3.54 min (50– 100% B in 5 min). ESI-MS: *m/z* calcd for C₂₂H₂₁NNaO₄ [M + Na]⁺ 386.14; found 386.2. [α]_D = -3.0 (*c* 1.0, MeOH). ¹H NMR(CDCl₃, 400 MHz): δ 7.73 (d, 2H, *J* = 7.2 Hz, fluorenyl 4-H and 5-H), 7.57 (d, 2H, *J* = 7.4 Hz, fluorenyl 1-H and 8-H), 7.39 (*pseudo* t, 2H, fluorenyl 3-H and 6-H), 7.30 (*pseudo* t, 2H, fluorenyl 2-H and 7-H), 6.60 (broad s, COOH), 5.51 (m, 1H, NH), 4.43– 4.35 (m, 3H, CH₂–O and α-H), 4.18 (t, 1H, *J* = 6.6 Hz, fluorenyl 9-H), 2.08– 1.99 (m, 3H), 1.94 (t, 1H, *J* = 2.4 Hz, HC≡C), 1.80–1.75 (m, 1H), 1.58–1.42

(m, 2H, CH₂). ¹³C NMR (CDCl₃, 100 MHz): δ 177.06 (COOH), 156.26 (CONH), 143.81, 143.62 and 141.27 (fluorenyl C-4a, C-4b, C-8a, and C-9a), 127.70, 127.06 and 125.05 (fluorenyl C-2 to C-7), 119.96 (fluorenyl C-1 and C-8), 83.49 (HC=C), 69.11 (CH₂-O), 67.06 (HC=C), 53.77 (C- α), 47.11 (fluorenyl C-9), 31.33 (C- β), 24.28 (C- γ), 18.01 (C- δ).

2S-[[(9H-fluoren-9-ylmethoxy)carbonyl]amino]-5-hexynoic acid (7)

Yield 32%. RP-UPLC: Rt 3.37 min (50–100% B in 5 min). ESI-MS: m/z calcd for $C_{21}H_{19}NNaO_4$ [M + Na]⁺ 372.14; found 372. ¹H NMR (CDCl₃, 400 MHz): d 7.73 (d, 2H, J = 7.2 Hz, fluorenyl 4-H and 5-H), 7.56 (d, 2H, J = 7.3 Hz, fluorenyl 1-H and 8-H), 7.37 (pseudo t, 2H, fluorenyl 3-H and 6-H), 7.30 (pseudo t, 2H, fluorenyl 2-H and 7-H), 6.71 (s broad, COOH), 5.8 (m, 1H, NH), 4.48–4.30 (m, 3H, CH₂–O and α-H), 4.21 (t, 1H, J = 6.7 Hz, fluorenyl 9-H), 2.45–2.31 (m, 3H), 2.22–2.10 (m, 1H), 2.00 (t, 1H, J = 2.1 Hz, HC=C).

]	Backbone Dihe	edrals	
MT-II analog IA	Residue	Phi	Psi
	Nle ⁴	-	-
	Pra ⁵	-42.03	-25.08
	His ⁶	-112.09	58.51
	D-Phe ⁷	-168.5	-36.63
	Arg ⁸	-109.84	5.61
	Trp ⁹	-138.45	-66.72
	Nle(ϵ -N ₃) ¹⁰	-	-
AT-II analog IV			
	Nle ⁴	-	-
	Oct(7yl) ⁵	-77.94	73.72
	His ⁶	-175.17	-53.06
	D-Phe ⁷	-57.43	-17.87
	Arg ⁸	-114.27	-11.7
	Trp ⁹	45.88	30.26
	Ala $(\beta - N_3)^{10}$	-	-
1T-II analog V			
	Nle ⁴	-	-
	$Nle(\epsilon-N_3)^5$	-160.14	-38.82
	His ⁶	-85.92	-32.61
	D-Phe ⁷	-44.39	-30.89
	Arg ⁸	-130.48	-13.26
	Trp ⁹	68.88	8.26
	Pra ¹⁰	-	-

Table 1s. Backbone dihedral angles: Mean values of ψ and ϕ angles relative to the most representative MT-II conformers.

Residue	NH	C ^α H	СβΗ	С ^ү Н	С⁰Н	Others	Δα
Nle ⁴	7.789	4.299	Qβ 1.831	Q γ 1.745	Qδ 1.621	Q ε 1.237	
Pra ⁵	8.168	4.120	Hβ2 2.921 Hβ3 2.453				
His ⁶	8.332	4.244	Q β 2.436		Ηδ2 5.890	HE1 9.456	-0.386
D-Phe ⁷	7.665	4.876	Qβ 3.647		Qδ 7.296	Qε 6.891	0.216
Arg ⁸	8.185	3.962	Hβ2 1.889 Hβ3 1.708	Q γ 1.570	Qδ 3.197	Ηε 7.660	-0.418
Trp ⁹	9.175	4.855	Ηβ2 2.893 Ηβ3 2.765		Hð1 6.952	Hε1 10.791 Hε3 7.174 HH2 7.071 HZ2 7.529 HZ3 7.333	0.155
Nle(E-N ₃) ¹⁰	8.848	3.752	Q β 1.958	Q γ 1.252	Qδ 1.347	Q ε 1.822 HZ 7.083	

Table 2s. Proton chemical shifts of [1,2,3]triazolyl-containing cyclopeptides IA in DMSO-d6 at 300 K.

