Supplementary Text

Altered CNT-1 activity affects apoptosis induced by *smIs82*

We scored cell corpses in *smIs82* embryos to examine if loss of *cnt-1* is capable of suppressing cell death after the CED-3 caspase is globally activated. In the absence of the heat shock treatment, *smIs82* embryos showed a cell corpse profile similar to that of N2 embryos (**Supplementary Fig. 4c**). After the heat shock treatment, the numbers of cell corpses in *smIs82* embryos were dramatically increased (**Supplementary Fig. 4d**), indicating that many cells are induced to undergo apoptosis. We found that loss of *cnt-1* partially suppressed and expression of tCNT-1a enhanced ectopic cell death induced by *smIs82* (**Supplementary Fig. 4d**), providing further supporting evidence that *cnt-1* acts downstream of CED-3 to promote apoptosis. A similar partial suppression of cell death was accomplished by a gain-of-function *akt-1(mg144gf)* mutation (**Supplementary Fig. 4d**), confirming that *akt-1* can also inhibit cell death downstream of EGL-1 and CED-3.

Supplementary Tables

KNAI clone	Cell death defect		
vector RNAi	_		
tpi-1	_		
Y17G7B.10	_		
arrd-7	_		
arrd-8	_		
cnt-1	+		
Y17G7B.17	_		
Y17G7B.18	_		
Y17G7B.19	_		
Y43F11A.1	_		

Supplementary Table 1 RNAi treatment of cnt-1 caused a delay-of-cell-death phenotype similar to that of the cps-2(sm8) mutant.

N2 animals were treated with RNAi and cell corpses in embryos were scored as described in METHODS. For each RNAi experiment, 15 embryos each at the comma, 1.5 fold, 2 fold, 2.5 fold, 3 fold, and 4 fold embryonic stages were scored. The candidate genes tested and corresponding RNAi results are summarized above. "+" indicates that the RNAi clone caused a delay-of-cell-death defect. "-" indicates that there was no obvious cell death defect.

Genotype	No. of extra cells	Range of extra cells
N2	0.1 ± 0.1	0–1
cnt-1(tm2313)	0.1 ± 0.1	0–1
ced-3(n2438)	1.3 ± 0.3	0–3
cnt-1(tm2313); ced-3(n2438)	$3.5 \pm 0.3^{*}$	2-6
ced-4(n2273)	2.2 ± 0.4	0–5
cnt-1(tm2313); ced-4(n2273)	$3.4 \pm 0.4^{**}$	1–6

Supplementary Table 2 Inactivation of *cnt-1* enhances suppression of cell death.

Extra cells were scored in the anterior pharynx of L4 hermaphrodites using Nomarski optics as described in METHODS. Data shown are mean \pm s.e.m. Statistical significance values were determined by one-way ANOVA, followed by Tukey's test (*n* = 20 animals). * *P* < 0.001, compared with *ced-3(n2438)*. ** *P* < 0.05, compared with *ced-4(n2273)*.

Genotype	No. of missing cells	Range of missing cells
N2	0 ± 0	0
<i>cnt-1(tm2313)</i>	0 ± 0	0
<i>cnt-1</i> ; $ex[P_{dpy-30}tCNT-1a] #1$	$0.3 \pm 0.1*$	0–1
<i>cnt-1</i> ; $ex[P_{dpy-30}tCNT-1a] #2$	$0.35 \pm 0.1*$	0–1
<i>cnt-1</i> ; $ex[P_{dpy-30}tCNT-1a] #3$	$0.35 \pm 0.1*$	0–1
<i>cnt-1</i> ; $ex[P_{dpy-30}tCNT-1b] #1$	$0.3 \pm 0.1*$	0–1
<i>cnt-1</i> ; $ex[P_{dpy-30}tCNT-1b] #2$	$0.3 \pm 0.1*$	0–1
<i>cnt-1</i> ; $ex[P_{dpy-30}tCNT-1b] #3$	$0.35 \pm 0.1*$	0–1

Supplementary Table 3 Expression of tCNT-1 causes ectopic cell death.

Missing cells were scored in the anterior pharynx of L4 transgenic hermaphrodites using Nomarski optics. Data shown are mean \pm s.e.m. Statistical significance values were determined by one-way ANOVA, followed by Tukey's test (n = 20 animals). *P < 0.001, compared with *cnt-1(tm2313)* animals.

Genotype	No. of extra cells	Range of extra cells
N2	0.1 ± 0.1	0–1
akt-1(mg144gf)	0.1 ± 0.1	0–1
ced-3(n2438)	1.3 ± 0.3	0–3
ced-3(n2438);	$3.4 \pm 0.4*$	1–6
daf-16(mu86)	0.1 ± 0.1	0–1
daf-16(mu86); ced-3(n2438)	$3.5 \pm 0.4*$	1–6
daf-18(e1375)	0.1 ± 0.1	0–1
ced-3(n2438) dpy-4(e1166)	1.4 ± 0.3	0–3
daf-18(e1375) ced-3(n2438) dpy-4(e1166)	$3.5 \pm 0.3^{**}$	1–5

Supplementary Table 4 Increased activity of *akt-1* and loss of *daf-18* both inhibit apoptosis.

Extra cells were scored in the anterior pharynx of L4 hermaphrodites using Nomarski optics. Data shown are mean \pm s.e.m. Statistical significance values were determined by one-way ANOVA, followed by Tukey's test (n = 20 animals). *P < 0.001; compared with *ced-3(n2438)*. ** P < 0.001; compared with *ced-3(n2438)* dpy-4(e1166).

und son i to promote apoptosis.		
Genotype	No. of missing cells	Range of missing cells
N2	0 ± 0	0
<i>cnt-1(tm2313)</i>	0 ± 0	0
age-1(mg44)	$0.35 \pm 0.11^*$	0–1
age-1(mg44) cnt-1(tm2313)	0 ± 0	0
akt-1(tm399); akt-2(tm1975) sgk-1(ok538)	$0.35 \pm 0.11^*$	0–1
cnt-1(tm2313); akt-1(tm399); akt-2(tm1975) sgk-1(ok538)	$0.40 \pm 0.11^{**}$	0–1

Supplementary Table 5 *cnt-1* acts downstream of *age-1* and upstream of *akt-1*, *akt-2* and *sgk-1* to promote apoptosis.

Missing cells were scored in the anterior pharynx of L4 hermaphrodites using Nomarski optics. Data shown are mean \pm s.e.m. Statistical significance values were determined by one-way ANOVA, followed by Tukey's test (n = 20 animals). *P < 0.001, compared with N2. **P < 0.001, compared with cnt-1(tm2313).