Residue	NH	CαH	C ^β H	С ^ү Н	С ⁸ Н	Others
Nle ⁴	8.108	4.222	Qβ 1.617	Q γ 1.478	Qδ 1.228	Q ε 0.853
Pra ⁵	7.917	4.651	Hβ2 3.174 Hβ3 3.037			
His ⁶	8.313	4.298	Qβ 2.724		Ηδ2 6.862	Hε1 7.258
D-Phe ⁷	8.600	4.281	Hβ2 3.177 Hβ3 2.849			
Arg ⁸	8.716	4.205	Hβ2 1.658 Hβ3 1.538	Q γ 1370	Qδ 3.014	Ηε 7.544 QH2 7.674
Trp ⁹	8.083	4.505	Hβ2 3.203 Hβ3 3.022		Н ð1 7.233	Hε1 10.028 Hε3 7.778 HH2 7.372
Nle(E-N ₃) ¹⁰	7.787	4.229	Qβ 1.771	Q γ 1.240	Qδ 1.625	Q ε 3.039

Table 3s. Proton chemical shifts of [1,2,3]triazolyl-containing cyclopeptides IB in DMSO-d6 at 300 K.

Residue	NH	CαH	C ^β H	C ^γ H	С ⁶ Н	Others
Nle ⁴	8.080	4.212	Q β 1.518	Q γ 1.745	Qδ 1.252	Q ε 0.873
Oct(7yl) ⁵	7.980	4.212	Qβ 1.931	Ηγ2 1.623 Ηγ3 1.716	Qδ 1.284	Q ε 1.484
His ⁶	8.438	4.528	Hβ2 2.959 Hβ3 2.792		Нб2 7.173	Ηε1 10.826
D-Phe ⁷	8.376	4.615	Hβ2 3.038 Hβ3 2.763	Q γ 1.379	Qδ 7.218	
Arg ⁸	7.933	4.278	Ηβ2 1.667 Ηβ3 1.519	Q γ 1.379	Qð 3.055	Ηε 7.603
Trp ⁹	8.192	4.565	Ηβ2 3.139 Ηβ3 3.021		Ηδ1 7.282	Hε1 10.890 Hε3 7.637 HH2 7.186 HZ2 7.359 HZ3 7.359
Ala(β -N ₃) ¹⁰	8.368	4.670	2.814			

Table 4s. Proton chemical shifts of [1,2,3]triazolyl-containing cyclopeptides IV in DMSO-d6 at 300 K.

Table 5s. Proton chemical shifts of [1,2,3]triazolyl-containing cyclopeptides V in DMSO-d6 at 300 K.

Residue	NH	CαH	C ^β H	C ^γ H	С⁰Н	Others
Nle ⁴	8.052	4.244	Qβ 1.639	Q γ 1.527	Qδ 1.275	Q ε 0.880
Nle(ϵ -N ₃) ⁵	7.973	4.295	Hβ2 1.803 Hβ3 1 752	Q γ 1.229	Qδ 1.614	HZ 7.871 Oc 3 037
His ⁶	8.188	4.576	Ηβ2 3.218 Ηβ3 3.038		Нб2 6.726	Ηε1 7.320
D-Phe ⁷	8.102	4.557	Hβ2 3.057 Hβ3 2.891			
Arg ⁸	8.192	4.226	Hβ2 1.654 Hβ3 1.552	Q γ 1.408	Qδ 3.041	Ηε 7.423 QH2 7.242
Trp ⁹	8.341	4.450	Ηβ2 3.204 Ηβ3 3.021		Ηδ1 7.386	Hε1 10.852 Hε3 7.672 HH2 7.115 HZ3 7.041
Pra ¹⁰	8.379	4.348	Hβ2 3.111 Hβ3 2.766			

References:

⁽¹⁾ Le Chevalier Isaad, A.; Papini, A. M.; Chorev, M.; Rovero, P. J. Pept. Sci. 2009, 15, 451-454.

⁽²⁾ Le Chevalier Isaad, A.; Barbetti, F.; Rovero, P.; D'Ursi, A. M.; Chelli, M.; Chorev, M.; Papini, A. M. *Eur. J. Org. Chem.* **2008**, *31*, 5308-5314.